TENTATIVE AGENDA AND MEETING NOTICE WATAUGA COUNTY BOARD OF COMMISSIONERS

TUESDAY, AUGUST 5, 2025 AT 5:30 PM

WATAUGA COUNTY ADMINISTRATION BUILDING COMMISSIONERS' BOARD ROOM

TIME	#	TOPIC	PRESENTER	PAGE
5:30	1 2	CALL REGULAR MEETING TO ORDER APPROVAL OF MINUTES		1
		July 15, 2025, Regular MeetingJuly 15, 2025, Closed Session		
	3	APPROVAL OF THE AUGUST 5, 2025 AGENDA		13
5:35	4	PUBLIC COMMENT WILL LAST UP TO ONE HOUR, DEPENDING ON THE NUMBER OF SPEAKERS	CHAIRMAN EGGERS	15
5:40	5	LUCKY DOG VINTAGE MARKET - USE OF HUMAN SERVICES LOT	Mr. Trevor Shue	17
5:45	6	BLUE RIDGE RISING RESOLUTION	Mr. Ryan Robinson	23
5:50	7	SDR FINAL DEBRIS REMOVAL COST	Mr. Chip Patterson	27
6:00	8	WATAUGA COOPERATIVE EXTENSION - PROPOSED COUNTY VEHICLE PURCHASE	MR. JIM HAMILTON	29
6:05	9	MAINTENANCE MATTERS A. UTILITY VEHICLE PURCHASE REQUEST B. CONTRACT RENEWAL FOR RECREATION CENTER HVAC MONITORING	Mr. Robert Marsh	33 47
6:10	10	EMERGENCY SERVICES MATTERS A. TOWER CONSTRUCTION AND SITE MODIFICATIONS CONTRACT B. EMERGENCY SERVICES FACILITY TOWER ENGINEERING CONTRACT C. RADIO SYSTEM MAINTENANCE CONTRACT RENEWAL	MR. WILL HOLT	71 603 609
6:15	11	APPOINTMENT OF MEMBERS TO FIRE APPENDICES COMMITTEE	Mr. Jason Walker	631
6:20	12	SANITATION DEPARTMENT TRAILER PURCHASE REQUEST	MR. CHRIS MARRIOTT	635
6:25	13	MISCELLANEOUS ADMINISTRATIVE MATTERS A. RESOLUTION TO APPROVE AMENDMENT NO. 2 B. PROPOSED HUMAN SERVICES PARKING LOT AND PARKING DECK AGREEMENT WITH APPALACHIAN STATE	MR. DERON GEOUQUE	641 647
6:30	14	Break		657
6:40	15	CLOSED SESSION ATTORNEY-CLIENT MATTERS PER G. S. § 143-318.11(A)(3) LAND ACQUISITION PER G.S. § 143-318.11(A)(5) PERSONNEL MATTERS PER G. S. § 143-318.11(A)(1)		657

TIME	#	TOPIC	PRESENTER	PAGE
6:50	16	POSSIBLE ACTION AFTER CLOSED SESSION		659
6:55	17	Adjourn		

AGENDA ITEM 2:

APPROVAL OF MINUTES:

July 15, 2025, Regular Meeting July 15, 2025, Closed Session

MEETING MINUTES WATAUGA COUNTY BOARD OF COMMISSIONERS

Tuesday, July 15, 2025

The Watauga County Board of Commissioners held a regular meeting on Tuesday, July 15, 2025, at 5:30 P.M. in the Commissioners' Board Room located in the Watauga County Administration Building in Boone, North Carolina.

1. CALL REGULAR MEETING TO ORDER

Chairman Eggers called the meeting to order at 5:30 P.M. The following were present:

PRESENT: Braxton Eggers, Chairman

Todd Castle, Vice-Chairman Emily Greene, Commissioner Tim Hodges, Commissioner Ronnie Marsh, Commissioner Nathan Miller, County Attorney Deron Geouque, County Manager Katie Hancock, Clerk to the Board

Commissioner Hodges offered a prayer and Commissioner Marsh led the Pledge of Allegiance.

2. APPROVAL OF MINUTES

Chairman Eggers presented the June 17, 2025, regular and closed session meeting minutes.

Commissioner Greene, seconded by Vice-Chairman Castle, moved to approve the June 17, 2025, regular meeting minutes as presented.

VOTE:
$$Aye - 5$$

 $Nay - 0$

Commissioner Greene, seconded by Vice-Chairman Castle, moved to approve the June 17, 2025, closed session minutes as presented.

VOTE:
$$Aye - 5$$

 $Nay - 0$

3. APPROVAL OF AGENDA

Chairman Eggers called for additions or corrections to the July 15, 2025, agenda.

County Manager Geouque requested the following addition:

• Agenda Item 6 to include the following:

B. Consideration of New Projects for the North Carolina Department of Transportation State Transportation Improvement Plan (STIP 8.0)

Commissioner Marsh, seconded by Commissioner Hodges, moved to approve the July 15, 2025, agenda as amended.

VOTE:
$$Aye - 5$$

 $Nay - 0$

4. Public Comment

There was no public comment.

5. APPOINTMENT OF CLERK TO THE BOARD

Chairman Eggers reported that Katherine "Katie" Hancock had been hired to fill the vacancy created by the retirement of long-serving Clerk to the Board, Anita Fogle. He proposed that Ms. Hancock be appointed as Clerk to the Board/Administrative Assistant.

Commissioner Hodges, seconded by Commissioner Greene, moved to approve the appointment of Katie Hancock as Clerk to the Board/Administrative Assistant.

VOTE:
$$Aye - 5$$

 $Nay - 0$

6. PLANNING AND INSPECTIONS MATTERS

A. High Country Rural Planning Organization (RPO) and Watauga County Transportation Projects Overview

Mr. David Graham, Transportation Planner with the High Country Council of Governments, presented an overview of the Rural Planning Organization (RPO) Comprehensive Transportation Plan and Watauga County projects in the State Transportation Improvement Program (STIP).

This presentation was for informational purposes only; therefore, no action was required.

B. Consideration of New Projects for the North Carolina Department of Transportation State Transportation Improvement Plan (STIP 8.0)

Mr. Jason Walker, Planning and Inspections Director, along with Mr. David Graham, Transportation Planner with the High Country Council of Governments, requested that Watauga County submit three highway projects and three bicycle/pedestrian projects from the Holding Tank List for consideration in the upcoming State Transportation Improvement Plan (STIP 8.0). Mr. Walker presented a list of all current projects on the Holding Tank List, along with the top three ranked projects in each category based on a community survey. The following projects received the highest rankings and were recommended for submission.

	Highway Projects		Bicycle/Pedestrian Projects
1.	H230697 : NC-194 from US-221/421 to Castle Ford Road	1.	B230730 : Middle Fork Greenway, Section 5B
	<u>Description</u> : Modernize roadway, including construction of center turn lane and sidewalks		<u>Description</u> : From south of Jordan Cook Road to Watauga Medical Center
2.	H090163-A: US-421 from Tennessee state line to US-321/421 junction near Vilas Description: Widen to multiple lanes	2.	B230735: Middle Fork Greenway, Section 5C Description: From Payne Branch Park to Goldmine Brank Park
3.	H111013: NC-105 Bypass from NC-105 to US-321/421 Description: Widen roadway to three lanes with 5-foot paved shoulders to accommodate bicycles	3.	B230668: Middle Fork Greenway, Section 1B Description: From South of the Blue Ridge Parkway to Chestnut Ridge Parkway

The Board agreed to select the top three highway and bicycle/pedestrian projects as ranked by the community survey.

Vice-Chairman Castle, seconded by Commissioner Greene, moved to approve the submission of the selected projects for consideration in the upcoming State Transportation Improvement Plan (STIP 8.0).

VOTE: Aye - 5Nay - 0

7. PROPOSED FINAL REVISION TO HOME & COMMUNITY CARE BLOCK GRANT (H&CCBG) FY 2025 ALLOCATION

Ms. Angie Boitnotte, Project on Aging Director, requested that the Board approve a final revision to the FY 2025 Home and Community Care Block Grant (H&CCBG) allocation. The revision involved moving \$649 from In-Home Aide Level II to In-Home Aide Level I services. The overall allocation and required local match remained unchanged.

Commissioner Marsh, seconded by Commissioner Hodges, moved to approve the final revision to the FY 2025 Home and Community Care Block Grant (H&CCBG) allocation as presented.

VOTE: Aye - 5Nay - 0

8. NORTH CAROLINA AMATEUR SPORTS GRANT ACCEPTANCE REQUEST

Ms. Keron Poteat, Parks and Recreation Director, requested that the Board accept a \$20,000 grant awarded through North Carolina Amateur Sports.

Vice-Chairman Castle, seconded by Commissioner Greene, moved to accept the \$20,000 grant from North Carolina Amateur Sports

VOTE:
$$Aye - 5$$

 $Nay - 0$

9. K-9 PURCHASE REQUEST

Captain Carolynn Johnson, Watauga County Sheriff's Office, reported that the department recently hired a K-9 Deputy from Avery County to fill a deputy vacancy. Avery County would not release his K-9 unless Watauga County paid \$20,000. Captain Johnson stated that the Sheriff's Office secured a private donor willing to contribute the full amount.

Captain Johnson requested that the Board accept the \$20,000 donation to purchase the K-9 from Avery County.

Commissioner Marsh, seconded by Vice-Chairman Castle, moved to accept the \$20,000 donation for the purchase of the Avery County K-9.

VOTE:
$$Aye - 5$$

 $Nay - 0$

Upon purchasing the K-9, the County would need to declare the animal as surplus property and approve a private sale to the deputy. This action is authorized under G.S. § 160A-266 and § 160A-267 and was necessary as all existing K-9 positions were filled, and no funds were budgeted for an additional K-9 deputy.

Commissioner Marsh, seconded by Commissioner Greene, moved to declare the K-9 as surplus property.

VOTE:
$$Aye - 5$$

 $Nay - 0$

Vice-Chairman Castle, seconded by Commissioner Hodges, moved to adopt the Resolution Authorizing the Sale of Personal Property Worth Less Than \$30,000 (G.S. § 160A-266; 267) to approve the private sale of the surplus K-9 to the deputy.

VOTE:
$$Aye - 5$$

 $Nay - 0$

10. EMERGENCY SERVICES MATTERS

A. Hurricane Helene Update

Mr. Will Holt, Emergency Services Director, shared a brief update on Hurricane Helene recovery efforts.

- Most insurance claims have been processed and submitted to FEMA.
- Debris removal is ongoing, with over 400,000 cubic yards cleared from waterways.
- The Private Property Debris Removal program is set to begin soon.
- Initial watershed repair projects have been approved, and over 475 private roads and bridges have been inspected.
- To date, over \$540,000 in FEMA reimbursements have been secured.
- The Multi-Agency Resource Center remains open Friday mornings, though usage is low and under review.

Mr. Holt expressed appreciation for the continued partnership with local, state, and federal agencies supporting recovery and resilience efforts.

This update was for informational purposes only; no action was required.

B. Emergency Services Vehicle Purchase

Mr. Holt requested Board approval for one (1) new 2025 F-150 to replace a 2019 model. The total cost, including vehicle and upfit, is \$93,499.80.

Commissioner Hodges, seconded by Commissioner Greene, moved to approve the purchase of the 2025 F-150 and upfit in the amount of \$93,499.80.

VOTE:
$$Aye - 5$$

 $Nay - 0$

C. EMS Third-Party Billing Service Agreement

Mr. Holt requested Board approval for a contract with EMS Management & Consultants, Inc. to provide third-party billing services and electronic patient care reporting for the County's new ambulance service. The cost of the service is 7.5% of net collections billed.

Vice-Chairman Castle, seconded by Commissioner Marsh, moved to approve the contract with EMS Management & Consultants, Inc. for third-party billing and patient care reporting services at a rate of 7.5% of net collections.

VOTE:
$$Aye - 5$$

 $Nay - 0$

D. Request to Purchase EMS Ambulance Mobiles and Portable Radio Equipment

Mr. Holt requested formal Board approval for the purchase of 16 portable radios and 10 mobile radios for use in both existing and incoming EMS vehicles. The total cost of the equipment is \$236,182.86.

To avoid a scheduled 7% price increase (\$16,532.80), staff placed the order in advance of the meeting.

Commissioner Marsh, seconded by Commissioner Greene, moved to approve the purchase of portable and mobile radios from Motorola in the amount of \$236,182.86.

VOTE: Aye - 5Nay - 0

11. WATAUGA COUNTY PLANNING BOARD'S RECOMMENDATIONS FOR THE FIRE APPENDICES COMMITTEE

Mr. Jason Walker, Planning and Inspections Director, presented the Planning Board's recommendations for the Fire Appendices Committee. A public hearing was held on May 6, 2025, to allow citizen comment regarding the potential repeal of the fire appendices. Following the hearing, a Fire Appendices Committee was formed to review the matter and develop recommendations. Below are the Planning Board's recommendations for committee composition.

Role	Recommended Members	
Two Fire Chiefs	Recommendation to come from the Fire Board	
Two Commissioners	Internally decided by the Board of Commissioners	
County Manager	Deron Geouque	
Fire Marshal	Shane Garland	
Planning Director	Jason Walker	
One Surveyor	 Alex Crowe Donald McNeil Rick Snider 	
One Engineer	 Patrick Warren Derrick Goddard Mike Trew 	
One Developer	 Patrick Warren Jeff Fisher Todd Rice Bill Aceto Jay Harrill* 	
One At-Large Member	 Mike Wilson Joseph Greer Chuck Campbell George Bartholomew* 	

* The two individuals marked with an asterisk were recommended after the Planning Board meeting. The Planning Board recommended that two commissioners serve on the committee. Chairman Eggers and Commissioner Marsh volunteered to fill those seats.

The Board requested that Mr. Walker contact the individuals recommended for the surveyor, engineer, developer, and at-large positions to confirm their willingness to serve. Once confirmations are received, Mr. Walker will present the finalized list for the Board's review and approval at the next meeting.

This item was presented for the Board's information, and no formal action was required at this time.

12. TAX MATTERS

A. Monthly Collections Report

Mr. Deron Geouque, County Manager, presented the Monthly Collections Report from June 2025 on behalf of Mr. Tyler Rash.

The report was presented for informational purposes only; therefore, no action was required.

B. Refunds and Releases

Mr. Geouque presented the Refunds and Releases Report.

Vice-Chairman Castle, seconded by Commissioner Hodges, moved to accept the Refunds and Releases as presented.

VOTE:
$$Aye - 5$$

 $Nay - 0$

C. Annual Settlement of the Tax Collector

Pursuant to G.S. § 105-373, an annual settlement of the Tax Collector must be prepared and submitted to the Board of Commissioners for review and approval. Mr. Geouque, on behalf of Mr. Rash, presented the annual settlement.

Commissioner Marsh, seconded by Commissioner Greene, moved to approve the Annual Settlement of the Tax Collector as presented by Mr. Geouque.

VOTE:
$$Aye - 5$$

 $Nav - 0$

D. Oath to Collect Taxes

Mr. Geouque stated that each year the Board of County Commissioners is required to authorize the Tax Administrator of Watauga County to collect taxes for the upcoming fiscal year.

Commissioner Marsh, seconded by Commissioner Hodges, moved to authorize the Tax Administrator to begin the process of tax collection.

VOTE:
$$Aye - 5$$

 $Nay - 0$

13. MISCELLANEOUS ADMINISTRATIVE MATTERS

A. Howard Knob Park Proposal for Construction Materials Testing

The Howard Knob Park project required construction materials testing services. Funds had been budgeted to cover the expense. The project required no County funding and was to be paid by the Watauga TDA and grant funds. Staff recommended that the Board, contingent upon County Attorney review, approve the contract with WSP for construction materials testing in the amount of \$37,500.

Mr. Nathan Miller, County Attorney, noted concerns with the contract, specifically with Paragraph 7 – "Limitation of Liability" and Paragraph 18 – "Disputes", particularly the litigation clause requiring all disputes to be adjudicated in the state of New York.

Due to these concerns, Commissioner Greene, seconded by Vice-Chairman Castle, moved to table the discussion to allow Mr. Miller time to contact WSP for clarification and possible revisions.

VOTE:
$$Aye - 5$$

 $Nay - 0$

B. Budget Amendments

Mr. Deron Geouque, Finance Director, presented the budget amendments for approval as included in the Board packet.

Commissioner Marsh, seconded by Vice-Chairman Castle, moved to approve the budget amendments as presented.

VOTE:
$$Aye - 5$$

 $Nay - 0$

C. Boards and Commissions

AppalCART Board

Appalachian State University recommended the appointment of Mr. Matt Dull, Deputy Chief Operating Officer, to the AppalCART Board, replacing Mr. John Adams, former Interim Chief Financial Officer.

Commissioner Marsh, seconded by Commissioner Hodges, moved to waive the first reading and appoint Mr. Dull to the AppalCART Board.

VOTE:
$$Aye - 5$$

 $Nay - 0$

CCC&TI Board

Mr. Lowell Younce's term on the Caldwell Community College and Technical Institute Board of Trustees expired on June 30, 2025. Mr. Younce expressed his willingness to continue serving, and the Board of Trustees requested his reappointment.

Commissioner Marsh, seconded by Commissioner Hodges, moved to waive the first reading and reappoint Mr. Younce to the Caldwell Community College and Technical Institute Board of Trustees.

VOTE:
$$Aye - 5$$

 $Nav - 0$

Jury Commission

Mr. Thomas Broadus Redmon was previously selected for the Jury Commission for the 2025 - 2026 term. Mr. Redmon was willing to continue to serve on the commission.

Commissioner Greene, seconded by Commissioner Marsh, moved to waive the first reading and reappoint Mr. Redmon to the Jury Commission.

VOTE:
$$Aye - 5$$

 $Nay - 0$

Parks and Recreation Commission

The Recreation Commission Board submitted the following reappointment recommendations and requested that the Board approve the names and waive the first reading requirement.

Name	Representing	Term
Ms. Brittany Bolick	Hardin Park School	Term expired 06/2025; reappointed through 06/2028
Mr. Sam Painter	Valle Crucis School	Term expired 06/2025; reappointed through 06/2028
Ms. Virginia Roseman	Boone Town Council	Annual appointment; serves through 12/2025
Mr. Doug Matheson	Blowing Rock Town Council	Annual appointment; new term through 06/2026
Mr. Ron Henries	WCS Board of Education	Annual appointment; new term through 06/2026

Vice-Chairman Castle, seconded by Commissioner Greene, moved to waive the first reading and approve the names submitted for the Recreation Commission Board.

VOTE:
$$Aye - 5$$

 $Nay - 0$

D. Announcements

AMOREM scheduled a private open house celebration for the Patient Care Unit of the High Country on Friday, July 25, 2025 from 1:00 PM until 1:45 PM at Archie Carroll Road in Boone, NC. Members of the Board were invited to attend.

14. COMMISSIONER COMMENTS

There were no Commissioner comments.

15. CLOSED SESSION

At 6:57 PM, Vice-Chairman Castle, seconded by Commissioner Greene, made a motion to go into Closed Session pursuant to G.S. § 143-318.11(a)(3) to discuss attorney-client privileged matters, § 143-318.11(a)(5) to consider matters related to land acquisition, and § 143-318.11(a)(1) to discuss personnel matters.

VOTE:
$$Aye - 5$$

 $Nay - 0$

At 9:33 PM, Vice-Chairman Castle, seconded by Chairman Eggers, moved to resume the open meeting.

VOTE:
$$Aye - 5$$

 $Nay - 0$

16. Adjourn

At 9:34 PM, Vice-Chairman Castle, seconded by Chairman Eggers, moved to adjourn the meeting.

VOTE:
$$Aye - 5$$

 $Nay - 0$

Braxton Eggers, Chairman

ATTEST: Katie Hancock, Clerk to the Board

AGENDA ITEM 3:

APPROVAL OF THE AUGUST 5, 2025, AGENDA

AGENDA ITEM 4:

PUBLIC COMMENT

MANAGER'S COMMENTS:

Public Comment will last up to one hour, depending on the number of speakers.

AGENDA ITEM 5:

<u>Lucky Dog Vintage Market – Use of Human Services Lot</u>

MANAGER'S COMMENTS:

Trevor Shue, organizer of the Lucky Dog Vintage Market, has submitted a request to use the grassy area and parking lot at the Human Services Center for market events on select dates from August 2025 through August 2026. The proposed dates do not conflict with the ASU football schedules and the Watauga County Farmers' Market. The rate to be charged is \$200; which is the same as last time.

Staff seeks direction from the Board.

Katie.Hancock

From:

Trevor Shue < luckydogvtg@gmail.com>

Sent:

Wednesday, July 30, 2025 6:10 PM

To:

Board Packet

Subject:

Re: Trevor Shue Lucky Dog Vintage Market

I have reviewed the ASU Football schedule, as well as the student schedule for the 2025-2026 year and all of our dates are either on fridays, saturday, or sundays so no interference with the farmers market as well.

On Wed, Jul 30, 2025 at 6:08 PM Trevor Shue < luckydogvtg@gmail.com> wrote:

Here is the information for my request for the board of commissioners, Lucky Dog Vintage Market @ the grassy human services area/parking lot.

2025-2026 Requested Dates

2025

August 23rd

September 20th

October 19th

November 21st

2026

March 21st

April 18th

May 23rd

June 20th

July 18th

August 21st

I have reviewed the ASU Football schedule, as well as the student schedule for

STATE OF NORTH CAROLINA

LICENSE AGREEMENT

COUNTY OF WATAUGA

THIS LICENSE AGREEMENT (the "Agreement") is made as of <u>August 5, 2025</u>, by and between Watauga County, a corporate body politic, being hereinafter referred to as the "Licensor," and Lucky Dog Vintage, being hereinafter referred to as "Licensee".

STATEMENT OF PURPOSE

WHEREAS, Licensor is the owner of the parking lot and building of the Watauga County Human Services Center located at 132 Poplar Grove Connector, Boone NC 28607, hereinafter referred to as the "Property"); and

WHEREAS, Licensee wants to use the parking lot to host its clothing market on the dates listed in Exhibit A; and

WHEREAS, Licensor and Licensee hereto desire to enter into an agreement to set forth their respective rights and obligations regarding use and maintenance of the Property.

NOW, THEREFORE, in consideration of the mutual covenants contained herein, the parties hereto hereby agree as follows:

- 1. **Grant of License**. Licensor hereby grants to Licensee, subject to all of the terms and conditions hereof, a license to use the Property to host its clothing market on the dates listed in Exhibit A for itself, its clients, customers, patrons, other related invitees and the general public. However, Licensee does not have the rights granted herein to the exclusion of the rights of the Licensor to use the Property in any matter it wishes so long as it does not unreasonably impede the use of the Property by Licensee for the purpose stated herein.
- 2. **Personal License Only**. It is agreed between Licensor and Licensee that this license is personal to Licensee and shall not inure to the successors or assigns of Licensee.
- 3. Licensee Has No Interest or Estate. Licensee agrees that it does not and shall not claim at any time any interest or estate of any kind or extent whatsoever in the Property, or any portion thereof, by virtue of this license or Licensee's occupancy or use hereunder and Licensor conveys no interest in the Property to Licensee by this Agreement.
- 4. Use of the Property. The Licensor shall collect the garbage from the containers on the Property at 6:00 PM on the dates listed in Exhibit A, and this License shall automatically terminate at the conclusion of each date's use. The Licensee shall keep the Property in a good state of repair and in a safe condition during its use on each occasion. Any repairs or other changes made by Licensee shall require the prior consent of Licensor and shall be at the sole cost and expense of Licensee. The Licensee shall pay to Licensor a fee of Two Hundred Dollars (\$200.00) per date of use as outlined in Exhibit A for its use of the Property.

- 5. **Indemnification**. Licensee shall indemnify and hold Licensor, jointly and severally, its agents, servants, employees, invitees, representatives and their respective heirs, successors and assigns, harmless from and against any and all claims, demands, actions, liabilities or expenses concerning bodily injury or death, damage to the Property resulting from, or in any way connected with, the condition or use of the Property by Licensee, its invitees, customers, guests and the general public during the use of the Property. Licensor shall not be liable to Licensee if for any reason whatever Licensee's occupation or use of the Property hereunder shall be hindered or disturbed. Licensee shall be responsible for maintaining a liability insurance policy, at its sole cost and expense, naming the Licensor as named insured, in form and amount mutually agreeable between Licensor and Licensee.
- 6. **Termination of License.** This License shall commence at 9:00 AM and automatically terminate at 6:00 PM on the dates listed in Exhibit A.
- 7. **Modification.** The terms, covenants, conditions and provisions of this License Agreement may be extended, abrogated, modified, rescinded or amended in whole or in part only with the consent of the Licensor and Licensee and only in writing.
- 8. **Applicable Law**. This Agreement shall be governed in all respects by the laws of the State of North Carolina.
- 9. **Notices**. Any notices or other communications to be given hereunder shall be in writing and shall be deemed to have been given if delivered in person or mailed by United States certified or registered mail, postage prepaid, return receipt requested, to the parties at the following address, or to such other address as shall be given in writing by one party to the other:

As to Licensor:

Deron Geouque, County Manager Watauga County 814 West King Street, Room 205 Boone, NC 28607

As to Licensee:

Trevor Shue Lucky Dog Vintage 1167 West King Street Boone, NC 28607

10. **Recording**. This Agreement, or Memorandum thereof, shall not be recorded without Licensor's prior written consent, and if recorded Licensee hereby agrees to pay the cost and expense thereof.

- 11. **Waiver**. No waiver of any condition, covenant or restriction of this Agreement by either party shall be deemed to imply or constitute a further waiver of the same or any other condition or covenant of this Agreement.
- 12. **Captions**. The captions of the various paragraphs of this Agreement are for convenience only and are not a part of this Agreement and do not in any way limit or amplify the terms and provisions of this Agreement.

IN WITNESS WHEREOF, the parties hereto have executed this Agreement, all as of the day and year first above written.

Licensor:		License	Licensee:		
Wataug	a County	Lucky I	Dog Vintage		
By:	Deron Geouque County Manager	Ву:	Trevor Shue		
Attest:					
	Katie Hancock Clerk to the Board of Commissioners				

Exhibit A: Market Dates

- August 23, 2025
- September 20, 2025
- October 19, 2025
- November 21, 2025
- March 21, 2026
- April 18, 2026
- May 23, 2026
- June 20, 2026
- July 18, 2026
- August 21, 2026

AGENDA ITEM 6:

BLUE RIDGE RISING RESOLUTION

MANAGER'S COMMENTS:

Mr. Ryan Robinson, Head of Corporate Responsibility and Community Partnerships for Mast General Store, has requested the Board's consideration of a resolution of support from the Blue Ridge Parkway Foundation. The Foundation is seeking endorsement from the 29 counties along the Parkway corridor as part of a regional effort to advocate for funding that supports unified county interests and Helene Recovery initiatives. To date, 21 counties have adopted the resolution.

Staff seeks direction from the Board.

STATE OF NORTH CAROLINA

COUNTY OF WATAUGA

RESOLUTION IN SUPPORT OF FUNDING FOR REPAIRS AND STRATEGIC IMPLEMENTATION OF BLUE RIDGE RISING ALONG THE BLUE RIDGE PARKWAY

WHEREAS, the Blue Ridge Parkway traverses 469 miles from Afton Mountain in Virginia to the Qualla Boundary in North Carolina and unites these two states' unique mountain cultures and identities with a world-renowned national park that celebrates the places, communities, and people along the Parkway; and

WHEREAS, the Blue Ridge Parkway is the most-visited unit of the national park system, attracting nearly seventeen million visitors each year and contributing significantly to the local and regional economies in Virginia and North Carolina; and

WHEREAS, the Parkway generates approximately \$1.4 billion in visitor spending and \$1.8 billion in total economic output for the 1,799,000 residents of the surrounding corridor of twenty-nine counties, seven independent Virginia cities, and numerous municipalities in North Carolina and Virginia, including the towns of Buchanan, Fincastle, and Troutville in Botetourt County; and

WHEREAS, the Blue Ridge Parkway Foundation serves as the sole official philanthropic partner to the Blue Ridge Parkway, advocating for necessary funding and resources for the Parkway's maintenance, preservation, and community engagement; and

WHEREAS, the Blue Ridge Rising strategic plan provides a roadmap for the sustainable management and enhancement of the Parkway, ensuring that it continues to serve as a vital resource for environmental education, recreation, tourism, and community connection; and

WHEREAS, Tropical Storm Helene has caused catastrophic damage and loss of life for several communities in western North Carolina and southwest Virginia, including those communities adjacent to the Parkway; and

WHEREAS, repairs are critical to preserving the safety and accessibility of the Parkway and its adjacent communities, which is essential for their economic wellbeing; and

WHEREAS, collaboration among local, state, and federal governments is critical in this response and imperative to secure the necessary funding and policies that will sustain and benefit the communities surrounding the Blue Ridge Parkway; and

WHEREAS, the establishment of a coalition composed of elected officials and community representatives will enhance advocacy efforts and foster a unified regional voice for the Blue Ridge Parkway corridor.

NOW, THEREFORE, BE IT RESOLVED that the Watauga County Board of Commissioners endorses and supports the following:

1. **Funding for Repairs**: Urging state and federal governments to prioritize and allocate funding for repairs along the Blue Ridge Parkway to ensure its continued safety and accessibility;

- 2. **Implementation of the Blue Ridge Rising Strategic Plan**: Advocating for the full funding and implementation of the Blue Ridge Rising Strategic Plan to enhance visitor experience, preserve natural resources, and promote sustainable tourism along the Parkway;
- 3. Collaboration and Support: Calling upon local, state, and federal officials to collaborate with the Blue Ridge Parkway Foundation and other stakeholders to secure resources and policies that benefit the Parkway and its surrounding communities; and
- 4. **Coalition Creation**: Supporting the formation of a coalition of elected officials and community representatives dedicated to advocating for the Blue Ridge Parkway, ensuring that the needs and voices of the communities along the corridor are effectively represented.

BE IT FURTHER RESOLVED that a copy of this resolution be forwarded to relevant local, state, and federal entities, as well as the Blue Ridge Parkway Foundation, to demonstrate our unified support for the Parkway and its vital role in our communities.

ADOPTED this 5th day of August, 2025.

	St. AL OF WATALO
Braxton Eggers, Chairman	S S
Watauga County Board of Commissioners	OF STATE OF
ATTEST:	
Katie Hancock Clerk to the Board	ORTH CAROLITA

AGENDA ITEM 7:

SDR FINAL DEBRIS REMOVAL COST

MANAGER'S COMMENTS:

Southern Disaster Recovery (SDR) has completed all final punch list and quality control items. According to Mr. Patterson, due to data lag and the volume of debris processed from the 2,000-item punch list, the total cost of right-of-way debris removal is \$7.2 million. SDR is requesting that the final Not to Exceed (NTE) amount be set at \$7,200,000, which is \$750,000 more than the previous amount of \$6,450,000. There is a lag between work completed and invoicing. SDR has already completed and billed more than the \$6,450,000 amount in an effort to eliminate and complete the project. All funds are 100% reimbursable by FEMA. The County Attorney would need to advise on the legal issue regarding the services completed and compensation owed to SDR. Additionally, staff has identified 14 remaining sites for removal.

Staff seeks direction from the Board.

AGENDA ITEM 8:

WATAUGA COOPERATIVE EXTENSION – PROPOSED COUNTY VEHICLE PURCHASE

MANAGER'S COMMENTS:

Mr. Jim Hamilton, County Extension Director, is requesting the purchase of a county-owned vehicle to support Extension staff travel for farm visits, workshops, meetings, and programming. Due to significant increases in state vehicle lease costs and anticipated reductions in state travel funding, maintaining the current state van lease is no longer cost-effective. The request proposes using unencumbered funds from a currently vacant 4-H agent position to offset the cost of a vehicle purchase, with a preference for a Toyota Sienna due to its passenger and equipment transport capacity.

The request does not include vehicle maintenance and fuel. These expenses will be incorporated now and in next year's budget.

Staff seeks direction from the Board regarding the proposed purchase.

County Vehicle Request for Watauga Cooperative Extension

Extension's state van contract monthly use fees are going up from \$307 per month to \$460 (with per mile fees after 1000 miles also going from \$0.35 to \$0.44). Additionally, with expected forthcoming projected state cuts to Extension travel budgets at 20% or more (due to federal cuts), this will significantly reduce our agent's travel capacity for county farm & property visits, meetings, workshops, & trainings. Watauga Extension will have to increase our *county* budget significantly for travel to make up for this shortfall. In the past, Watauga Extension has also had access to the county's Soil & Water truck and Parks & Rec vans for additional vehicle options. However, due to increased use of those vehicles by those county departments, 'shared' travel is no longer a viable option.

The current state van in use by Watauga Extension is a 2016, 7 passenger Dodge Caravan with 75,000 miles. Under the new state lease, our annual travel costs for that vehicle will be well over $$6,000 ($5,520 per year + $^1,000 mileage fees)$.

With a county-owned vehicle, NC State travel funding can be more efficiently allocated for agent travel & less additional county budget to subsidize it (we have added \$1,000 to our travel line each year over the past three years due to increased costs). Many other county Extension departments have relinquished their state vehicles for this reason and for more cost-efficient options available through county motor pool/vehicle procurement.

Proposed action:

Our 4-H agent recently separated (on July 18). Due to a hiring freeze at NC State, Watauga Extension will have unencumbered budget this fiscal year, as we do not know when the position can be reposted or refilled. My best guess is that it will be at least 6 months (but we realistically feel it will be at least 9).

I propose that the county uses unencumbered budget to purchase a new county vehicle for Extension travel.

Unencumbered Extension budget for 4-H Position for:

11.5 month vacancy: \$29,9846 month vacancy: \$15,644

9 month vacancy: \$23,466 –(it is my hope we may be able to refill the position in 9 months)

Vehicle options (From NC Sheriff's Association Procurement):

The following is a list of vehicle options from the Sheriff's Association procurement website. https://ncsheriffs.org/procurement/vehicle-motorcycle We would recommend the Toyota Sienna due to its passenger & storage capacity. Staff often transport groups to workshops & programming and seats can be stowed for equipment transport. We would need an additional ~\$13,201 to purchase this vehicle with an expected 9-month vacancy with our 4-H agent position.

(Bid 25-11-0912) Item: 124, Toyota, RAV4 Hybrid LE AWD, 4435 \$31,365.00

(Bid 25-11-0912) Item: 127, Toyota, Sienna Hybrid LE FWD (8 Passenger), 5402 \$36,667.00

(Bid 25-11-0912) Item: 215, Ford, F-150 Super Cab XL 145" WB 6.5` Bed 4×2, X1K \$36,725.00

Additional background on state-funded Watauga Extension Travel:

Our Extension <u>state-funded</u> travel allocation covers mileage (when agents use personal vehicles), meal per diem, conference/training registration fees, and lodging costs. Our state van lease & fees ALSO come out of that allocation. Each year, Cooperative Extension (at the state level) determines our office's annual travel budget allocation. In the past, we used to have a 'per agent allocation' (funded by the state) of around \$3,500 per agent—and we did not have to request or use any county funds for travel. The entire staff share and frequently use the state van for programs and for longer trips to reduce wear & tear on their personal vehicles. Since 2022, our state travel allocation was set on a post-covid use rate per office. Watauga Extension was given a county total allocation of \$12,500---which translates to just over \$2,000 per agent. Over the last 3 years, we have had to request additional travel funds <u>from the county</u> to help cover agent travel. With state van fees now going up to over \$600 per month, this will effectively cut each agent's travel by more than half and we will have to continue to request even more additional county funds. For these reasons, we want to relinquish the state van and request the purchase of a county vehicle. Owning a county vehicle outright will save us from having to continue to include (and raise) our county line item for travel each year.

Our agents use the state van (and their own personal vehicles) to meet the programming mission of Extension to serve our county residents. Each agent is active in their programming, respective professional associations and attends required trainings (often requiring out-of-county travel) to make sure we are providing optimal services and programming to our county farmers & other clientele. We also transport clientele to a number of programs and workshops throughout the year, using the state van. A new county-owned shared vehicle will pay for itself within 3-4 years. This is our first request for a county vehicle in my 19 year tenure with Watauga Extension.

AGENDA ITEM 9:

MAINTENANCE MATTERS

A. Utility Vehicle Purchase Request

MANAGER'S COMMENTS:

The FY 2025–2026 budget included funds for the purchase of a Bobcat UW56 utility vehicle, along with a 72" snowplow and 68" angle broom. This equipment will be used by Maintenance for snow removal at the Courthouse parking lots and parking deck during the winter months, and for general utility purposes the remainder of the year. Mr. Marsh, Maintenance Director, will request the Board award the bid to Bobcat of Charlotte, the lowest responsive bidder, in the amount of \$75,343.75. Adequate funds are budgeted to cover the expense.

Board action is requested to approve the purchase of the Bobcat UW56 utility vehicle, snowplow, and brush attachment in the amount of \$75,343.75.

WATAUGA COUNTY MAINTENANCE DEPARTMENT

274 Winklers Creek Road, Suite B, Boone, NC 28607 - Phone (828) 264-1430 Fax (828) 264-1473

TO:

Deron Geouque, County Manager

FROM:

Robert Marsh, Maintenance Director

DATE:

July 22, 2025

RE:

Bid Award Request for Utility Vehicle (Revised)

BACKGROUND

The FY 25-26 budget contains money for the purchase of a Bobcat UW56 utility vehicle, 72" snowplow and a 66" brush attachment. This vehicle will be used for snow removal in the small parking lots around the Courthouse and the parking deck in the winter and a general-use utility vehicle in the other months.

Maintenance contacted several Bobcat vendors and also received pricing through the NC Sheriffs Association.

BID RESULTS

Bobcat of Charlotte	\$77,230.50
Bobcat of Lenoir	\$82,638.93
Logger Shop (Wilkesboro)	\$87,788.50

BID RECOMMENDATION

Staff recommends the bid be awarded to Bobcat of Charlotte in the amount of \$77,230.50

FISCAL IMPACT

\$82,638.93 was approved in the FY 25-26 budget for this purchase.

Product Ouotation

Quotation Number: BM1305184 Quote Sent Date: Jul 16, 2025

Expiration Date: Aug 15, 2025

Your Bobcat Contact Brady Murdoff

Phone:

Email: brady.murdoff@doosan.com

Your Customer Contact

Deliver to

Watauga County Building Maintenance

Dept

BOONE, NC, 28607

Bobcat Dealer

Bobcat of Charlotte, Charlotte, NC 4923 BROOKSHIRE BOULEVARD

CHARLOTTE, NC, 28216

JEFFREY GAINER

Bill to

Watauga County Building Maintenance

Dept

BOONE, NC, 28607

Item Name	Item Number	Quantity	Price Each	Total
Bobcat UW56	M1225	1	56,406.00	56,406.00

Standard Equipment:

Adjustable Vinyl Seats

All-Wheel Steer

Automatically Activated Glow Plugs

Auxiliary Hydraulics

Variable Flow with dual direction detent

Beverage Holders

Bob-Tach

Boom Float

Cargo Box Support

Cruise Control

Speed Management

Enclosed Cab with HVAC

Dual Port USB charger

Lower Engine Guard

Limited Slip Transaxle

Engine and Hydraulic Monitor with Shutdown

Front LED Work Lights Full-time Four-Wheel Drive Horsepower Management

Roll Over Protective Structure (ROPS). Meets Requirements of

SAE-J1040 & ISO 3471

Falling Object Protective Structure (FOPS) . Meets

Requirements of SAE-J1043 & ISO3449, Level I

Dome Light

Hydraulic Dump Box

Instrumentation: Standard 5" Display with Keyless Start, Engine

Temperature and Fuel Gauges, Hour meter, RPM and Warning

Indicators. Includes maintenance interval notification, fault

display, job codes, quick start, and security lockouts.

Joystick, Manually Controlled with Lift Arm Float

Lift Arm Support

Parking Brake, automatic

Power Steering with Tilt Steering Wheel

Radiator Screen

Rear Receiver Hitch

Seat Belts, Shoulder Harness

Spark Arrestor Muffler

Suspension, 4-wheel independent

Tires: 27 x 10.5-15 (8 ply), Lug Tread

Toolcat Interlock Control System (TICS)

Two-Speed Transmission

Machine Warranty: 12 Months, unlimited hours

Bobcat Engine Warranty: Additional 12 Months or total of 2000

hours after initial 12 month warranty

Deluxe Road Package	M1225-P01-C01	1	2,275.00	2,275.00
Included: Deluxe Road Package includes:				
Backup Alarm, Turn Signals, Flashers, Tail	Ĺ			
Lights, Brake Lights, Rear view mirror, Sid	le			
Mirrors, Horn, Rear work lights, and				
headlights				
Attachment Control	M1225-R08-C02	1	196.70	196.70
Engine Block Heater	M1225-A01-C02	1	112.00	112.00

Heavy Duty Battery	M1225-R07-C02	1	80.50	80.50
High Flow Package	M1225-R03-C02	1	1,519.00	1,519.00
9		1	,	•
Interior Trim	M1225-A01-C04	1	158.20	158.20
Power Bob-Tach	M1225-R14-C03	1	885.50	885.50
Radio Option	M1225-R15-C02	1	415.10	415.10
Rear View Camera	M1225-R20-C01	1	275.80	275.80
Traction Control	M1225-R16-C02	1	487.20	487.20
72" Snow Blade	6905156	1	2,824.01	2,824.01
66" Brushcat (HF)	7233014	1	8,043.48	8,043.48
	Total for Bobcat UW56			73,678.49
UW56 SERVICE MANUAL	7440683ENUS	l	160.00	160.00
	Total for UW56 SERVICE	MANUAL		160.00
	Quot	e Total - USD		73,838.49
	Deal	er P.D.I.		250.00
	Tarif	f Surcharge		1,265.01
	Freig	tht Charges		1,400.00
	Dest	ination Charges		442.00
	Deal	er Assembly Charge	S	35.00
	Que	ote Total - USD		77,230.50

Comment:

Doosan Bobcat North America, Inc. products may be subject up to 26% import/export tariffs. Should this occur, Doosan Bobcat North America, Inc. will pass on the tariff charge on all models, which includes base model, machine options, and consumables/spare parts. The tariff charge percentage range is from 1% to 26% and will be removed should the tariffs be lifted. The exact tariff will be determined by Doosan Bobcat North America, Inc.at the time of order and will not apply to freight or destination charges, sales tax, pre-delivery inspection, setup charges, document fees, transfer costs, finance fees, freight forwarding costs, insurance costs, environmental disposal costs, fuel charges, training, service plans/contracts, warranty escrow, or extended warranty coverage. Doosan

^{*}Plus applicable taxes. IF Tax Exempt, please include Tax Exempt Certificate with the order.

^{*}Prices per the Sourcewell Contract #020223-CEC

^{*}Sourcewell Member Number (if applicable):

^{*}All orders should include 1) Accounts Payable Contact and email address, 2) W9 with correct legal entity name, and 3) Bill to Address.

^{*}Orders may be placed with the contract holder or authorized dealer as allowed by the terms and conditions of the contract. *A Copy of all orders must be provided to Heather.Messmer@Doosan.com.

^{*}Contact Holder Information: Doosan Bobcat North America, Inc. Govt Sales, 250 E Beaton Drive. West Fargo, ND 58078. TID# 38-0425350.

^{*}Payment Terms: Net 60 Days. Credit cards accepted.

^{*}Remittance address: Doosan Bobcat North America, Inc. P. O. Box 74007382, Chicago, IL 60674-7382

Bobcat North America, Inc. reserves the right to apply a tariff charge greater than 26% if the government implementing the tariff imposes tariff rates that exceed 26%.

Customer acceptance: Quotation Number:: BM1305184	Purchase Order:
Authorized Signature:	
Print:	Sign:
Date: Email:	
Addresses	
Delivery Address	
Tax Exempt: Y □ / N □ Exempt in the State of: Tax Exempt ID:	
Federal:	
State:	
Expiration Date:	

Product Quotation

Quotation Number: MF1072251 Quote Sent Date: May 22, 2025

Expiration Date: Jul 21, 2025

Your Bobcat Contact

Marcella Foss

Phone:

Email: marcella.foss@doosan.com

Your Customer Contact

Deliver to

Watauga County Building Maintenance

Dept

X

BOONE, NC, 28607

Bobcat Dealer

Bobcat of Lenoir, Lenoir, NC 555 WILKESBORO BLVD NE

LENOIR, NC, 28645

Bill to

Watauga County Building Maintenance

Dept

X

BOONE, NC, 28607

Item Name	Item Number	Quantity	Price Each	Total
Bobcat UW56	M1225	1	65,064.72	65,064.72

Standard Equipment:

Adjustable Vinyl Seats

All-Wheel Steer

Automatically Activated Glow Plugs

Auxiliary Hydraulics

Variable Flow with dual direction detent

Beverage Holders

Bob-Tach

Boom Float

Cargo Box Support

Cruise Control

Speed Management

Enclosed Cab with HVAC

Dual Port USB charger

Lower Engine Guard

Limited Slip Transaxle

Engine and Hydraulic Monitor with Shutdown

Front LED Work Lights Full-time Four-Wheel Drive Horsepower Management

Roll Over Protective Structure (ROPS). Meets Requirements of

SAE-J1040 & ISO 3471

Falling Object Protective Structure (FOPS) . Meets

Requirements of SAE-J1043 & ISO3449, Level I

Dome Light

Hydraulic Dump Box

Instrumentation: Standard 5" Display with Keyless Start, Engine

Temperature and Fuel Gauges, Hour meter, RPM and Warning

Indicators. Includes maintenance interval notification, fault

display, job codes, quick start, and security lockouts.

Joystick, Manually Controlled with Lift Arm Float

Lift Arm Support

Parking Brake, automatic

Power Steering with Tilt Steering Wheel

Radiator Screen

Rear Receiver Hitch

Seat Belts, Shoulder Harness

Spark Arrestor Muffler

Suspension, 4-wheel independent

Tires: 27 x 10.5-15 (8 ply), Lug Tread

Toolcat Interlock Control System (TICS)

Two-Speed Transmission

Machine Warranty: 12 Months, unlimited hours

1

Bobcat Engine Warranty: Additional 12 Months or total of 2000

hours after initial 12 month warranty

Deluxe Road Package M1225-P01-C01 1

Included: Deluxe Road Package includes:

Backup Alarm, Turn Signals, Flashers, Tail Lights, Brake Lights, Rear view mirror, Side

Mirrors, Horn, Rear work lights, and

headlights

Attachment Control M1225-R08-C02

2,482.20

2,482.20

214.20 214.20

				121 00	101.00
Engine Block Heater	M1225-A01-C02		1	121.80	121.80
Heavy Duty Battery	M1225-R07-C02		1	84.00	84.00
High Flow Package	M1225-R03-C02		l	1,458.24	1,458.24
Interior Trim	M1225-A01-C04		1	180.60	180.60
Power Bob-Tach	M1225-R14-C03		t	966.00	966.00
Radio Option	M1225-R15-C02		I	474.60	474.60
Rear View Camera	M1225-R20-C01		I	315.00	315.00
Traction Control	M1225-R16-C02		1	508.20	508.20
72" Snow Blade	6905156		1	2,676.09	2,676.09
66" Brushcat (HF)	7233014		1	8,093.28	8,093.28
	Total for Bobcat UW	/56			82,638.93
Parts & Service Manuals	5000000		1	0.00	0.00
	Total for Parts & Ser	vice Manuals			0.00
		Quote Total - USD			82,638.93
		Dealer P.D.I.			0.00
		Tariff Surcharge			0.00
		Freight Charges			0.00
		Dealer Assembly C	harges		0.00
		Quote Total - U	ISD		82,638.93

Comment:

*Driggs non the	North Carolina	Contract #2210A	Construction	Equipment)
Prices bet me	Notui Caronna	COMPACE #ZZTUA (Constituction	Equipment.

Customer acceptance: Quotation Number:: MF1072251	Purchase Order:	-

^{*}Plus applicable taxes. IF Tax Exempt, please include Tax Exempt Certificate with the order.

^{*}Member Number (if applicable):

^{*}All orders should include 1) Accounts Payable Contact and email address, 2) W9 with correct legal entity name, and 3) Bill to Address.

^{*}Orders may be placed with the contract holder or authorized dealer as allowed by the terms and conditions of the contract. *A Copy of all orders must be provided to Heather.Messmer@Doosan.com.

^{*}Contact Holder Information: Clark Equipment Company dba Bobcat Company, Govt Sales, 250 E Beaton Drive, West Fargo, ND 58078. TID# 38-0425350.

^{*}Payment Terms: Net 60 Days. Credit cards accepted.

^{*}Remittance address: Clark Equipment Company d/b/a Bobcat Company, P. O. Box 74007382, Chicago, IL 60674-7382

^{*}Questions can be submitted via email to barry.hanson@doosan.com or by phone at: 1-800-965-4232.

Authorized Signature:				
Print:	Sign:			
Date: Email:				
Addresses				
Delivery Address			 	_
Billing Address (if different from ship to):				
Tax Exempt: Y □ / N □				
Exempt in the State of:		-		
Tax Exempt ID:				
Federal:		-		
State:		-		
Expiration Date:		-		

Customer

Watauga County Maintenance Dept.

969 W. King St. Boone, NC, 28607 Phone: 828-264-1430 Contact **Robert Marsh** Phone: 828-264-1430

Email: robert.marsh@watgov.org

Quotation Number: **BB1316539** Quote Sent Date: **Jul 23, 2025** Expiration Date: **Aug 22, 2025** Prepared By: **Brett Bigham** Phone: +17047799316

Email: bbigham@loggershop.com

Dealer

Logger Shop Construction & Equipment, Inc., Wilkesboro, NC

5230 US-421

WILKESBORO, NC, 28697

 Item Name
 Item Number
 Quantity
 Price Each
 Total

 Bobcat UW56
 M1225
 1
 65,050.00
 65,050.00

Standard Equipment:

Adjustable Vinyl Seats All-Wheel Steer Automatically Activated Glow Plugs Auxiliary Hydraulics

Variable Flow with dual direction detent

Beverage Holders Bob-Tach Boom Float

Cargo Box Support Cruise Control Speed Management

Enclosed Cab with HVAC Dual Port USB charger Lower Engine Guard

Limited Slip Transaxle

Engine and Hydraulic Monitor with Shutdown

Front LED Work Lights Full-time Four-Wheel Drive Horsepower Management

Roll Over Protective Structure (ROPS) . Meets Requirements of

SAE-J1040 & ISO 3471

Falling Object Protective Structure (FOPS). Meets Requirements of SAE-J1043 & ISO3449, Level I

Dome Light

Hydraulic Dump Box

Instrumentation: Standard 5" Display with Keyless Start, Engine Temperature and Fuel Gauges, Hour meter, RPM and Warning Indicators. Includes maintenance interval notification, fault display, job codes, quick start, and security lockouts.

Joystick, Manually Controlled with Lift Arm Float

Lift Arm Support

Parking Brake, automatic

Power Steering with Tilt Steering Wheel

Radiator Screen Rear Receiver Hitch Seat Belts, Shoulder Harness Spark Arrestor Muffler Suspension, 4-wheel independent

Tires: 27 x 10.5-15 (8 ply), Lug Tread Toolcat Interlock Control System (TICS)

Two-Speed Transmission

Machine Warranty: 12 Months, unlimited hours

Bobcat Engine Warranty: Additional 12 Months or total of 2000

hours after initial 12 month warranty

3.250.00 Deluxe Road Package M1225-P01-C01 1 3.250.00 Included: Deluxe Road Package includes: Backup Alarm, Turn Signals, Flashers, Tail Lights, Brake Lights, Rear view mirror, Side Mirrors, Horn, Rear work lights, and headlights 1 281.00 Attachment Control M1225-R08-C02 281.00 160.00 **Engine Block Heater** M1225-A01-C02 1 160.00 **Heavy Duty Battery** M1225-R07-C02 1 115.00 115.00 High Flow Package M1225-R03-C02 1 2,170.00 2,170,00 Interior Trim M1225-A01-C04 1 226.00 226.00

Power Bob-Tach	M1225-R14-C03	1	1,265.00	1,265.00
Radio Option	M1225-R15-C02	1	593.00	593.00
Rear View Camera	M1225-R20-C01	1	394.00	394.00
Traction Control	M1225-R16-C02	1	696.00	696.00
66" Brushcat (HF)	7233014	1	10,584.00	10,584.00
72" Snow Blade	6905156	1	3,716.00	3,716.00
Government Rebate: US Jul-Aug 20	025 (Expires: Aug 31, 2025)	1	3,700.00	- 3,700.00
	Total for Bobcat UV	V56		84,800.00
		Quote Total - USD		84,800.00
		Dealer P.D.I.		250.00
		Tariff Surcharge		859.00
		Freight Charges		1,400.00
		Destination Charges		442.00
		Dealer Assembly Charges		37.50
		Sales total before Taxes		87,788.50
		Taxes		0.00
		Quote Total - USD		87,788.50

Customer acceptance: Quotation Number:: BB1316539	Purchase Order:
Authorized Signature: Print:	Sign:
Date: Email:	

Product Quotation

Quotation Number: BM1338179 Quote Sent Date: Aug 05, 2025 Expiration Date: Sep 04, 2025 Your Bobcat Contact
Brady Murdoff

Phone:

Email: brady.murdoff@doosan.com

Your Customer Contact Robert Marsh

Deliver to

Watauga County Building Maintenance Dept

BOONE, NC, 28607

Bobcat Dealer **Bobcat of Charlotte, Charlotte, NC** 4923 BROOKSHIRE BOULEVARD CHARLOTTE, NC, 28216 Bill to

Watauga County Building Maintenance Dept

Dept

BOONE, NC, 28607

BOONE, INC, 28007	CHARLOTTE, NC	, NC, 20210 BOONE, NC, 20007			
Item Name	Item Number	Quantity	Price Each	Total	
Bobcat UW56	M1225	1	56,406.00	56,406.00	
Standard Equipment: Adjustable Vinyl Seats All-Wheel Steer Automatically Activated Glow Plugs Auxiliary Hydraulics Variable Flow with dual direction detent Beverage Holders Bob-Tach Boom Float Cargo Box Support Cruise Control Speed Management Enclosed Cab with HVAC Dual Port USB charger Lower Engine Guard Limited Slip Transaxle Engine and Hydraulic Monitor with Shutdown Front LED Work Lights Full-time Four-Wheel Drive		Horsepower Management Roll Over Protective St SAE-J1040 & ISO 347 Falling Object Protectiv Requirements of SAE-J Dome Light Hydraulic Dump Box Instrumentation: Standard Temperature and Fuel Gar Indicators. Includes maint display, job codes, quick s Joystick, Manually Contro Lift Arm Support Parking Brake, automatic Power Steering with Tilt S Radiator Screen Rear Receiver Hitch Seat Belts, Shoulder Harn Spark Arrestor Muffler Suspension, 4-wheel indep Tires: 27 x 10.5-15 (8 ply Toolcat Interlock Control Two-Speed Transmission Machine Warranty: 12 Mo Bobcat Engine Warranty: hours after initial 12 mont	ructure (ROPS) . Mol l re Structure (FOPS) 1043 & ISO3449, L 5" Display with Ke ages, Hour meter, R enance interval noti- start, and security loc blled with Lift Arm I Steering Wheel ess bendent l, Lug Tread System (TICS) boths, unlimited hou Additional 12 Mont	. Meets .evel I yless Start, Engine PM and Warning fication, fault ckouts. Float	
Deluxe Road Package Included: Deluxe Road Package includes: Backup Alarm, Turn Signals, Flashers, Tail Lights, Brake Lights, Rear view mirror, Side Mirrors, Horn, Rear work lights, and headlights	M1225-P01-C01	1	2,275.00	2,275.00	
Attachment Control	M1225-R08-C02	1	196.70	196.70	
Engine Block Heater	M1225-A01-C02	1	112.00	112.00	
Heavy Duty Battery	M1225-R07-C02	1	80.50	80.50	

High Flow Package	M1225-R03-C02	1	1,519.00	1,519.00
Interior Trim	M1225-A01-C04	1	158.20	158.20
Power Bob-Tach	M1225-R14-C03	1	885.50	885.50
Radio Option	M1225-R15-C02	1	415.10	415.10
Rear View Camera	M1225-R20-C01	1	275.80	275.80
Traction Control	M1225-R16-C02	1	487.20	487.20
72" Snow Blade	6905156	1	2,824.01	2,824.01
68" Angle Broom	7337703	1	5,923.44	5,923.44
Workgroup - Attachment Control Kit, 7-Pin	7439954	1	193.21	193.21
	Total for Bobcat UW:	56		71,751.66
UW56 SERVICE MANUAL	7440683ENUS	1	160.00	160.00
	Total for UW56 SERV	VICE MANUAL		160.00
		Quote Total - USD		71,911.66
		Dealer P.D.I. Tariff Surcharge Freight Charges		250.00
				1,231.09
				1,400.00
Destination Charges			376.00	
		Dealer Assembly Charges		175.00
		Quote Total - USD		75,343.75

Comment:

Doosan Bobcat North America, Inc. products may be subject up to 26% import/export tariffs. Should this occur, Doosan Bobcat North America, Inc. will pass on the tariff charge on all models, which includes base model, machine options, and consumables/spare parts. The tariff charge percentage range is from 1% to 26% and will be removed should the tariffs be lifted. The exact tariff will be determined by Doosan Bobcat North America, Inc.at the time of order and will not apply to freight or destination charges, sales tax, pre-delivery inspection, setup charges, document fees, transfer costs, finance fees, freight forwarding costs, insurance costs, environmental disposal costs, fuel charges, training, service plans/contracts, warranty escrow, or extended warranty coverage. Doosan

^{*}Plus applicable taxes. IF Tax Exempt, please include Tax Exempt Certificate with the order.

^{*}Prices per the Sourcewell Contract #020223-CEC

^{*}Sourcewell Member Number (if applicable):

^{*}All orders should include 1) Accounts Payable Contact and email address, 2) W9 with correct legal entity name, and 3) Bill to Address.

^{*}Orders may be placed with the contract holder or authorized dealer as allowed by the terms and conditions of the contract. *A Copy of all orders must be provided to Heather.Messmer@Doosan.com.

^{*}Contact Holder Information: Doosan Bobcat North America, Inc. Govt Sales, 250 E Beaton Drive, West Fargo, ND 58078. TID# 38-0425350.

^{*}Payment Terms: Net 60 Days. Credit cards accepted.

^{*}Remittance address: Doosan Bobcat North America, Inc. P. O. Box 74007382, Chicago, IL 60674-7382

Bobcat North America, Inc. reserves the right to apply a tariff charge greater than 26% if the government implementing the tariff imposes tariff rates that exceed 26%.

Customer acceptance: Quotation Number:: BM1338179	Purchase Order:		
Authorized Signature:			
Print:	Sign:		
Date: Email:			
Addresses			
Delivery Address			
Billing Address (if different from ship	co):		
Tax Exempt: Y □ / N □			
Exempt in the State of:		-	
Tax Exempt ID:			
Federal:		-	
State:		_	
Expiration Date:			

Blank Page

AGENDA ITEM 9:

MAINTENANCE MATTERS

B. Contract Renewal for Recreation Center HVAC Monitoring

MANAGER'S COMMENTS:

The County's contract with Johnson Controls for HVAC monitoring and control at the Recreation Center expired on July 31, 2025. Because the system in place is proprietary, the service cannot be competitively bid. Johnson Controls has submitted a proposal for a three-year renewal at a total cost of \$57,200, which reflects a \$4,200 decrease from the previous contract. Staff recommends renewing the contract at the proposed amount.

Board action is requested to approve a three-year contract with Johnson Controls in the amount of \$57,200.

WATAUGA COUNTY MAINTENANCE DEPARTMENT

274 Winklers Creek Road, Suite B, Boone, NC 28607 - Phone (828) 264-1430 Fax (828) 264-1473

TO:

Deron Geouque, County Manager

FROM:

Robert Marsh, Maintenance Director

DATE:

July 29, 2025

RE:

Recreation Center HVAC Controls

BACKGROUND

The County's contract with Johnson Controls (JCI) for monitoring and control of the HVAC equipment at the Recreation Center expires July 31, 2025. The JCI system is proprietary, and there is no opportunity to competitively bid it with other control contractors. The cost of the new proposal for a three-year contract is a total of \$57,200. This is a decrease of \$4,200 over the next three years.

RECOMMENDATION

Staff recommends the contract be renewed at the new contract amount of \$57.200.

Customer WATAUGA CO PARKS & RECREATION

Local Johnson Controls Office 2898 BOONES CREEK RD JOHNSON CITY, TN 37615-4975

Agreement Start Date: 08/01/2025

Proposal Date 07/29/2025

Estimate No: 1-1Q3H9V9U

Partnering with you to deliver value-driven solutions

Every day, we transform the environments where people live, work, learn and play. From optimizing building performance to improving safety and enhancing comfort, we are here to power your mission.

A Planned Service Agreement with Johnson Controls provides you with a customized service strategy designed around the needs of your facility. Our approach features a combination of scheduled, predictive and preventative maintenance services that focus on your goals.

As your building technology services partner, Johnson Controls delivers an unmatched service experience delivered by factory-trained, highly skilled technicians who optimize operations of the buildings we work with, creating productive and safe environments for the people within.

By integrating our service expertise with innovative processes and technologies, our value-driven planned service solutions deliver sustainable results, minimize equipment downtime and maximize occupant comfort.

With more than a century of healthy buildings expertise, Johnson Controls leverages technologies to successfully deliver smart solutions to facilities worldwide.

Johnson Controls was recognized by Frost & Sullivan as the 2020 North American Company of the Year for innovation in the Smart connected Chillers market

Executive summary

Planned service proposal for WATAUGA CO PARKS & RECREATION

Dear Sir:

We value and appreciate your interest in Johnson Controls as a service provider for your building systems and are pleased to provide a value-driven maintenance solution for your facility. The enclosed proposal outlines the Planned Service Agreement we have developed on your facility.

Details are included in the Planned Service Agreement summary (Schedule A), but highlights are as follows:

- In this proposal we are offering a service agreement for 3 Years starting 08/01/2025 and ending 07/31/2028.
- The agreement price for first year is \$17,619.00; see Schedule A, Supplemental Price and Payment Terms, for pricing in subsequent years.
- The equipment options and number of visits being provided for each piece of equipment are described in Schedule A, Equipment list.

As a manufacturer of both mechanical and controls systems, Johnson Controls has the expertise and resources to provide proper maintenance and repair services for your facility.

Again, thank you for your interest in Johnson Controls and we look forward to becoming your building technology services partner.

Please contact me if you have any questions.

Sincerely,

Nathan Sisk Service Manager (866) 854-4712

The power behind your mission

Benefits of planned service

A Planned Service Agreement with Johnson Controls will allow you to optimize your building's facility performance, providing dependability, sustainability and energy efficiency. You'll get a value-driven solution that fits your specific goals, delivered with the attention of a local service company backed by the resources of a global organization.

With this Planned Service Agreement, Johnson Controls can help you achieve the following five objectives:

Identify energy savings Opportunities
 Since HVAC equipment accounts for a major
 portion of a building's energy usage, keeping
 your system performing at optimum levels
 may lead to a significant reduction in energy
 costs.

2. Reduce future repair costs

Routine maintenance may maximize the life of your equipment and may reduce equipment breakdowns.

3. Extend asset life

Through proactive, factory-recommended maintenance, the life of your HVAC assets may be extended, maximizing the return on your investment.

4. Ensure productive environments

Whether creating a comfortable place where employees can be productive or controlling a space to meet specialized needs, maintenance can help you achieve an optimal environment for the work that is being accomplished

5. Promote environmental health and safety

When proper indoor conditions and plant requirements are maintained, business outcomes may be improved by minimizing sick leave, reducing accidents, minimizing greenhouse gas emissions and managing refrigerant requirements.

All of the services we perform on your equipment are aligned with "The 5 Values of Planned Maintenance" and our technicians understand how the work they perform can help you accomplish your business objectives.

Our partnership

Personalized account management

A Planned Service Agreement also provides you with the support of an entire team that knows your site and can closely work with you on budget planning and asset management. Your local Johnson Controls account management team can help guide planned replacement, energy retrofits and other building improvement projects. You'll have peace of mind that an entire team of skilled professionals will be looking out for what is best for your facility and budget.

A culture of safety

Johnson Controls technicians take safety seriously and personally, and integrate it into everything they do. All of our technicians participate in regular and thorough safety training. Because of their personal commitment, we are a leader in the HVAC service industry for workplace safety performance. This means that you do not have to worry about us when we are on your site.

Commitment to customer satisfaction

Throughout the term of your Planned Service Agreement, we will periodically survey you and use your feedback to continue to make improvements to our service processes and products. Our goal is to deliver the most consistent and complete service experience possible. To meet this goal, we've developed and implemented standards and procedures to ensure you receive the ultimate service experience – every time.

Energy & sustainability

A more sustainable world one building at a time – Johnson Controls is a company that started more than 125 years ago with a product that reduced energy use in buildings. We've been saving energy for customers ever since. Today, Johnson Controls is a global leader in creating smart environments where people live, work and play, helping to create a more comfortable, safe and sustainable world.

The value of integrity

Johnson Controls has a long, proud history of integrity. We do what we say we will do and stand behind our commitments. Our good reputation builds trust and loyalty. In recognition for our commitment to ethics across our global operations, we are honored to be named one of the World's Most Ethical Companies by Ethisphere Institute, a leading think tank dedicated to business ethics and corporate social responsibility. In addition, Corporate Responsibility Magazine recognizes Johnson Controls as one of the top companies in its annual "100 Best Corporate Citizens" list.

Service delivery

As part of the delivery of this Planned Service Agreement, Johnson Controls will dedicate a local customer service agent responsible for having a clear understanding of the agreement scope, and your facility procedures and protocols.

A high-level overview around our service delivery process is outlined below including scheduling, emergency service, on-site paperwork, communication and performing repairs outside of the agreement scope.

Scheduling

Preventative maintenance service will be scheduled using our automated service management system. In advance of the scheduled service visit, our technician is sent a notice of service to a smartphone. Once the technician acknowledges the request, your customer service agent will call or e-mail your on-site contact to let you know the start date and type of service scheduled.

The technician checks in, wears personal protective equipment, performs the task(s) as assigned, checks out with you and asks for a screen capture signature on the smartphone device. A work order is then e-mailed, faxed or printed for your records.

Emergency services

Emergency service can be provided 7 days a week, 24 hours a day, 365 days a year. During normal business hours, emergency service will be coordinated by the customer service agent. After hours, weekends and holidays, the emergency service number transfers to the Johnson Controls after-hours call center and on-call technicians are dispatched as needed.

Johnson Controls is committed to dispatching a technician within hours of receiving your call through the service line. A work order is e-mailed, faxed or printed for your records. Depending on the terms of your agreement, you may incur charges for after hour services.

Communication

A detailed communication plan will be provided to you so you know how often we will provide information to you regarding your Planned Service Agreement. The communication plan will also provide you with your main contacts at Johnson Controls.

Approval process for non-covered items

Johnson Controls will adhere to your procurement process. No work will be performed outside of the agreement scope without prior approval. Johnson Controls will work with you closely to ensure your procurement process is followed before any non-covered item work is started.

Summary of services and options

Comprehensive and operational inspections

During comprehensive and operational inspections, Johnson Controls will perform routine checks of the equipment for common issues caused by normal wear and tear on the equipment. Additional tests can be run to confirm the equipment's performance.

Routine maintenance, such as lubrication, cleaning and tightening connections, can be performed depending on the type of equipment being serviced. Routine maintenance is one of the keys to the five values of maintenance – it can help identify energy saving opportunities, reduce future repair costs, extend asset life, ensure productive environments, and promote health and safety.

Install Updates supplied with Software Subscription

Our expert technicians will install software upgrades (supplied separately) to keep your system up-to-date. This helps minimize disruptions to your daily operations and staff during the upgrade process. Keeping your software up-to-date allows you to take advantage of the latest features and enhancements, and helps maintain compatibility with the latest technology on the market. Updating the system software is also a best practice to minimize cybersecurity vulnerabilities.

Metasys Software Subscription

We will provide the most recent software release allowed by the hardware and operating systems of your existing computers and servers for the number of years specified. Labor to install the updates is available as an additional option. Keeping your software up-to-date allows you to take advantage of the latest features and enhancements, and helps maintain compatibility with the latest technology on the market. Updating the system software is also a best practice to minimize cybersecurity vulnerabilities.

Operational Visit/Controls System Verification

Based on our expertise and factory recommendations, we will execute routine preventative maintenance and calibrations on the equipment controller for your mechanical equipment. The inspection includes the following tasks:

- Visual inspection of the control panel.
- Review of alarms, points which are offline, out of service and overridden points.
- Local backup of controller program.

Advantages: Provides proactive identification of problems, which helps maintain productive environments, identify energy efficiency opportunities, reduce future repairs and extend the life of your equipment.

Customer Portal / Service Information Access

The Johnson Controls customer portal is the online gateway to easily access various elements of your service information. This real-time, self-service mechanism is just one more way for you to stay in touch with our service within your facilities. Using the internet, you can view service call history by location, monitor agreements, as well as view asset and invoice information.

Summary

Thank you for considering Johnson Controls as your building technology services partner. The following agreement document includes all the details surrounding your Planned Service Agreement.

With planned service from Johnson Controls, you'll get a value-driven solution that can help optimize your building controls and equipment performance, providing dependability, sustainability and energy efficiency. You'll get a solution that fits your specific goals, delivered with the attention of a local service company backed by the resources of a global organization.

The power behind your mission

Planned Service Agreement

Customer Name:

WATAUGA CO PARKS & RECREATION

Address: Proposal Date: 231 COMPLEX DR BOONE, NC 28607 07/29/2025

Estimate #:

1-1Q3H9V9U

Scope of Service

Johnson Controls, Inc. ("JCI") and the Customer (collectively the "Parties") agree Preventative Maintenance Services, as defined in Schedule A ("Services"), will be provided by JCI at the Customer's facility. This Planned Service Agreement, the Equipment List, Supplemental Price and Payment Terms, Terms and Conditions, and Schedules attached hereto and incorporated by this reference as if set forth fully herein (collectively the "Agreement"), cover the rights and obligations of both the Customer and JCI.

Extended Service Options for Premium Coverage

If Premium Coverage is selected, on-site repair services to the equipment will be provided as specified in this Agreement for the equipment listed in the attached Equipment List.

Basic Coverage means Scheduled Service Visits, plus Scheduled Service Materials (unless excluded from this Agreement). No parts, equipment, Repair Labor or Repair Materials are provided for under Basic Coverage.

Premium Coverage means Basic Coverage plus Repair Labor, plus Repair Materials (unless excluded from the Agreement). If Customer has ordered Premium Coverage, JCI will inspect the Covered Equipment within forty-five (45) days of the date of this Agreement, or as seasonal or operational conditions permit. JCI will then advise Customer if JCI finds any Covered Equipment not in working order or in need of repair. With Customer's approval, JCI will perform the work necessary to put the Covered Equipment in proper working condition, subject to the terms of this Agreement. Customer will pay for such work at JCl's standard rates for parts and labor in effect at the time that the work is performed. If Customer does not want JCI to perform the work identified as necessary by JCI, any equipment thereby affected will be removed from the list of Covered Equipment, and the Contract Price will be adjusted accordingly. Should Customer not make JCl's recommended repairs or proceed with the modified Premium Coverage. JCI reserves the right to invoice Customer for the cost of the initial equipment inspection.

Extended Service means Services performed outside JCI's normal business hours and is available only if Customer has Premium Coverage. Extended Service is available either 24/5 or 24/7, at Customer's election. The price for Extended Service, if chosen by Customer, is part of the total Contract Price.

Equipment List

Only the equipment listed in the Equipment List will be covered as part of this Agreement. Any changes to the Equipment List must be agreed upon in writing by both Parties.

Term / Automatic Renewal

This Agreement takes effect on 08/01/2025 and will continue until 07/31/2028 ("Original Term"). The Agreement will automatically renew and extend for successive terms equal to the Original Term unless the Customer or JCI gives the other written notice it does not want to renew prior to the end of the then-current term (each a "Renewal Term"). The notice must be delivered at least (90) days prior to the

end of the Original Term or of any Renewal Term. The Original Term and any Renewal Term may be referred to herein as the "Term". Renewal price adjustments are discussed in the Terms and Conditions.

Refrigerant Charges

Refrigerant is not included under this Agreement and will be billed separately to the Customer by JCI.

Price and Payment Terms

The total Contract Price for JCI's Services during the first year of the Original Term is \$17,619.00. This amount will be paid to JCI in advance in Annual installments. Pricing for each subsequent year of a multiyear Original Term is set forth in the Supplemental Price and Payment Terms. Unless otherwise agreed to by the parties, All payments will be due upon receipt. Renewal price adjustments are set forth in the Terms and Conditions. Any additional taxes, duties, tariffs or similar items imposed prior to shipment will be charged.

Invoices will be sent to the following location:

WATAUGA COUNTY NORTH CAROLINA

274 WINKLERS CREEK RD

STE B

BOONE, NC 28607

To ensure that JCI is compliant with your company's billing requirements, please provide the following information:

PO is re	equired to facilitate billing:		
[] []	No: This signed contract satisfies requirent YES: Please reference this PO number:	ment	
AR Invo	ices are accepted via e-mail:		
50	YES: E-mail address to be used: No: Please submit invoices via mail No: Please submit via: pposal is valid for thirty days from the precontrols inc.	roposal date.	
JCI Manager:	:	Customer Manager:	
JCI Manager	Signature:	Customer Manager Signature:	
Title:	Date:	Title:	Date:
Addres	h: JOHNSON CONTROLS TRI-CITIES TN CB - 0N0E ss:2898 BOONES CREEK RD JOHNSON CITY,TN 37615-4975 ne:(866) 854-4712	В	
Branch Ema	oll'		

Schedule A - Equipment List WATAUGA CO PARKS & REC (BOONE) 231 COMPLEX DR **BOONE, NC 28607**

Product: Controls (Controller/End Devices), Air Handling Unit (AHU), Johnson Controls, 0-20 points Quantity: 3

Coverage Level:

Premium

Services Provided

Operational

Comprehensive

Customer Tag AHU CONTROLS (3) **Manufacturer**

Model #

1

Serial #

Product: Controls (Controller/End Devices), Central Heating Plant, Johnson Controls, 0-50 points

Quantity:

Coverage Level:

Premium

Services Provided

Operational

Comprehensive 1

Customer Tag CHP CONTROLS (1) **Manufacturer**

Model #

3

Serial #

Product: Controls (Controller/End Devices), Central Heating Plant, Johnson Controls, 0-50 points

Quantity: 2

Coverage Level:

Premium

Services Provided

3 Operational

1 Comprehensive

Customer Tag

CHP CONTROLS (2)

Manufacturer

Model #

Serial #

Product: ROC Monitoring Services - HVAC & BAS

Quantity:

Coverage Level:

Premium

Services Provided

ROC - Level I Operations Setup 25

(# of Points)

1 ROC - Level I Operations (# of

Points)

Serial # Customer Tag **Manufacturer** Model # **ROC Monitoring**

Product: Controls (Controller/End Devices), Roof Top Unit (RTU), Johnson Controls, 0-20 points

Quantity:

Coverage Level:

Premium

Services Provided

Operational

Comprehensive 1

Customer Tag RTU CONTROLS (2)

<u>Manufacturer</u>

Model #

3

Serial #

Product: Controls Software, Supervisory/Server/UI, Johnson Controls, NxE & LCS

Quantity:

Coverage Level:

Premium

Services Provided

NxE Software Subscription

1-year - Subscription Only (for all NxE's on an NxE Site Dir)

Install NxE software (supplied

with Software

Upgrade/Subscription) - 1 to 5

NxE's

Customer Tag SOFTWARE UPGRADE **Manufacturer**

Model #

1

1

Serial #

Product: Controls (Controller/End Devices), Variable Air Volume (VAV), Johnson

Controls, 0-25 points

Quantity: 18

Coverage Level:

Premium

Services Provided

Operational

Customer Tag VAV CONTROLS (18)

Manufacturer

Model #

3

Serial #

Equipment tasking

Controls (Controller/End Devices), Air Handling Unit (AHU), Johnson Controls, 0-20 points

Comprehensive

All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Create local back up of existing program and store on on-site computer and on-site media

Verify unit is controlling to set points by checking sequences of operations and PID loops

Check that the damper actuators, valve actuators, variable speed drives, and protections (as applicable) are responding appropriately to control signals.

Notify customer of any issues with those devices

Identify and notify customer of abnormal point communications

Identify and notify customer of current overrides (e.g. out of service) and negative impacts

Identify and notify customer of all current alarms and negative impacts Verify sensor readings and field calibrate critical sensors used in control loops and alarming functions (as sensor type and controller options allow)

Visually validate system outputs from the field controller

Validate controls safety circuit and alarm verification (coordinate with customer) Tighten electrical connections

Check overall condition of panel and perform visual inspection of unit and surrounding area

Document tasks performed during visit and report any observations to appropriate customer representative

Operational

All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Verify unit is controlling to set points by checking sequences of operations and PID loops

Identify and notify customer of abnormal point communications Identify and notify customer of current overrides (e.g. out of service) and

negative impacts

Identify and notify customer of all current alarms and negative impacts Check overall condition of panel and perform visual inspection of unit and surrounding area

Document tasks performed during visit and report any observations to appropriate customer representative

Controls (Controller/End Devices), Central Heating Plant, Johnson Controls, 0-50 points

Comprehensive

All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Create local back up of existing program and store on on-site computer and on-site media

Verify unit is controlling to set points by checking sequences of operations and PID loops

Check that the damper actuators, valve actuators, variable speed drives, and protections (as applicable) are responding appropriately to control signals.

Notify customer of any issues with those devices

Identify and notify customer of abnormal point communications

Identify and notify customer of current overrides (e.g. out of service) and

negative impacts

Identify and notify customer of all current alarms and negative impacts Verify sensor readings and field calibrate critical sensors used in control loops and alarming functions (as sensor type and controller options allow) Visually validate system outputs from the field controller

Tighten electrical connections

Check overall condition of panel and perform visual inspection of unit and surrounding area

Document tasks performed during visit and report any observations to appropriate customer representative

Operational

All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Verify unit is controlling to set points by checking sequences of operations and PID loops

Identify and notify customer of abnormal point communications

Identify and notify customer of current overrides (e.g. out of service) and negative impacts

Identify and notify customer of all current alarms and negative impacts Check overall condition of panel and perform visual inspection of unit and surrounding area

Document tasks performed during visit and report any observations to appropriate customer representative

Controls (Controller/End Devices), Roof Top Unit (RTU), Johnson Controls, 0-20 points

Comprehensive

All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Create local back up of existing program and store on on-site computer and on-site media

Verify unit is controlling to set points by checking sequences of operations and PID loops

Check that the damper actuators, valve actuators, variable speed drives, and protections (as applicable) are responding appropriately to control signals. Notify customer of any issues with those devices

Identify and notify customer of abnormal point communications Identify and notify customer of current overrides (e.g. out of service) and negative impacts

Identify and notify customer of all current alarms and negative impacts Verify sensor readings and field calibrate critical sensors used in control loops

and alarming functions (as sensor type and controller options allow) Visually validate system outputs from the field controller

Validate controls safety circuit and alarm verification (coordinate with customer) Tighten electrical connections

Check overall condition of panel and perform visual inspection of unit and

surrounding area Document tasks performed during visit and report any observations to

appropriate customer representative

Operational

All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Verify unit is controlling to set points by checking sequences of operations and PID loops

Identify and notify customer of abnormal point communications

Identify and notify customer of current overrides (e.g. out of service) and

negative impacts

Identify and notify customer of all current alarms and negative impacts Check overall condition of panel and perform visual inspection of unit and surrounding area

Document tasks performed during visit and report any observations to appropriate customer representative

Controls (Controller/End Devices), Variable Air Volume (VAV), Johnson Controls, 0-25 points

Operational

All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Run VAV box flow test

Verify unit is controlling to set points by checking sequences of operations and

PID loops

Identify and notify customer of abnormal point communications

Identify and notify customer of current overrides (e.g. out of service) and

negative impacts

Identify and notify customer of all current alarms and negative impacts Document tasks performed during visit and report any observations to appropriate customer representative

Controls Software, Supervisory/Server/UI, Johnson Controls, NxE & LCS

Install NxE software (supplied with Software Upgrade/Subscription) -1 to 5 NxE's All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Upgrade NxE software to latest Metasys release Document tasks performed during visit and report any observations to

appropriate customer representative

NxE Software Subscription 1-year -Subscription Only (for all NxE's on an NxE Site Dir) All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Upgrade NxE software to latest Metasys release Document tasks performed during visit and report any observations to appropriate customer representative

ROC Monitoring Services - HVAC & BAS

ROC - Level I Operations (# of Points) All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Document tasks performed during visit and report any observations to appropriate customer representative

ROC - Level I Operations Setup (# of Points) All work must be performed in accordance with Johnson Controls safety policies Check with appropriate customer representative for operational deficiencies Document tasks performed during visit and report any observations to appropriate customer representative

Supplemental Price & Payment Terms (Applies to Multi-Year Contracts Only)

Year	Total Annual Dollar Amount	Payment Frequency
Year1	\$17,619.00	Annually
Year2	\$19,029.00	Annually
Year3	\$20,552.00	Annually

Special Additions and Exceptions

This agreement includes the following discounts on work outside the scope of the contract. Discounts apply to current pricing and rates and are subject to negotiations.

- Maximum (1) DEU fee per invoice, if applicable.
- Maximum (1) Fuel Surcharge per invoice, if applicable.
- No PPE fees of any kind when invoicing.
- **Note: Premium Coverage is during business only (M F from 8 am 5 pm) After hours calls are billable/overtime is not covered.

Premium service coverage means that repair or replacement of controls (Metasys) equipment is covered under the agreement. Things considered "acts of God" such as lightening, natural disaster, etc. are not covered. Obsolescence of equipment is not covered under this agreement.

Johnson Controls Standard Service Terms: One PSA

Terms

These terms cover the services and equipment provided by Johnson Controls. This Agreement includes the proposal, these terms and any referenced links. Conflicts are resolved in that order.

Scope of Work

We will provide the services or equipment described in the proposal. If the services include planned maintenance of equipment, only the equipment set forth in our proposal is covered by our services ("Covered Equipment"). Unless otherwise agreed in the proposal, services are performed during our normal working hours, excluding holidays. We reserve the right to modify or substitute materials.

Payment Terms

Services fees are paid annually in advance due 30 days from the invoice date via EFT/ACH, unless stated otherwise. Payment is required before services are performed or equipment is ordered or installed. Failure to pay on time is a breach that permits us to suspend or delay services until full payment is received, without liability, or to terminate this Agreement. Interest may also be charged on unpaid amounts at the lesser of 1.5% per month (19.56% annually) or the highest rate permitted by law. If you require a purchase order to process payments, you must send it to us at least 30 days before the end of a term but you must pay invoices even without a purchase order. No purchase order is required for any emergency services you request.

Prices

Prices do not cover taxes, fees, duties, tariffs, permits and levies or other charges imposed and/or enacted by a government. You are responsible for these items unless you provide an acceptable exemption certificate. If we need to pay any of these items or the exemption certificate is invalid or only covers some of these items, you must reimburse us on demand for the amounts owing. Prices may be adjusted at any time to reflect changes in costs, labor or market conditions. We will try to notify you of any changes in pricing in advance. Additional charges will be required for: (i) changes to these services or the Covered Equipment; (ii) additional services or equipment; (iii) unexpected site conditions or issues with the Covered Equipment; (iv) appointments that are cancelled less than 24 hours beforehand or for service, warranty or alarm calls caused by your error; (v) changes required to comply with laws, codes and regulations ("Laws"), including prevailing wage laws; and (vi) costs to notify and dispatch emergency personnel. We may change prices on equipment or parts prior to shipment or installation to reflect increases in costs from raw materials, third party products, any new or additional tariffs, duties, quotas, taxes, the withdrawal of trade agreement concessions or any unforeseen or other extra cost elements.

Limited Warranty

We warrant that services will be performed in a good and workmanlike manner for 90 days from the date of performance. Equipment we provide is also warranted to be free from defect in materials and workmanship for 90 days from installation. No warranty is provided for third-party equipment we install or furnish. Third-party HVAC and controls equipment is provided with the third-party manufacturer's warranty to the extent available. This limited warranty does not cover failures, defects, or damages caused in whole or in part by: (i) misuse, neglect, accident, Force Majeure, changes to your premises, or installation, maintenance or repairs not performed by us; (ii) environmental, electrical or other causes beyond our control; (iii) normal wear and tear or corrosion; (iv) use of unauthorized replacement parts or products or using the equipment for purposes not intended by the manufacturer; or (vi) issues arising from your failure to comply with this Agreement or your obligations. To qualify for warranty consideration, you must notify us in writing of your warranty claim prior to the end of the warranty period, complete all instructions on warranty procedures and provide us with reasonable site access to inspect the equipment and/or perform any

necessary warranty work. Your sole remedy is to have defective services re-performed or equipment repaired or replaced at our election. THESE WARRANTIES ARE EXCLUSIVE AND ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. You need to determine if our equipment are suitable for your use. You assume all risk and liability from their application and your use.

Warranty service does not cover: (i) system upgrades and replacing obsolete systems, equipment, or consumable parts and components; (ii) reloading, updating, or maintaining software; (iii) additional costs for access, deinstallation, re-installation and transportation; and (iv) the exclusions set out in the Supplemental Terms. If you call us for warranty service and the problem is due to any of these reasons, we may charge you for the service call even if we do not work on the equipment. We may offer these services at an extra cost.

Customer Obligations

You must provide all relevant information about the equipment and premises, follow all applicable Laws and ensure us safe access. You must operate, test, maintain, and repair the equipment according to manufacturer and our recommendations and notify us immediately of any issues.

In addition, you agree to, (i) obtain necessary licenses and permits and pay related fees and taxes; (ii) provide a suitable environment for the equipment as recommended by us or the manufacturer including heat to avoid freezing; (iii) supply the necessary electrical service, power, heat, heat tracing, water and schematics; (iv) provide proper water treatment for condensers, cooling towers, and boilers, and protect against environmental issues; (v) set and test alarm systems as recommended by us or the manufacturer; (vi) avoid causing false alarms and reimburse us for any fines or fees; (vii) notify all necessary parties, such as local authorities and monitoring providers, about system testing or repairs; (viii) keep accurate and up-to-date work logs for the equipment; and (ix) take precautions for Covered Equipment failure to prevent injury or property damage. If you do not meet any of these obligations, we are not responsible for equipment breakdowns, repairs, or replacements. We can suspend services until these issues are fixed and charge for any corrective work needed.

For equipment connected to your computer network, we provide and install the software to run the equipment and connect to it based on the network settings you provide. You must provide us with secure access to your computer network as required in our specifications. If we cannot connect to the network or need extra equipment for connectivity, additional charges may apply. Our services do not include changes to the network, security, or firewall settings. You are solely responsible to protect your data, computer network, and products networked or connected to the Internet; and we are not responsible for any loss or damage, as allowed by Law. You should back up data and software before services are performed. You must promptly remove any devices that interfere with the operation of the Covered Equipment.

Insurance

We do not guarantee that services or equipment will prevent risk of loss at your premises or detect all events. You are responsible for any losses and need to rely on your own insurance. You release and waive for yourself and your insurer all subrogation and other rights to recover from us.

Limitations on Liability

Neither we or our suppliers or vendors ("JCI Parties") are liable for special, incidental, consequential, punitive or indirect damages, or for lost profits, revenue, data or business interruption. The total liability of the JCI Parties is limited to \$250,000 or 12 months of fees paid to Johnson Controls under this Agreement, whichever is less.

Claims Limitation; Forum; Choice of Law

Disputes may be resolved in court or through arbitration, as determined exclusively by us. Delaware law governs any agreement performed in the U.S., with disputes resolved in Milwaukee, Wisconsin. Ontario law governs any agreement performed in Canada, with disputes resolved in Ontario. Any claims by you must be brought within one year. The parties waive their right to a jury trial.

Term and Termination

The term of this Agreement is set out in the proposal and renews automatically for successive terms equal to the length of the original term unless either party gives 60 days' prior written notice of termination to the other party before the end of a term or the parties agree in writing on a different length of renewal term. Either party can terminate for cause with 10 days' notice, but only after written notice the defaulting party has 30 days to cure any alleged default. We can terminate immediately if we can no longer service the Covered Equipment for whatever reason including if we stop selling the Covered Equipment, providing the services or if we cannot obtain equipment, parts or support the technologies. We can terminate this Agreement without cause with 60 days' written notice. Upon termination, you must pay all amounts owed and provide access for us to remove any of our property at your premises and reprogram systems. You are responsible for our costs to enforce this. If you end this Agreement early for any reason, you must also pay us 50% of the service charges for the remaining term of this Agreement. You are responsible for our costs to enforce this.

Access and Hazardous Materials

You must provide us with reasonable and safe access to the Covered Equipment. We will follow our health and safety policies and applicable Laws. You must inform us of any hazardous conditions or materials (e.g., mold, asbestos containing materials, biohazards) and you are responsible for resolving, removing and disposal. If we encounter hazardous conditions or materials, we may stop work without liability and you are required to provide us reasonable evidence of abatement before we will restart work. Additional charges will apply if access to a confined space is required.

Force Majeure

We are not in breach or liable for any delays or failures caused, in whole or in part, by any events beyond our control, such as natural disasters, severe weather, public health risks, government actions, cyberattacks, civil disturbances, labor disputes, strikes or shortages of parts or materials ("Force Majeure"). You must allow us additional time to perform the services and reimburse us for increased costs due to such events.

Data and Intellectual Property; Digitally Enabled Services

You own your data, but we may use it to perform services and you grant us a perpetual, worldwide, irrevocable, royalty free license to use your building data on a de-identified basis. We retain rights to any intellectual property created. Digital enabled services mean services provided under this Agreement that employ our software and cloud-hosted software offerings and tools. They may include, but are not limited to, (i) remote inspection, (ii) advanced equipment fault detection and diagnostics, and (iii) data dashboarding and health reporting. Digital enabled services may require data collection, and you consent to this.

Software-Digital Solutions

Use of our software, including software to provide digital enabled services and solutions, is governed by our standard terms at https://www.johnsoncontrols.com/techterms. These terms apply to the software you are allowed to use, but we retain ownership and rights to the software, including improvements. If provided as part of our services, third-party software is subject to its own terms.

Privacy

If provided to us, we will process personal data according to our Data Processing Agreement at www.johnsoncontrols.com/dpa and adhere to our privacy notice at https://www.johnsoncontrols.com/privacy. You consent to this processing and will ensure all necessary consents are obtained.

Miscellaneous

Notices must be in writing. This Agreement cannot be assigned without our consent; any assignment without our consent is void. We can assign this Agreement, in whole or in part, or subcontract the work, without notice. Invalid, illegal or unenforceable provisions do not affect the rest of this Agreement. This Agreement is subject to specific supplemental terms located at www.johnsoncontrols.com/legal/one-psa-supplemental-terms. In addition, if you

request us to perform any work outside the scope of this Agreement, you consent to it being performed subject to our standard customer terms then in effect at www.johnsoncontrols.com/customerterms. This Agreement is the entire contract and supersedes prior written or oral communications and documents, and terms in any purchase order or other documents you later provide are rejected. We may convert this Agreement to an electronic format.

[END OF DOCUMENT]

Johnson Controls Standard Service Terms: One PSA, version 6.12.2025

Blank Page

AGENDA ITEM 10:

EMERGENCY SERVICES MATTERS

A. Tower Construction and Site Modifications Contract

MANAGER'S COMMENTS:

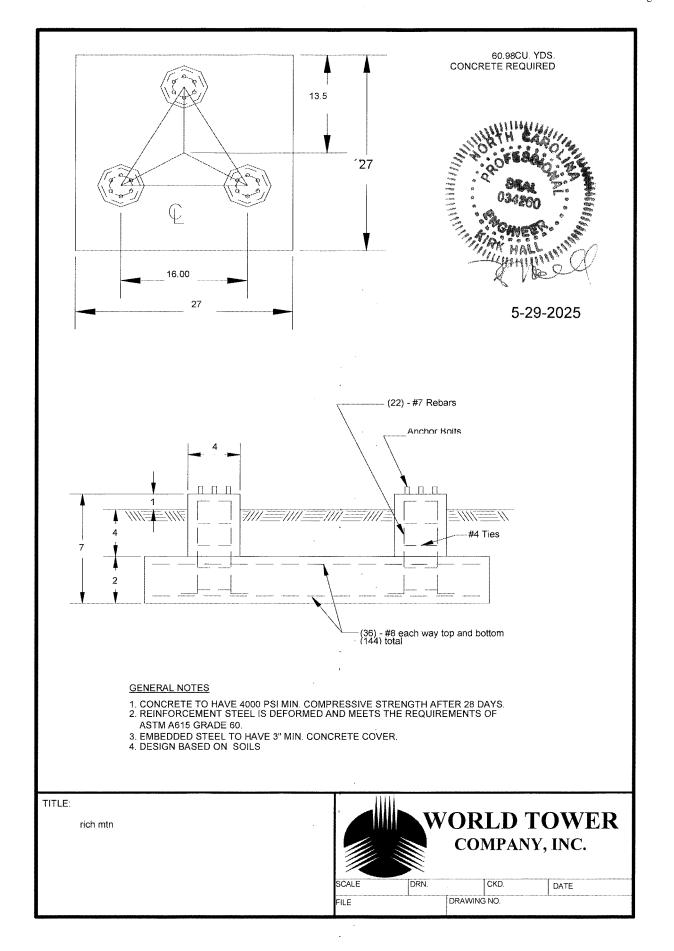
A Request for Proposals was issued for the construction of a self-supporting tower at the Rich Mountain site and for the necessary modifications at the Aho and Buckeye sites to accommodate additional microwave dishes. Three proposals were received and reviewed. Staff recommends awarding the contract to K-Co Enterprises, Inc., the lowest responsive bidder, with a total cost of \$396,909. Both the County's radio system consultant and the primary site contractor have prior experience with K-Co and expressed no concerns. Funds have been budgeted for this work as part of the overall simulcast system project.

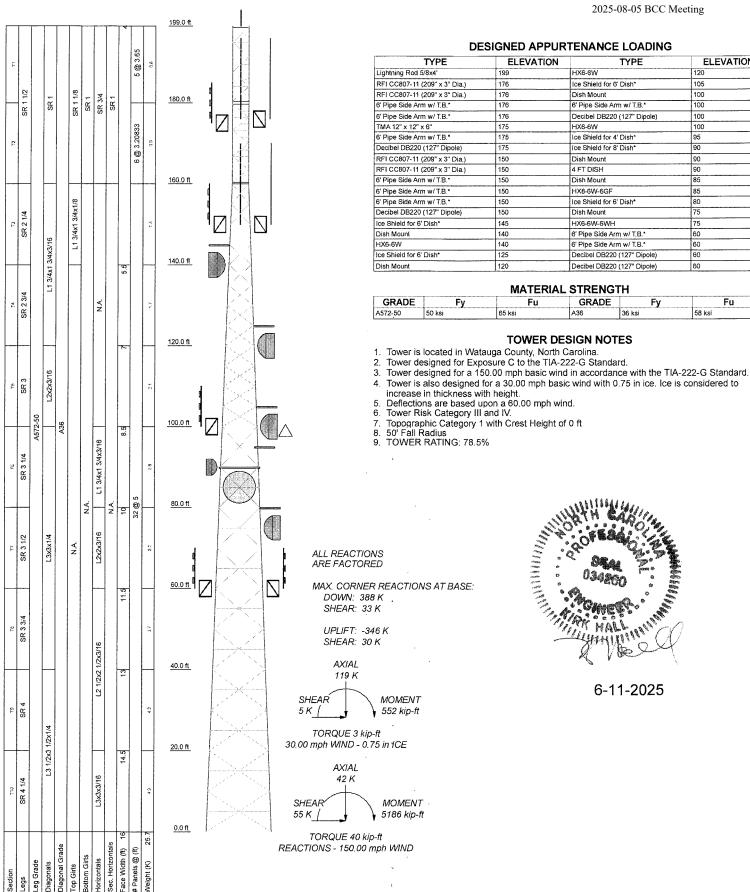
Board approval is requested to award a \$396,909 contract to K-Co Enterprises, Inc. for tower construction and site modifications.

July 18th, 2025

To: Board of Commissioners

CC: Deron Geouque, County Manager Katie Hancock, Clerk to the Board


Subject: Bid Award Request for Rich Mountain Tower and additional modifications


Board of Commissioners,

A Request for Proposals was issued for a firm to provide a self-supporting tower as delineated in the tower procurement documents for the Rich Mountain tower site along with the required modifications to the Aho and Buckeye sites for the extra microwave dishes. The County received three proposals from K-Co Enterprises, Inc., Built Construction LLC, and Pittsburg Tower and Tank. After review, staff recommends K-Co Enterprises, Inc. to the Board of Commissioners for your approval as the lowest responsive bidder. Both the County's radio system consultant and the primary contractor for site construction have prior experience with K-Co with no reservations. The cost of the K-Co proposal is \$379,500 for the Rich Mountain tower, \$5,177 the Aho tower modification, and \$12,232 for the Buckeye tower modification. The total cost for this portion of the project is \$396,909 and funds have been budgeted in the construction budget for the simulcast system. Commissioner approval is requested.

Respectfully,

William Holt, MPA, CEM, NREMT-P Emergency Services Director

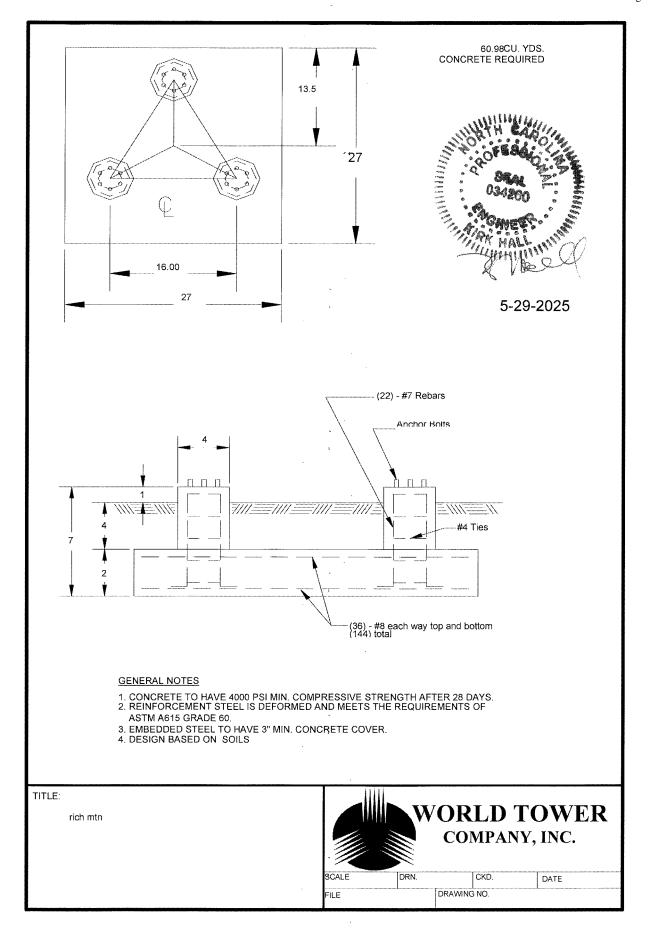
DESIGNED APPURTENANCE LOADING

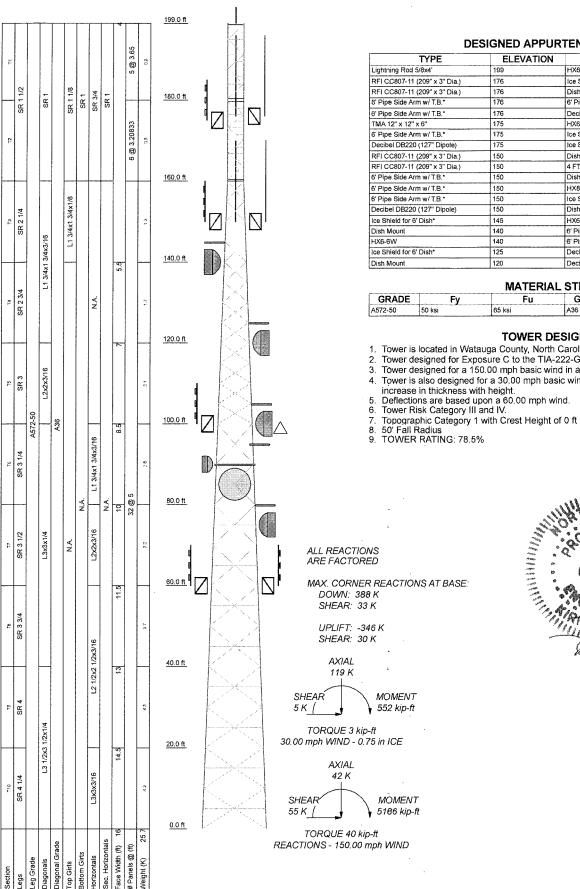
TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 5/8x4'	199	HX6-6W	120
RFI CC807-11 (209" x 3" Dia.)	176	Ice Shield for 6' Dish*	105
RFI CC807-11 (209" x 3" Dia.)	176	Dish Mount	100
6' Pipe Side Arm w/ T.B.*	176	6' Pipe Side Arm w/ T.B.*	100
6' Pipe Side Arm w/ T.B.*	176	Decibel DB220 (127" Dipole)	100
TMA 12" x 12" x 6"	175	HX6-6W	100
6' Pipe Side Arm w/ T.B.*	175	Ice Shield for 4' Dish*	95
Decibel DB220 (127" Dipole)	175	Ice Shield for 8' Dish*	90
RFI CC807-11 (209" x 3" Dia.)	150	Dish Mount	90
RFI CC807-11 (209" x 3" Dia.)	150	4 FT DISH	90
6' Pipe Side Arm w/ T.B.*	150	Dish Mount	85
6' Pipe Side Arm w/ T.B.*	150	HX8-6W-6GF	85
6' Pipe Side Arm w/ T.B."	150	Ice Shield for 6' Dish*	80
Decibel DB220 (127" Dipole)	150	Dish Mount	75
Ice Shield for 6' Dish*	145	HX6-6W-6WH	75
Dish Mount	140	6' Pipe Side Arm w/ T.B.*	60
HX6-6W	140	6' Pipe Side Arm w/ T.B.*	60
ice Shield for 6' Dish*	125	Decibel DB220 (127" Dipole)	60
Dish Mount	120	Decibel DB220 (127" Dipole)	60

MATERIAL STRENGTH

		×			·····
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES


- Tower is also designed for a 30.00 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.



6-11-2025

^{bb:} 199' WSST Tower / Run C2505-045 World Tower Company, Inc. ^{>roject:} Rich Mountain 1213 Compressor Dr

Drawn by: Cort Walker App'd: Mavfield, KY Code: TIA-222-G Date: 05/27/25 Scale: NTS Phone: 270-247-3642 Dwg No. E-1 Path: D:\Downloads\C2505-045 R1.eri 74 FAX:

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 5/8x4'	199	HX6-6W	120
RFI CC807-11 (209" x 3" Dia.)	176	Ice Shield for 6' Dish*	105
RFI CC807-11 (209" x 3" Dia.)	176	Dish Mount	100
6' Pipe Side Arm w/ T.B.*	176	6' Pipe Side Arm w/ T.B.*	100
6' Pipe Side Arm w/ T.B.*	176	Decibel DB220 (127" Dipole)	100
TMA 12" x 12" x 6"	175	HX6-6W	100
6' Pipe Side Arm w/ T.B.*	175	Ice Shield for 4' Dish*	95
Decibel DB220 (127" Dipole)	175	ice Shield for 8' Dish*	90
RFI CC807-11 (209" x 3" Dia.)	150	Dish Mount	90
RFI CC807-11 (209" x 3" Dia.)	150	4 FT DISH	90
6' Pipe Side Arm w/ T.B.*	150	Dish Mount	85
6' Pipe Side Arm w/ T.B.*	150	HX8-6W-6GF	85
6' Pipe Side Arm w/ T.B.*	150	Ice Shield for 6' Dish*	80
Decibel DB220 (127" Dipole)	150	Dish Mount	75
Ice Shield for 6' Dish*	145	HX6-6W-6WH	75
Dish Mount	140	6' Pipe Side Arm w/ T.B.*	60
HX6-6W	140	6' Pipe Side Arm w/ T.B.*	60
ice Shield for 6' Dish*	125	Decibel DB220 (127" Dipole)	60
Dish Mount	120	Decibel DB220 (127" Dipole)	60

MATERIAL STRENGTH

		1012 1 2 882 1 517 1 888		* *	
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

- 1. Tower is located in Watauga County, North Carolina.
- Tower designed for Exposure C to the TIA-222-G Standard.
- Tower designed for a 150.00 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 30.00 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

6-11-2025

World Tower Company, Inc.	^{Job:} 199' WSS7	Tower / Run (C2505-045
1213 Compressor Dr	Project: Rich Mountain		
Mayfield, KY	Client:	Drawn by: Cort Walker	App'd:
Phone: 270-247-3642	Code: TIA-222-G	00/21/20	Scale: NTS
FAX:	Path: D:\Downloads\C	2505-045 R1.eri	Dwg No. E-1
		76	

K-Co Enterprises, Inc.

613 Hurricane Creek Rd

Piedmont, SC 29673

Bid for: Rich Mtn Install New Tower Site – Watauga County, NC

814 W King St.

Boone, NC 28607

Please give Ernie Rood a call at 864-947-8704 with any questions.

Fairfield, Ohio

POWER OF ATTORNEY

KNOW ALL MEN BY THESE PRESENTS: That THE CINCINNATI INSURANCE COMPANY and THE CINCINNATI CASUALTY COMPANY, corporations organized under the laws of the State of Ohio, and having their principal offices in the City of Fairfield, Ohio (herein collectively called the "Companies"), do hereby constitute and appoint

Brooks M Keys, Jr., J. DuPre Keys, John B Ross, John B Ross, Jr., James G Culwell

of Belton, SC

their true and legal Attorney(s)-in-Fact, each in their separate capacity if more than one is named above, to sign, execute, seal and deliver on behalf of the Companies as Surety, any and all bonds, policies, undertakings or other like instruments, as follows:

Five Million Dollars and 00/100 (\$5,000,000,00)

This appointment is made under and by authority of the following resolutions adopted by the Boards of Directors of The Cincinnati Insurance Company and The Cincinnati Casualty Company, which resolutions are now in full force and effect, reading as follows:

RESOLVED, that the President or any Senior Vice President be hereby authorized, and empowered to appoint Attorneys-in-Fact of the Company to execute any and all bonds, policies, undertakings, or other like instruments on behalf of the Corporation, and may authorize any officer or any such Attorney-in-Fact to affix the corporate seal; and may with or without cause modify or revoke any such appointment or authority. Any such writings so executed by such Attorneys-in-Fact shall be binding upon the Company as if they had been duly executed and acknowledged by the regularly elected officers of the Company.

RESOLVED, that the signature of the President or any Senior Vice President and the seal of the Company may be affixed by facsimile on any power of attorney granted, and the signature of the Secretary or Assistant Vice-President and the Seal of the Company may be affixed by facsimile to any certificate of any such power and any such power of certificate bearing such facsimile signature and seal shall be valid and binding on the Company. Any such power so executed and sealed and certified by certificate so executed and sealed shall, with respect to any bond or undertaking to which it is attached, continue to be valid and binding on the Company.

IN WITNESS WHEREOF, the Companies have caused these presents to be sealed with their corporate seals, duly attested by their President or any Senior Vice President this 16th day of March, 2021.

STATE OF OHIO COUNTY OF BUTLER

)SS:

THE CINCINNATI INSURANCE COMPANY THE CINCINNATI CASUALTY COMPANY

Steplen & Jutre

On this 16th day of March, 2021 before me came the above-named President or Senior Vice President of The Cincinnati Insurance Company and The Cincinnati Casualty Company, to me personally known to be the officer described herein, and acknowledged that the seals affixed to the preceding instrument are the corporate seals of said Companies and the corporate seals and the signature of the officer were duly affixed and subscribed to said instrument by the authority and direction of said corporations.

Keith Collett, Attorney at Law Notary Public - State of Ohio

My commission has no expiration date. Section 147.03 O.R.C.

I, the undersigned Secretary or Assistant Vice-President of The Cincinnati Insurance Company and The Cincinnati Casualty Company, hereby certify that the above is the Original Power of Attorney issued by said Companies, and do hereby further certify that the said Power of Attorney is still in full force and effect.

Given under my hand and seal of said Companies at Fairfield, Ohio, this

dav of

BN-1457 (3/21)

THE CINCINNATI INSURANCE COMPANY

Bid Bond

CONTRACTOR (Name, legal status and address):

SURETY (Name, legal status and principal place of business):

K-Co Enterprises, Inc. 613 Hurricane Creek Rd

THE CINCINNATI INSURANCE COMPANY 6200 S. GILMORE ROAD **FAIRFIELD, OHIO 45014-5141**

Piedmont, SC 29673

OWNER (Name, legal status and address):

Watauga County 814 King Street Boone, NC 28607

BOND AMOUNT:

5% of bid

Signed and sealed this 13

This document has important legal consequences, Consultation with an attorney is encouraged with respect to its completion or modification.

Any singular reference to Contractor, Surety, Owner or other party shall be considered plural where applicable.

PROJECT (Name, location or address, and Project number, if any):

provide steel and labor to install on tower upgrade

The Contractor and Surety are bound to the Owner in the amount set forth above, for the payment of which the Contractor and Surety bind themselves, their heirs, executors, administrators, successors and assigns, jointly and severally, as provided herein. The conditions of this Bond are such that if the Owner accepts the bid of the Contractor within the time specified in the bid documents, or within such time period as may be agreed to by the Owner and Contractor, and the Contractor either (1) enters into a contract with the Owner in accordance with the terms of such bid, and gives such bond or bonds as may be specified in the bidding or Contract Documents, with a surety admitted in the jurisdiction of the Project and otherwise acceptable to the Owner, for the faithful performance of such Contract and for the prompt payment of labor and material furnished in the prosecution thereof; or (2) pays to the Owner the difference, not to exceed the amount of this Bond, between the amount specified in said bid and such larger amount for which the Owner may in good faith contract with another party to perform the work covered by said bid, then this obligation shall be null and void, otherwise to remain in full force and effect. The Surety hereby waives any notice of an agreement between the Owner and Contractor to extend the time in which the Owner may accept the bid. Waiver of notice by the Surety shall not apply to any extension exceeding sixty (60) days in the aggregate beyond the time for acceptance of bids specified in the bid documents, and the Owner and Contractor shall obtain the Surety's consent for an extension beyond the sixty (60) days.

If this Bond is issued in connection with a subcontractor's bid to a Contractor, the term Contractor in this Bond shall be deemed to be Subcontractor and the term Owner shall be deemed to be Contractor.

When this Bond has been furnished to comply with a statutory or other legal requirement in the location of the Project, any provision in this Bond conflicting with said statutory or legal requirement shall be deemed deleted herefrom and provisions conforming to such statutory or other legal requirements shall be deemed incorporated herein. When so furnished, the intent is that this Bond shall be construed as a statutory bond and not as a common law bond.

day of June, 2025

K-Co Enterprises, Inc. (Principal) (Seal) Konkowsh THE CINCINNATI INSURANCE COMPANY (Surety) (Seal)

(Title)

The Company executing this bond vouches that this document conforms to American Institute of Architects Document A310, 2010 Edition. S-2000-AIA (11/10) PUBLIC

79

Page: 1 Watauga County

BIDDER: K-Co Enterprises, Inc.

WATAUGA COUNTY, NC	INVITATION FOR BIDS -Rich Mt.
BID#	Bids will be publicly opened: June 13th, 2025 at 3:00pm
	Questions Due by: June 2 nd , 2025
Refer <u>ALL</u> Inquiries to: Marty Randall Telephone No. 828-527-2416	Commodity: Install New Tower Site 759 Fire Tower Road, Boone, North Carolina 28607 with access road per design documents.
E-Mail: marty.randall@1018consulting.com	Using Agency Name: Watauga County Emergency Services
(See page 2 for mailing instructions.)	

NOTICE TO BIDDERS

Sealed bids, subject to the conditions made a part hereof, will be received at **814 W. King Street, Boone NC 28607 until 3:00 PM** on the day of opening and then opened, for furnishing and delivering the commodity as described herein. Refer to page 2 for proper mailing instructions.

Bids submitted via facsimile (FAX) machine in response to this Invitation for Bids will not be acceptable. Bids are subject to rejection unless submitted on this form.

EXECUTION

In compliance with this Invitation for Bids, and subject to all the conditions herein, the undersigned offers and agrees to furnish and deliver any or all items upon which prices are bid, at the prices set opposite each item within the time specified herein. By executing this bid, I certify that this bid is submitted competitively and without collusion (G.S. 143-54).

Failure to execute/sign bid prior to submittal shall render bid invalid.

Late bids are not acceptable.

BIDDER:		FEDERAL ID OR SOCIAL SECURITY NO.		
K-Co Enterprises, Inc.		26-1278195		
STREET ADDRESS:		P.O. BOX:	ZIP:	
613 Hurricane Creek Rd				
CITY & STATE & ZIP:		TELEPHONE NUMBER:	TOLL FREE TEL. NO	
Piedmont, SC 29673		864-947-8704	(800)	
PRINCIPAL PLACE OF BUSINESS ADDRESS IF DIFFERENT FROM ABOVE (SEE INSTRUCTIONS TO BIDDERS ITEM #21):				
TYPE OR PRINT NAME & TITLE OF PERSON SIGNING:		FAX NUMBER:		
Ernest Rood - Project Manager		864-947-8204		
AUTHORIZED SIGNATURE: FINST ROOD	DATE: 6-12-25	E-MAIL:		
(rnest Rood	0-12-23	bids@kcoenterprises.com		

Offer valid for 120 days from date of bid opening unless otherwise stated here: days

ACCEPTANCE OF BID

If any or all parts of this bid are accepted by Watauga County, NC, an authorized representative of Watauga County, NC shall affix their signature hereto and this document and the provisions of the Instructions to Bidders, special terms and conditions specific to this Invitation for Bids, the specifications, and the North Carolina General Contract Terms and Conditions shall then constitute the written agreement between the parties. A copy of this acceptance will be forwarded to the successful bidder(s).

FOR Watauga County, NC USE ONLY		
Offer accepted and contract awarded this	day of	
by		. (Authorized representative of Watauga County, NC).

Page:	2		
Matau	~~	CAL	

Vatauga County	BIDDER:	K-Co Enterprises, Inc.

In an effort to support the sustainability efforts of Watauga County, North Carolina we solicit your cooperation in this effort.

It is desirable that all responses meet the following requirements:

- All copies should be printed double sided.
- All submittals and copies should be printed on recycled paper with a minimum post-consumer content of 30% and indicate this information accordingly on the response.
- Unless absolutely necessary, all bids and copies should minimize or eliminate use of non-recyclable or non reusable materials such as plastic report covers, plastic dividers, vinyl sleeves, and GBC binding. Three-ringed binders, glued materials, paper clips, and staples are acceptable.
- Materials should be submitted in a format which allows for easy removal and recycling of paper materials.

MAILING INSTRUCTIONS: Send two fully executed bid documents. Address envelope and insert bid name as shown below. It is the responsibility of the bidder to have the bid in this office by the specified time and date of opening.

DELIVERED BY US POSTAL SERVICE	DELIVERED BY ANY OTHER MEANS
	SEND SUCH AS FEDX, UPS, ETC. FOR NEXT DAY
814 W. King Street	814 W. King Street
Boone, NC 28607	Boone, NC 28607
	,

Watauga County, NC Tower Construction Project

Boone, North Carolina

Scope of Work – Watauga County, NC proposes to install a communications tower site per the following specifications at a site in Watauga County, North Carolina. All work shall comply with applicable North Carolina Building Codes and ANSI/TIA/EIA Standards. If the following Specification calls for a condition that is greater than the TIA/EIA Standards or North Carolina Building Codes, use the specifications shown in this document. All work shall be coordinated with Watauga County, NC. The tower and all appurtenances shall be installed and affixed with the highest quality of workmanship. The selected Contractor will advise Watauga County, NC's Contracting Officer and Marty Randall (10-18 Consulting 828-527-2416 marty.randall@1018consulting.com) two weeks in advance of the date the work will start. The contractor will provide Marty Randall weekly project progress reports and immediately report any abnormal conditions encountered during construction.

As a minimum, the Tower and Foundation shall be designed to the requirements of ANSI/TIA/EIA-222-G, including released addendums. Design with Geotechnical Report provided, the tower manufacturer shall ensure the proper development of anchor roads and anchorage materials.

COMPLETION DEADLINE: Work should be completed within 90 days of receipt of materials, not counting bad weather days.

If the above time is not possible, state complete	tion time in days from co	ontract issue.	<u>Days</u>
Understand all requirements in the Scope of Work	YesX	No	<u> </u>

Page: 3 Watauga County

BIDDER:	K-Co Enterprises, Inc.	

CONTRACTING OFFICER

This project will be under contract with Watauga County, NC and will be under the direction of the Contracting Officer. The Contracting Officer will be:

Will Holt Watauga, NC Office:828-264-4235 Cell: 828-434-3491

NOTE: Any questions prior to issue of a contract should be directed to marty.randall@1018consulting.com as stated on page one of this document.

Understand the Contact information as listed above

Yes_X

No

CONTRACTOR REQUIREMENTS

The Contractor shall submit the following items with their bid:

- 1. A drawing of the tower profile sealed by a North Carolina Registered Engineer.
- 2. A list of all antennas and appurtenances that were considered in the tower and foundation designs.
- 3. Tower foundation design drawings, with a complete set of **DESIGN CALCULATIONS** showing the reactions of the tower on the foundation, sealed by a **North Carolina Registered Engineer**.
- 4. The Contractor awarded this project must submit a set of final erection drawings, sealed by a **North Carolina Registered Engineer** to the Contracting Officer and Marty Randall for written approval before starting the project. **If these drawings are submitted on paper they must also be accompanied by digital copies. We must have these drawings in digital format.**
- 5. The proposal from the tower manufacturer must specifically state that all pricing will be honored for the duration of this contract.
- 6. Contractor must supply a rigging plan for tower erection. If the contractor intends to use a gin pole for tower erection, then they must provide a copy of their gin pole certification and load charts. All gin pole certifications and load charts must be current, must be sealed by a qualified engineer licensed in the state of North Carolina, and must state they are in compliance with ANSI/TIA-322. All rigging plans must be in compliance with ANSI/TIA-322 and ANSI/ASSE A10.48 and completed by a qualified engineer licensed in the state of North Carolina.
- 7. Each bid must be accompanied by a bid bond, for an amount equal to 5% of the total base bid, at the time the bid is filed with the County. No bid shall be considered if the bond is not received simultaneously with the bid. Bid bonds may be submitted in any form allowed under the laws of North Carolina including cash, cashier's check, certified check or surety issued bid bond.
- 8. Performance and payment bonds are required once bid is awarded.

Bids and tower designs that are submitted for opening will be submitted by Watauga County, NC to a Third-party <u>North Carolina Registered Engineer</u> for review of design accuracy and compliance before an award can be made. This is the reason for requiring the above-listed items to be sent with the bid response. Watauga County reserves the right to accept or reject any or all bids and to waive minor irregularities.

Two complete copies of your bid response must be submitted with your package. Failure to submit the above-listed items will forfeit your bid.

Understand Contractor Requirements Process

Yes X

No

BIDDING INSTRUCTIONS

Contractors bidding on this project must fully acquaint themselves with the following specifications, any attachments to this Invitation for Bid and conditions at the Designated Construction Site (DCS). The contractor is required to visit the DCS to fully understand any potential obstacles that would prevent speedy completion of this project. Any questions concerning any portion of the work or interpretation of documents should be referred to Marty Randall and the Contracting Officer.

Page: 4 Watauga County E	BIDDER:	K-Co Enter	prises, Inc	S	
Bids must be submitted on this form and must this form must be completed for consideration					above. All parts o
Understand Bidding Instructions		· Ye	sX	No	
PRE-AWARD ENGINEERING REVIEW Bids and tower designs submitted for this IFB design accuracy and compliance with all stip responsible bid failing this engineering revie bidder that meets the Engineering Review recommendation.	oulated star w will be ir	ndards and rvalid and tl	building co	odes before an award car	n be made. A low
Understand Pre-Award Engineering Revie	w Process	Ye	s_X_	No	
PROJECT DESCRIPTION This project shall consist of the furnishing an specifications.	d installation	on of a com	municatior	ns tower, per the following	g and any attached
Understand Project Description		Ye	sX	No	
COORDINATION OF THE WORK		•			
The Tower Contractor shall notify Marty Rand two weeks prior to the desired construction tin 6609) at least 2 weeks prior to construction to may result in delay of the starting date. Failurand unable to perform and work.	ne. Contra o coordina	ctor must co te the stakir	ntact Matt g of the to	t Fields <i>(<u>matt.fields@ets-</u> ower location. Failure to g</i>	<i>pllc.com</i> 919-427 ive advance notice
Understand the Coordination Requiremen	t	Ye	sX	No	
DESIGN CAPACITY REQUIREMENT The tower must be designed so that when inst TABLE that follows, the tower superstructu evaluation by a third party, Engineered Towe the bid will not be accepted. Each bidder must that this Design Capacity Requirement is met. Additionally, each bidder shall record either provided below.	re and sub r Solutions t provide a This towe	ostructure <u>s</u> , the desigr s part of the r shall be de	shall NO computes bid submissigned for	T exceed 95% of its of sto be at a greater stress lossion package design call a 50-ft fall radius per the co	capacity. If, upor evel than specified culations verifying ontract documents
Rated Capacity		I	Percent o	f Stressed Value	
Understand the Design Capacity Requiren	nent.	Ye	s_X	No	
PERMITS Permits are required for this tower installa inspections with the permitting office. The Cinformation.					
Understand the Permit Process		Ye	sX	No	
FOUNDATION INSPECTION MANAGEMEN	<u>T</u>				
Prior to Construction Start, the Tower Cont ("ETS") to oversee, inspect, and document ex	ractor will				

Prior to Construction Start, the Tower Contractor will obtain the services of third party <u>Engineered Tower Solutions ("ETS")</u> to oversee, inspect, and document each phase of the foundation construction to ensure compliance with the Tower Manufacturer's Tower Design Drawings and Specifications. (Watauga County, NC has a contract with ETS to perform these inspections with no more than two trips being made by ETS. Fees will be paid by Watauga County, NC for all initial inspections. Additional inspections due to non-conformity with contract documents are at the contractor's expense. For scheduling, email Matt Fields: (matt.fields@ets-pllc.com 919-427-6609">materials inspections of the construction of the foundation shall be inspected to ensure compliance with the Tower Manufacturer's Tower Design Drawings and Specifications. The Tower Contractor shall immediately report to Marty Randall and the Contracting Officer any deviations found during the on-site pre-construction start inspection and present a correction plan. The Tower Contractor shall provide to Marty Randall and the Contracting Officer, a written report, sealed by

Page: 5 Watauga County	BIDDER:	K-Co Enterprises, Inc.		
Engineered Tower Solutions that including a comprehensive set of compreh		nts all results of the fo	undation oversight and insp	pection process
Understand the Inspections Mai		Yes_X_	No	
CONCRETE: COMPLIANCE WITH	_			
The Tower Contractor will obtain to oversight of the concrete pouring with the Tower Manufacturer's To party, (ETS), takes all steps to en pouring process, and to ensure ac a contract with ETS to perform sampling, breaks, and reports. Tower Contractor shall provide to completely documents the complia a comprehensive set of digital pho	the services of the thir process and the inspective Design Drawings asure competent monitiourate recording of the the concrete testing For scheduling, emon Marty Randall and ance with mix specifica	d party, Engineered Totion and recording of and Specifications. Toting of the concrete setime of day each same. Fees will be paid ail Matt Fields: (matt.)	cower Solutions ("ETS"), to each concrete delivery ticked the Tower Contractor shall sampling process used duringle was taken. (Watauga Coby Watauga County, NC. fields@ets-pllc.com 919-der, a written report, sealed	t for compliance ensure the third ng the concrete County, NC has This includes 427-6609). The by (<u>ETS)</u> that
Understand Concrete Complian	ce and Testing Proce	ess Yes <u>X</u>	No	
TOWER GROUND INSPECTION The Tower Ground inspection. marty.randall@1018consulting.corinspection.		onducted by 10-18 , must be contacted		larty Randall o requiring this
Understand Grounding Inspection	on Process	Yes_X_	No	
EXPEDITE CONSTRUCTION		•		
It is expected that the contractor favorable working conditions.	will expedite completi	on of the project, takin	g full advantage of the we	ather and othe
Understand Post Construction I	nspection Process	Yes_X_	No	
POST CONSTRUCTION INSPEC	TION (PCI)			
Upon completion of the tower the Temperature ("ETS") to conduct the Post Consofthe Inspection. (Watauga Coun NC for all initial inspections. Accontractor's expense. For scheed deviation from the Tower Manufactor Tower Contractor shall provide to the documents each deviation along water to the contractor of the tower than the tower Manufactor Shall provide to the documents each deviation along water than the tower than the	truction Inspection ("F ty, NC has a contract dditional inspections fuling, email Matt Fie turer's Design Drawing he Contracting Officer,	PCI"), and to generate a to provide this service s due to non-conform elds: (matt.fields@ets- gs and Specifications is a red-lined copy of ea	a complete report documence. Fees will be paid by Wanity with contract docume. pllc.com 919-427-6609)). Is found during, or as a resulch Drawing and/or Specification.	ting the findings atauga County ents are at the In the event any t of the PCI, the
Understand Final Inspection Pro	ocess	Yes_X	No	
CONTRACTOR LICENSES		r.		
The Tower Contractor, and/or the selicensed to operate a contraction				<u>his tower, must</u>
NC General Contractors License			oquirea unider i i i e e e i i	
The Contractor installing the tower were adopted in February 2005 an		ons.		bing rules that
Understand Requirements for C	ontractor Licenses	Yes_X_	No	
CONSTRUCTION & MATERIALS		•		

The tower shall be constructed of **hot-dipped** galvanized steel with solid round, or angular members. The tower may be either solid weld or knockdown construction. All components of the tower including but not limited to bolts, nuts, mounting

Page: 6 Watauga County

BIDDER: K-Co Enterprises, Inc.

brackets, torque arms, etc. shall, at a minimum, be **hot-dipped** galvanized. The tower shall conform, at a minimum, to the North Carolina Building Code Chart 1606, Basic Wind Speed and any county/jurisdictional specified requirements.

The Tower must have climbing facilities on each tower leg for installation and maintenance. Tower Contractor must provide and install a safety cable at the climbing ladder.

Understand Construction	on and Materials
-------------------------	------------------

Yes	Χ

No____

EROSION CONTROL

The Contractor will be responsible for Erosion Control practices and any fines levied if not practiced.

Understand Erosion Control Methods and responsibilities

Yes	Χ

No

STRUCTURE SPECIFICATIONS TABLE

Please enter Yes or No that you meet the specification in the Right-hand column

1		Yes or No
	Location is 759 Fire Tower Road, Boone NC 28607 Latitude 36.2330639° North Longitude -81.6986889° West	Yes
2	Tower is to be a self-supporting structure.	Yes
3	Tower Height is to be 199-ft AGL with a 50-ft Fall Zone.	Yes
4	Tower will be positioned on the DCS as indicated in the attached Construction Drawings.	Yes
5	The Tower Structure shall utilize solid round or angle structural steel members. No other materials or shapes will be given consideration. Note all members must be hot dipped galvanized to prevent corrosion.	Yes
6	All structural bolts must meet the ASTM A325 or A490 Specification.	Yes
7	The Tower Contractor will provide all materials to Complete the Tower & Foundation Installation.	Yes
8	The Tower Contractor will build the Foundation and erect the Tower.	Yes
9	The Tower Contractor will provide a detailed set of foundation drawings (sealed by a North Carolina Registered Engineer) showing all details including all rebar sizes and quantities, and concrete volumes. The Tower Contractor shall install the tower foundation. The Tower Contractor may construct the foundation using the most cost-effective method. The type of foundation presented in this Bid shall be designed and constructed in accordance with the Geotechnical Parameters specified in the Subsurface Exploration Report provided by Engineered Tower Solutions. That document is an attachment to this IFB.	Yes
10	Any damage to the access road, thru the housing development, from construction of this tower must be repaired by the contractor so to restore road to the original condition. If there are repairs required to the existing access road in order to construct the tower those repairs must be included in the bid. The contractor is responsible for tower construction. Civil work will be completed by Civil contractor.	Yes
11	All back-fill for grading tower base must be compacted and tamped. This would be 8 inches of fill and adding moisture if need between each tamping.	Yes
12	As a minimum this Tower and Foundation shall be designed to the requirements of ANSI/TIA-222G, including released addendums.	Yes
13	One hot-dipped galvanized expanded metal Vertical Cable/Wave-Guide Ice-Bridge, capable of mounting twenty (20) lines. Waveguide bridge shall be installed between the tower and shelter per the design drawings. The width of the Horizontal Cable/Wave-Guide Ice-Bridge shall be installed by the civil contractor.	Yes
14	The Tower shall have a safety fall protection system incorporating a 3/8" stainless steel cable meeting OSHA/ANSI specifications installed the full height of the structure on one tower leg with full height step pegs. Additionally, step pegs are required on the other two legs to the height of the mid markers.	Yes
15	The Tower Contractor shall install one (1) #2/0 AWG bare tinned copper conductor between the base of <u>each tower leg</u> and a 10-ft ground rod at <u>each</u> tower leg. The top of the ground rod must be at least 3-ft below finished grade. Each of these #2/0 AWG bare tinned copper conductors shall be <u>Exothermically Bonded</u> to the ground rod, tower leg, and tower halo ring. Grounding must be in compliance with Motorola R56 specifications and standards NOTE: All grounding shall conform to construction drawings.	Yes

Page: 7 Watauga County

BIDDER: K-Co Enterprises, Inc.

	NOTE: A representative of Watauga County, NC shall inspect the connections to the ground rods prior to filling the trench. This inspection does not eliminate the requirement for installing inspection tubes. The Tower Contractor shall notify the Contracting Officer at least forty-eight (48) hours prior to schedule and conduct this inspection.	Yes
17	The Civil Contractor is responsible for providing and installing a temporary power pole on the site for use during construction. Civil contractor is responsible for removing the temporary power pole once permanent power has been installed at the DCS.	Yes
18	Tower Contractor is required to submit best and final price for this effort. Change orders will only be considered for circumstances or unusual situations not included in the contract documents. Any change orders must be approved in writing before work is started. Customer understands any additional work requested may incur additional costs outside of this contract pricing.	Yes
19	The Tower Contractor shall provide Tinned Copper Ground Bars (TCGBs) capable of attaching a minimum of twenty (20) ground kits. Tower must include a 6' lightning rod at the top of structure. NOTE: The TCGB shall be mechanically attached directly to the Tower Structure with Stainless Steel Hardware using pre-drilled holes in the Tower Structural Steel provided expressly for this purpose. The TCGBs shall be installed at approximately ten 10-ft AGL at the base of the cable ladder. The Tower Contractor shall install a sufficient length of #2/0 AWG bare tinned copper conductor between this TCGB and the tower halo ring closest to the cable ladder. A second set of TCGB's to be install at the approx. 150 ft level with the TCGB's bonded to the tower structure. Exothermic Bonding shall be used to provide the electrical connections of the #2/0 AWG bare tinned copper conductor to the TCGB	Yes
20	and the ground ring. The Tower Contractor shall provide and install antenna mounts in accordance with the included Antenna Mount Schedule (AMS) and Antenna Loading Requirements.	Yes
21	The location of the site is as shown on the attached drawings.	Yes
22	Excess soil created from foundation installation must be removed from the site. If soil is suitable, it may be used for backfilling and tower foundation leveling.	Yes
23	The Tower Contractor shall remove all tower construction materials and debris from the site.	Yes
24	Bidding contractors must attend a mandatory pre-bid site walk on June 9th at 11:00AM.	Yes

ANTENNA MOUNT SCHEDULE (AMS)

Contractor to provide and install the following Antenna Mounts on the Tower

Item #	Antenna Mount Description	Comply Yes or No
1	Two 6-ft standoff sidearm mounts with stabilizer at 176-ft	Yes
2	Two 6-ft standoff sidearm mounts with stabilizer at 155-ft	Yes
3	One Microwave 4.5" pipe mount at 140' with ice shield	Yes
4	One Microwave 4.5" Pipe Mount at 100' with ice shield	Yes
5	One Microwave 4.5" Pipe Mount at 85' with ice shield	Yes
6	One Microwave 4.5" Pipe Mount at 75' with ice shield	Yes

6' standoff mounts must be rated to accommodate listed antennas in Antenna Mounting table. If an alternate mount is used specifications must be provided by the manufacturer.

ANTENNA LOADING REQUIREMENTS:

Refer to the attached TEP Tower Procurement Document for tower specifics, antennas and required loading.

Page:	8	
Wataug	ļа	County

BIDDER:	K-Co Enterprises, Inc.

TOWER COST BREAKDOWN:

1. Total cost of tower materials only

\$ 136,000 00 \$ 243,500°

2. Total cost of all other services, including:

- a. All shipping
- b. Complete Installation
- c. Engineering Services
- d. All Inspections
- 3. Total cost to construct the tower with lighting¹. (Sum of Item-1 and Item-2, above)

NA

4. Total cost to construct the tower without lighting². (Sum of Item-1 and Item-2, above)

LIST OF ATTACHMENTS

- 1. Subsurface Exploration Report, prepared by Engineered Tower Solutions.
- 2. Construction Drawings, prepared by Engineered Tower Solutions.
- 3. Bid Document
- 4. Antenna Datasheets

Call the Contracting Officer prior to the opening date if you did not receive these attachments.

GEOTECHNICAL REPORT OF SUBSURFACE INVESTIGATION

May 20, 2024

PROPOSED SELF SUPPORT TOWER RICH MOUNTAIN TOWER

759 Fire Tower Road Boone, NC 28607

36.2331, -81.6986

Prepared for:

Matt Nesbit, E.I.

Geotechnical Engineer I

Jorge Varela Date: 2024.05.20 20:06:38 -04'00'

Jorge Varela, P.E. Registered NC 051545

Engineered Tower Solutions, PLLC - 3227 Wellington Court - Raleigh, NC 27615 (919) 782-2710

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Project Summary

Item	Description
Project Description	A geotechnical exploration and report have been prepared for this proposed 199-foot self-supported tower. Included in this report are the results of the field exploration and the recommendations for the design of the foundation system.
Site Coordinates	Latitude: 36.2331 Longitude: -81.6986
Site Condition	The proposed tower will be installed at 759 Fire Tower Road in Boone, North Carolina
Frost Depth	Based on the TIA Standard (TIA-222-H), dated October 2017, the recommended design frost penetration depth to be used for Watauga County, NC is 12 inches (0.8 ft).
Groundwater	Groundwater was encountered at 7 feet below ground surface at the time of drilling. Please note that subsurface water levels will fluctuate with seasonal and cyclical temperatures and precipitation and can be higher or lower at other times.
Proposed Foundation	We assume the proposed foundation will be supported with either pad and pier or drilled shaft (caisson).

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Field Exploration

Item	Description
Date	May 7 th , 2024
Number of Borings	3
Location	B-1: Latitude: 36.2332 Longitude: -81.6986 B-2: Latitude: 36.2331 Longitude: -81.6985 B-3: Latitude: 36.2331 Longitude: -81.6986
Equipment Used	550X
Advancement Method	Hollow Stem Auger (HSA) and Rock Coring
Sampling Method	ASTM D-1586 with 1.5 I.D. Split Spoon Sampler ASTM D2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site Exploration

Laboratory Classification and Testing

Standard	Description
ASTM D2488	Standard Practice for Description and Identification of Soils

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Subsurface Profile

Based on the results of our borings, the soils beneath the surface can be summarized in the table below:

Material Encountered	Description	Consistency / Density
SAND	Brown, moist silty sand with gravel	Loose to Very Dense
PWR	Partially Weathered Rock sampled as silty sand with rock fragments	- -
GRANITE	Slightly weathered with close spaced fractures	
7 D - C 4- 3- 43- 34 1 1	poring logg for layer stratification datails	

[.] Refer to individual boring logs for layer stratification details

Detailed descriptions of conditions encountered at each exploration point are indicated on the individual logs in the Appendix B. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual.

Groundwater was encountered at 7 feet below ground surface at the time of drilling. Groundwater levels will fluctuate with seasonal and climatic changes and may be different at other times.

Earthwork Recommendations - Equipment Mat

Earthwork is anticipated to include excavations and fill placement. The following sections provide recommendations for use in the preparation of the equipment mat foundation area and access drive.

Site Preparation

The subgrade should be evaluated under the direction of the Geotechnical Engineer. Areas where soft material are present or excessively wet or dry material should either be removed, or moisture conditioned and recompacted.

Geotechnical Report of Subsurface Investigation **RICH MOUNTAIN TOWER**

Job Number: 22110700

Fill Material Types

Soil Type	USCS Classification	Acceptable Parameters (for Structural Fill)
Imported Low- to Moderate- Plasticity Soil ²	CL, ML, SC or SM	All locations and elevations
Sand / Gravel with greater than 12% fines	GW/GP, SW/SP	Crushed stone base course may be used for the access roadway or beneath shallow foundations as a replacement material for overexcavated soils.
Near-Surface On-site soils ²	SM	On-site soils generally appear suitable for use as fill when they contain at least 12% fines (clay and/or silt) and are compacted at an appropriate moisture content.

- Controlled, compacted fill should consist of approved materials that are free of organic matter and debris. A sample of each material type should be submitted to the geotechnical engineer for evaluation.
- 2. Low- to moderate-plasticity cohesive soil or granular soil having at least 12% fines

Fill Compaction Requirements

Item	Structural Fill	General Fill
Maximum Lift Thickness	8 inches or less in loose thickness when heavy, self- propelled compaction equipment is used	Same as Structural fill
Minimum Compaction Requirements 1,2	98% of max. below foundations and within 1 foot of finished pavement subgrade 95% of max. above foundations, below floor slabs, and more than 1 foot below finished pavement subgrade	92% of max.
Water Content Range ¹	Low plasticity cohesive: -2% to +3% of optimum High plasticity cohesive: 0 to +4% of optimum Granular: -3% to +3% of optimum	As required to achieve min. compaction requirements

- Maximum density and optimum water content as determined by the standard Proctor test (ASTM D 698).
- High plasticity cohesive fill should not be compacted to more than 100% of standard Proctor maximum dry density.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Excavations

Groundwater was encountered at 7 feet below ground surface at the time of drilling. Although not expected, if encountered in deep trench excavations during construction, groundwater or perched groundwater will require dewatering until backfilling operations are complete.

All excavations that may be required should, at a minimum, comply with applicable local, state and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards to provide stability and safe working conditions.

Slopes

For permanent slopes in unreinforced compacted fill areas, we recommended maximum configurations of 3:1 (Horizontal: Vertical) for the cohesive soils (clay) found at the site.

If steeper slopes are required for site development, stability analyses should be completed to design the grading plan. The face of all slopes should be compacted to the minimum specification for fill embankments. Fill slopes should be overbuilt and trimmed to compacted material.

Earthwork Construction Considerations

The near-surface, on-site soils will lose strength when exposed to moisture. To the extent practical, earthwork should be performed during drier periods of weather. Increased remedial measures due to wet and soft or otherwise unsuitable conditions should be expected if earthwork is performed during colder and wetter periods of weather.

A qualified geotechnical engineer should be retained during the earthwork phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation; to monitor proof-rolling, placement and compaction of controlled compacted fills, and backfilling of excavations to the completed subgrade.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Foundations Recommendations

The following recommendations are made based on our review of the test boring data and our past experience with similar projects and subsurface conditions. Ultimate soil strength parameters are presented on table below.

Ultimate Strength Parameters

Boring #	Depth (ft)	Unified Soil Classification	Total Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)
	0.0 - 2.0	PWR	130	38	
	2.0 - 4.0	PWR	130	38	
B-1	4.0 - 6.0	PWR	130	38	
	6.0 - 8.5	PWR	130	38	
	8.5 - 34.0	GRANITE	· 145	45	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.0 - 2.0	SM	. 105	29	
	2.0 - 4.0	PWR	130	38	
B-2	4.0 - 6.0	PWR	130	38	
	6.0 - 8.5	PWR	130	38	
	8.5 - 10.0	PWR	130	38	
	0.0 - 2.0	SM	105	29	
B-3	2.0 - 4.0	SM	120	30	
***************************************	4.0 – 6.0	SM	130	38	
	6.0 - 8.0	PWR	130	38	

^{1.} Groundwater was encountered at 7 feet below ground surface at the time of drilling. Utilize bouyon unit weight below this depth

Based on the subsurface conditions and typical design foundation loads for similar self-support towers, we recommend that either a caisson (drilled shaft) or a pad/pier be used to support the new tower.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Modulus of Subgrade Reaction

A vertical and horizontal modulus of subgrade reaction may be derived using the following equations and soils parameters expressed in the above table:

$$k_{s-v} = 12 \cdot SF \cdot q_a$$
$$k_{s-h} = k_{s-v} \cdot B$$

Where:

 q_a = Allowable Bearing Capacity (ksf)

SF = Safety Factor

B = Base width (ft), use 1 if B < 1ft

k_{s-ν} =Vertical Modulus of Subgrade Reaction (kcf)

 k_{s-h} = Horizontal Modulus of Subgrade Reaction (ksf)

Caisson (Drilled Shaft)

Should caissons (drilled shafts) be used, the caissons (drilled shafts) will achieve compressive (downward) and tensile (uplift) resistance through skin friction along the sides of the shafts. In addition to skin friction, bearing resistance at the caisson's tip will contribute to compressive capacity. We recommend the values given the table below be used for this project. Please note the tip bearing capacity and skin frictions are net ultimate and ultimate values respectively. Appropriate factors of safety or resistance factors should be used. Lateral loads can be resisted by the lateral stiffness of the soil. Parameters for analysis of the laterally loaded caisson are also given the table below.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Caisson (Drilled Shaft) Parameters

Boring #	Net Ultimate		Ultimate Skin Friction ¹ (ksf)		Lateral	E50		
	Depth (ft)	Tip Bearing Capacity (ksf)	Compressive	Uplift	Modulus (pci)	(in/in)		
	0.0 - 2.0							
	2.0 - 4.0		0.2	0.2	125			
B-1	4.0 – 6.0		0.3	0.3	125			
	6.0 - 8.5		0.4	0.4	125			
	8.5 – 34.0	40	2.3	. 2.3	125			
	0.0 - 2.0		0.2	0.2	125			
	2.0 - 4.0		0.3	0.3	125			
B-2	4.0 – 6.0		0.3	0.3	125			
	6.0 - 8.5	into tree	0.4	0.4	125			
	8.5 – 10.0	40	0.5	0.5	125			
	0.0 - 2.0			·				
D 4	2.0 – 4.0		0.2	0.2	60			
B-3	4.0 – 6.0	gan aya	0.3	0.3	125			
	6.0 – 8.0	40	0.4	0.4	125			

We recommend the skin friction be ignored for the top 3 ft of the caisson

Based on the subsurface soil conditions, excavations for the caissons (drilled shafts) should be possible using a large, truck-mounted, hydraulic-advanced drill rig. All debris, loose or disturbed soil should be removed from the excavation prior to placing reinforced steel and/or concrete. Reinforcing steel and/or concrete should be placed immediately upon completion of the excavation.

The excavations may be susceptible to caving. Drilling fluid or casing could be used to assist in keeping the drilled hole open. If casing is used, we recommend it be removed from the excavation as concrete is being placed. Continuous vibration or other approved methods should be used during casing withdrawal to reduce the potential for void-space formation within the concrete. If water is

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

present during concrete placement and/or drilling fluids are used to maintain hole stability, concrete should be pumped or otherwise discharged to the bottom of the hole via a hose or tremie pipe. The end of the hose or tremie pipe must remain below the top surface of any water, drilling fluid and the in-place concrete at all times. Additionally, concrete should be consolidated using vibration methods over the entire length and width of the caissons and the consolidation should be performed only after these fluids are removed and to the extent possible.

Pad & Pier / Single Mat Foundation

If the site has been prepared in accordance with the requirements noted in *Earthwork Recommendations – Equipment Mat*, the tower's foundation capacity can be determined using the soil's bearing capacity, passive pressure resistance, and a sliding friction factor.

Net Ultimate Bearing Capacity and Sliding Friction Factor

Depth ²	Net Ultimate Bearing Capacity ¹ (psf)	Sliding Friction Factor ¹
0.0 - 2.0	 ·	~ ~
2.0 - 4.0	7,000	0.35
4.0 – 15.0	11,000	0.55

^{1.} This value is a net ultimate value and an appropriate factor of safety or resistance factor should be used

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Ultimate Passive Pressure and Friction Factor

Boring #	Depth (ft)	Ultimate Passive Pressure ¹ (psf) ¹		
	0.0 - 2.0	0 – 800		
	2.0 - 4.0	800 – 1,600		
B-1	4.0 - 8.0	1,600 – 3,200		
	8.0 - 12.0	3,200 – 4,800		
	12.0 - 20.0	4,800 – 11,200		

^{1.} Ultimate passive pressure can be interpolated for foundation depths with the depth ranges given

Seismic Parameters

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Section 20.4 of ASCE 7 and the International Building Code (IBC)

Seismic Site Classification

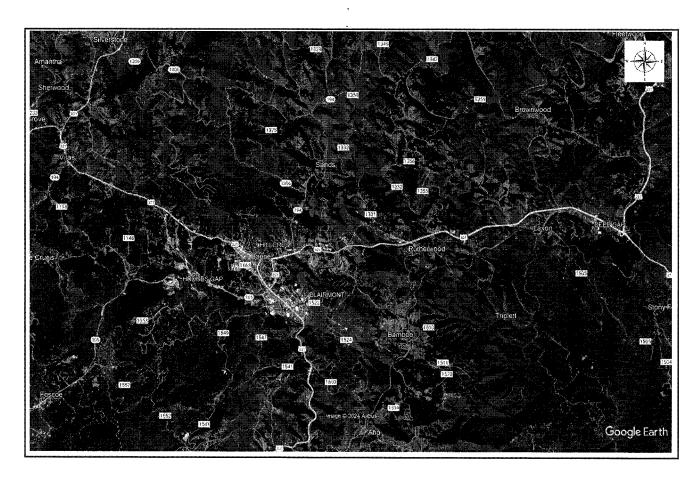
Item	Seismic Parameter
2018 International Building Code Seismic Site Classification	$\mathbf{D_{I}}$
Design Spectral Response Acceleration Parameters	$S_{ds} = 0.273g$ $S_{d1} = 0.133g$

^{1.} The IBC seismic site classification is based on the subsurface profile depth of 100 feet. The scope of work did not authorize exploration to a depth of 100 feet. A seismic Site Soil Classification of D should be used if insufficient details are known about the 100-foot soil profile.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

LIMITATIONS OF REPORT


This report has been prepared in accordance with generally accepted geotechnical engineering practices for the specific application of this project. The conclusions in this report are based on the applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

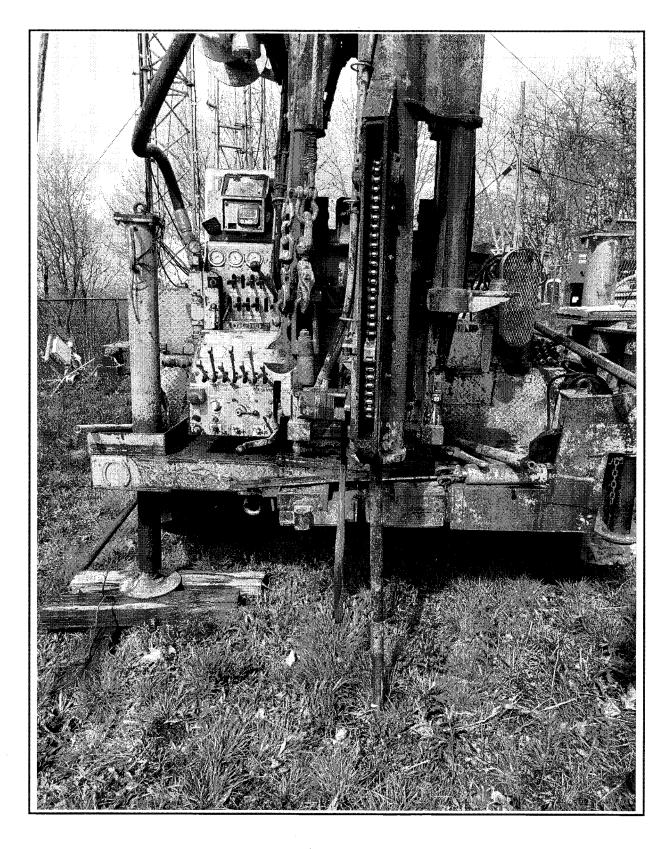
The analyses and conclusions submitted herein are based, in part, upon the data obtained from the subsurface exploration performed for this analysis. The soil and ground water conditions can vary across the site. Opinions and conclusions are subject to change if new or additional information is submitted for review.

APPENDIX A LOCATION INFORMATION

SITE LOCATION PLAN RICH MOUNTAIN TOWER Job Number: 22110700

May 20, 2024 | 13

BORING LOCATION PLAN RICH MOUNTAIN TOWER Job Number: 22110700



May 20, 2024 | 14

SITE PHOTO RICH MOUNTAIN TOWER

Job Number: 22110700

May 20, 2024 | 15

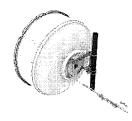
APPENDIX B SOIL TEST BORING

3	ENGINEERED TOWER SOLUTIONS

BORING NUMBER B-1

ENGINEERED TOWER SOLUTIONS			FAGE	: I OF
LIENT Watauga County	PROJECT NAME Rich Mountain Tower			
ROJECT NUMBER _22110700	PROJECT NAME RICH MOUNTAIN FOWER PROJECT LOCATION _759 Fire Tower Road, Boone	NC 2860	 17	
ATE 5/6/2024	* COORDINATES _36.2332, -81.6986	J, 140 ZOOL	,,	
RILLING METHOD Hollow Stem Auger (HSA) and Rock Coring	GROUND WATER LEVELS:			
RILLING EQUIPMENT _550X	∇ AT TIME OF DRILLING 14.70 ft / Elev 4663.	30 ft		
DGGED BY M. Nesbit	T AT END OF DRILLING 29.10 ft / Elev 4648.9			
OTES	▼ AFTER DRILLING 14.70 ft / Elev 4663.30 ft			
		T		<u> </u>
<u></u>		SAMPLE TYPE NUMBER	% ≿	S
(E) GRAPHIC GRAPHIC MATERIAL D	DESCRIPTION	E T	QE)	BLOW
G	,	M P I	RECOVERY (RQD)	굨업
	•	S, A	뿝	
PARTIALLY WEATHERED ROCK (PWR), Sampled a	as silty sand with rock fragments.	SS		0-18-5
] .		1		
-		SS 2		50/
		SS	1	50/
5		3		30/
1	1	SS	1	50/
]		4		
GRANITE, slighly weathered with close spaced fractu	res.	<u> </u>		-
o <u>around a</u> signif weathered with above spaced haddle		RC RC-1	100 (83)	
		H	(55)	-
		RC	87	
<u>5</u> <u>Y</u>		RC-2	(47)	
	,			
		RC	68	
		RC-3		
		11		
				1
		RC RC-4	92 (62)	1
5				
		H-		-
₩		RC RC-5	88	
<u>0</u>		RC-5	(70)	
		Ш	<u> </u>	
			04	
		RC RC-6	81 (78)	
Rottom of hor	ehole at 34.0 feet.	11_	<u> </u>	
DOLLOTT OF DOTE	enore at 54.0 leet.			

·	2025-0				8-05 BCC Meeting			
4	A ENGINEERED					G NUMBER B-2 PAGE 1 OF		
LIENT	Ma. ΓWa	TOWER SOLUTIONS atauga County	PROJECT NAME Rich Mountain Tower					
		UMBER 22110700		PROJECT LOCATION 759 Fire Tower Road, Boone, NC 28607				
ATE _	5/7/2	2024	COORDINATES 36.2331, -84.6985					
		ETHOD Hollow Stem Auger (HSA) and Rock Coring		4757 00 5				
		QUIPMENT 550X M. Nesbit	AT TIME OF DRILLING 7.20 ft / Elev 4 TAT END OF DRILLING 8.60 ft / Elev 4					
			▼ AFTER DRILLING 7.20 ft / Elev 4757.					
O DEPTH	GKAPHIC LOG	MATERI	AL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW		
		SILTY SAND WITH GRAVEL (SM), brown, moist,	dense.	SS 1		1-3- 4 (7)		
=	<u> 1917</u>	PARTIALLY WEATHERED ROCK (PWR), Samp	pled as silty sand with rock fragments.	× ss		24-50/		
				2	1	50/2		
5				SS 3		50/3		
		$ar{m{\Lambda}}$		SS 4		50/1		
4		<u>*</u>						
10		-		SS 5		50/2		
		Bottom of	f borehole at 10.0 feet.					
			•					
			•					
			¢					


BORING NUMBER B-3 PAGE 1 OF 1

ENGINEERED TOWER SOLUTIONS	, , , , , , , , , , , , , , , , , , ,
CLIENT Watauga County	PROJECT NAME Rich Mountain Tower
PROJECT NUMBER 22110700	PROJECT LOCATION 759 Fire Tower Road, Boone, NC 28607
DATE <u>5/7/2024</u>	COORDINATES 36.2331, -81.6986
DRILLING METHOD Hollow Stem Auger (HSA) and Rock Coring	GROUND WATER LEVELS:
DRILLING EQUIPMENT 550X	AT TIME OF DRILLING 7.20 ft / Elev 4668.80 ft
LOGGED BY M. Nesbit	AT END OF DRILLING 7.20 ft / Elev 4668.80 ft
NOTES	▼ AFTER DRILLING 7.20 ft / Elev 4668.80 ft

	NOIL	<u> </u>	AF FER DRILLING 7.20 (17 EIGV 4000.00)(
k.GPJ	O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)
TOWER			SILTY SAND (SM), brown, moist, loose to medium dense.	SS 1		0-3-3 (6)
TOWERIGEIRICH MOUNTAIN TOWER.GPJ				SS 2		4-5-13 (18)
EVRICH M	5		SILTY SAND (SM), brown, moist, very dense.	SS 3		16-30-22 (52)
NER \GE	- 	المنطقة المنطقة	PARTIALLY WEATHERED ROCK (PWR), Sampled as silty sand with rock fragmentss.	SS 4		34-50/5"
ō	-	-		SS 5		50/0"

Bottom of borehole at 8.5 feet.

Base Product

1.8m | 6ft ValuLine® High Performance, High XPD Antenna, dual-polarized, 5.925 – 7.125 GHz

Product Classification

Product Type Microwave antenna

Product Brand ValuLine®

General Specifications

Antenna Type HX - ValuLine® High Performance, High XPD

Antenna, dual-polarized

Polarization Dual

Side Struts, Included 1

Side Struts, Optional

Dimensions

Diameter, nominal 1.8 m | 6 ft

Electrical Specifications

Operating Frequency Band 5.925 - 7.125 GHz

Gain, Low Band 38.3 dBi

Gain, Mid Band 39.1 dBi

Gain, Top Band 39.9 dBi

Boresite Cross Polarization Discrimination (XPD) 33 dB

Front-to-Back Ratio 70 dB

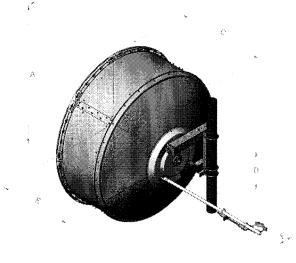
Beamwidth, Horizontal 1.8 °

Beamwidth, Vertical 1.8 °

Return Loss 26 dB

VSWR 1.1

Radiation Pattern Envelope Reference (RPE) 7376


Electrical Compliance ACMA FX03_6b, 6p7b | ETSI 302 217 Class

3 | IC 3059A | IC 3064A | US FCC Part 101A

Page 1 of 7

Cross Polarization Discrimination (XPD) Electrical Compliance	ETSI EN 302217 XPD Category 2
Electrical Specifications, Band 2	
Operating Frequency Band	5.725 – 5.850 GHz
Gain, Mid Band	38.4 dBi
Beamwidth, Horizontal	2 °
Beamwidth, Vertical	2 °
Mechanical Specifications	
Compatible Mounting Pipe Diameter	115 mm-120 mm 4.5 in-4.7 in
Fine Azimuth Adjustment Range	±15°
Fine Elevation Adjustment Range	±5°
Wind Speed, operational	200 km/h 124.274 mph
Wind Speed, survival	200 km/h 124.274 mph
;	

Antenna Dimensions and Mounting Information

1		Dimensio	ons in incl	nes (mm)			
	Antenna size, ft (m)	A	8	c	D	Е	F
	6 (1.8)	74.8 (1899)	13.4 (340)	47.5 (1206)	20.9 (530)	39.4 (1001)	8.4 (214)

Wind Forces at Wind Velocity Survival Rating

Axial Force (FA)

Angle α for MT Max

Side Force (FS)

Twisting Moment (MT)

Force on Inboard Strut Side

Zcg without Ice

Zcg with 1/2 in (12 mm) Radial Ice

Weight with 1/2 in (12 mm) Radial Ice

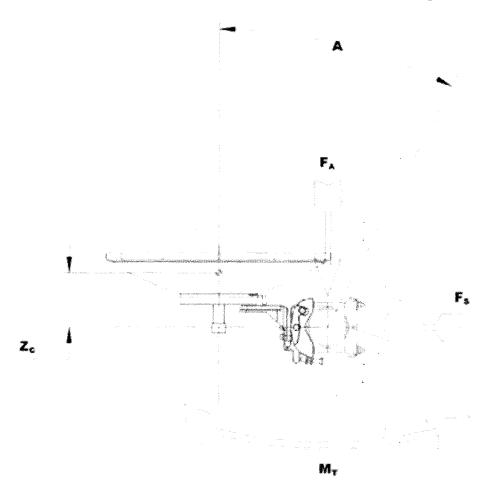
6960 N | 1,564.671 lbf

-130°

1566 N | 352.051 lbf

3923 N-m | 34,721.477 in lb

4075 N | 916.097 lbf


363 mm | 14.291 in

541 mm | 21.299 in

237 kg | 522.495 lb

Page 3 of 7

Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Weight, net 85 kg | 187.393 lb

Regulatory Compliance/Certifications

AgencyClassificationISO 9001:2015Designed, manufactured and/or distributed under this quality management system

* Footnotes

Operating Frequency Band

Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

Page 5 of 7

Gain, Mid Band For a given frequency band, gain is primarily a function of antenna size. The gain of Andrew antennas is determined by either gain by comparison or by computer integration of the measured antenna patterns. **Boresite Cross Polarization Discrimination (XPD)** The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam. Front-to-Back Ratio Denotes highest radiation relative to the main beam, at 180° ±40°, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise. The figure that indicates the proportion of radio waves **Return Loss** incident upon the antenna that are rejected as a ratio of those that are accepted. **VSWR** Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band. Radiation Pattern Envelope Reference (RPE) Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of +/-1° throughout Cross Polarization Discrimination (XPD) Electrical Compliance The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam. For VHLP(X), SHP(X), HX and USX antennas, the wind speed Wind Speed, operational where the maximum antenna deflection is 0.3 x the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than 0.1 degrees. Wind Speed, survival The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without

Axial Force (FA) Maximum forces exerted on a supporting structure as a

result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

amount of radial ice.

permanent deformation. Realignment may be required. This wind speed is applicable to antenna with the specified

Side Force (FS)Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this

Twisting Moment (MT)

parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Base Product

2.4m | 8ft ValuLine® High Performance, High XPD Antenna, dual-polarized, 5.925 – 7.125 GHz

١	D	רח	d	١٠٠٠	t C	دا	cci	fi	$c \supset$	ti	\sim 1	\neg
ı		W	U	UL	ıı	IO.	ノノ	11	เส	ŁI	UH	

Product Type Microwave antenna

General Specifications

Antenna Type HX - ValuLine® High Performance, High XPD

Antenna, dual-polarized

Polarization Dual

Side Struts, Included

Side Struts, Optional

Dimensions

Diameter, nominal 2.4 m | 8 ft

Electrical Specifications

Operating Frequency Band 5.925 – 7.125 GHz

Gain, Low Band 40.8 dBi

Gain, Mid Band 41.6 dBi

Gain, Top Band 42.4 dBi

Boresite Cross Polarization Discrimination (XPD) 33 dB

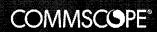
Front-to-Back Ratio 70 dB

Beamwidth, Horizontal 1.3 °

Beamwidth, Vertical 1.3 °

Return Loss 26 dB

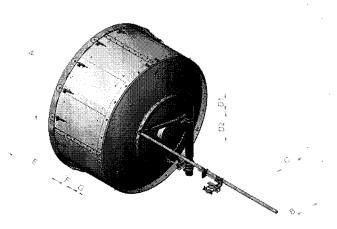
VSWR 1.1


Radiation Pattern Envelope Reference (RPE) 7389

Electrical Compliance ACMA FX03_6b, 6p7b | ETSI 302 217 Class

3 | IC 3059A | IC 3064A | US FCC Part

101A | US FCC Part 74A


Page 1 of 7

Cross Polarization Discrimination (XPD) Electrical Compliance	ETSI EN 302217 XPD Category 2			
Electrical Specifications, Band 2				
Operating Frequency Band	5.725 – 5.850 GHz			
Gain, Mid Band	40.7 dBi			
Beamwidth, Horizontal	1.3 °			
Beamwidth, Vertical	1.3 °			
Mechanical Specifications				
Compatible Mounting Pipe Diameter	115 mm 4.5 in			
Fine Azimuth Adjustment Range	±5°			
Fine Elevation Adjustment Range	±5°			
Wind Speed, operational	201 km/h 124.896 mph			
Wind Speed, survival	200 km/h 124.274 mph			

Antenna Dimensions and Mounting Information

HX8

***************************************	Dimensions in inches (mm)								
Antenna size, ft (m)	А	В	С	D1	D2	E	F	G	
8 (2.4)	95.1 (2416)	8.0 (203)	22.5 (572)	14.1 (357)	23.6 (600)	42.4 (1078)	12.1 (306)	10.3 (262)	· · · · · · · · · · · · · · · · · · ·

Wind Forces at Wind Velocity Survival Rating

Axial Force (FA)

Angle α for MT Max

Side Force (FS)

Twisting Moment (MT)

Force on Inboard Strut Side

Zcg without Ice

Zcg with 1/2 in (12 mm) Radial Ice

Weight with 1/2 in (12 mm) Radial Ice

10599 N | 2,382.751 lbf

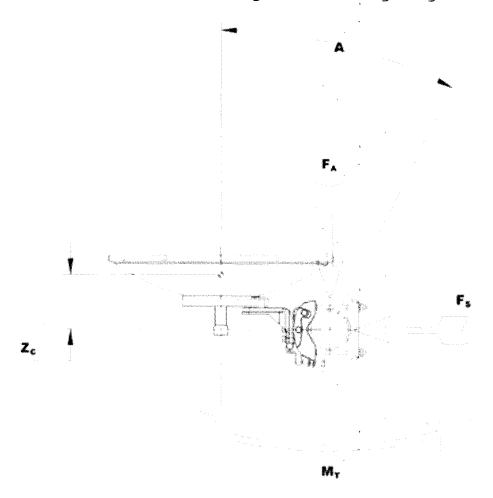
-140°

4594 N | 1,032.773 lbf

-6518 N-m | -57,689.16 in lb

11263 N | 2,532.024 lbf

532 mm | 20.945 in


675 mm | 26.575 in

342 kg | 753.98 lb

Page 3 of 7

Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Weight, net 187 kg | 412.264 lb

Regulatory Compliance/Certifications

Agency

Classification

ISO 9001:2015

Designed, manufactured and/or distributed under this quality management system

* Footnotes

Operating Frequency Band

Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

Page 5 of 7

Gain, Mid Band

For a given frequency band, gain is primarily a function of antenna size. The gain of Andrew antennas is determined by either gain by comparison or by computer integration of the measured antenna patterns.

Boresite Cross Polarization Discrimination (XPD)

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

Front-to-Back Ratio

Denotes highest radiation relative to the main beam, at 180° ±40°, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise.

Return Loss

The figure that indicates the proportion of radio waves incident upon the antenna that are rejected as a ratio of those that are accepted.

VSWR

Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band.

Radiation Pattern Envelope Reference (RPE)

Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of +/-1° throughout

Cross Polarization Discrimination (XPD) Electrical Compliance The difference between the peak of the co-polarized main

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

Wind Speed, operational

For VHLP(X), SHP(X), HX and USX antennas, the wind speed where the maximum antenna deflection is 0.3 x the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than 0.1 degrees.

Wind Speed, survival

The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without permanent deformation. Realignment may be required. This wind speed is applicable to antenna with the specified amount of radial ice.

Axial Force (FA)

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Side Force (FS)

Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this

Page 6 of 7

Twisting Moment (MT)

parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page 1 of 6

Site Name:		Rich Mountain Tower
Site Address:		759 Fire Tower Road, Boone, NC 28607
Latitude:		36.2330639 °
Longitude:		-81.6986889°
Structure Type:		Proposed 199.0-ft Self Support Tower
Contact Information:		Contact the owner with questions regarding the content of this Document. All questions or concerns shall be directed to the contact stipulated in the Bid Document.
Design Capacity:		The tower shall be designed so that, once installed with all loading as shown in Table 1 - Design Antenna/Coax Loading, the tower superstructure and substructure shall NOT exceed 95% of its capacity . If, upon evaluation, the design computes to be at a greater stress level than specified the bid will not be accepted. <a deliverables"="" details.<="" for="" href="All bidders must provide design calculations verifying that this Design Capacity Requirement is met; see " td="">
Materials:		Tower structures shall utilize structural steel round or polygonal poles only. No other materials or shapes shall be given consideration. Structural bolts must meet the ASTM A325 specification, or equivalent if approved by the design engineer of record.
Design Fall Radius:		No Fall Radius Required Fall Radius Required from Centerline of Tower: 50-ft
Standard:	\boxtimes	As a minimum, all towers shall be designed to the requirements of ANSI/TIA-222-G, including released addendums
Design Wind Speed:	×	150 mph ultimate 3-second gust wind speed (converted to an equivalent 116 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222-G) as required by the 2018 North Carolina Residential Building Code (2015 IBC) and ASCE 7-10.
Structure Class:		Structure Class I – Low Hazard Structure Class II – Significant Hazard (Default) Structure Class III – Substantial Hazard
Risk Category:		Risk Category I – Low Hazard Risk Category II – Moderate Hazard (Default) Risk Category III – Substantial Hazard Risk Category IV – Essential Hazard (Essential Communications)
Topographic Category:		Category I – No abrupt changes in general topography (Topographic effects are already considered in the prescribed windspeed above per the 2018 NCBC Chapter 3). Category II – Structures located at or near the crest of an escarpment Category III – Structures located in the upper half of a hill Category IV – Structures located in the upper half of a ridge Category V – Wind speed up criteria based on a site-specific investigation (see attached)
Exposure Category:		Exposure B – Urban and Suburban Areas Exposure C – Open Terrain where Exposure B or D does not apply. Exposure D – Flat, Unobstructed Shorelines
Design Ice Loading:		ANSI/TIA-222-H: x.xx inch escalating with a xx mph 3 second gust wind speed ANSI/TIA-222-G: 0.75 inch escalating with a 30 mph 3 second gust wind speed ANSI/TIA/EIA-222-F: x.xx inch escalating with an xx mph fastest mile wind speed

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page **2** of **6**

Seismic:		Seismic Ss: 0.263 / Seismic S1: 0.097 / Seismic TL: 12 Ss exceeds 1.0. Seismic loads shall be evaluated in accordance with the Standard
Tower Finish:		Galvanized Painted per FAA Advisory Circular AC 70/7460-1K Painted per Local Requirements All structural steel products shall be hot dip galvanized in accordance with ASTM A123 specifications. Tower manufacturer shall produce documentation verifying the appropriate galvanizing process is utilized. All steel hardware shall be galvanized in accordance with ASTM A153 or ASTM B695 specifications
Tower Lights:		Not Required Tower lighting system with E2 Avian Compliant Obstruction Lighting System (white strobes by day, and red lights at night). Beacons and Obstruction lights shall be all LED and Dual Red/White medium intensity and shall meet the requirements of FAA Advisory Circular AC 70/7460-1K. Towers 200-ft to 350-ft
	Ш	Tower lighting system with E2 Avian Compliant Obstruction Lighting System (white strobes by day, and red lights at night). Beacons and Obstruction lights shall be all LED and Dual Red/White medium intensity and shall meet the requirements of FAA Advisory Circular AC 70/7460-1K. A lighting system by Drake Lighting, that complies with the FAA regulation, is required. Towers over 350-ft
Grounding:	\boxtimes	Grounding, lightning protection, and surge protection systems shall be installed as required in compliance with R56 specifications and the construction documents. Coordinate with the Duke Energy bid administrator for the portion of tower grounding scope of work as shown in the construction documents. Minimum of the tower ground ring, connections from the ring to the tower, the bottom tower ground bar, and the connection from the tower ground ring to the bottom ground bar shall be included.
Climbing Facilities:	_	Not Required A safety fall protection system incorporating a 3/8" diameter stainless steel cable meeting OSHA/ANSI specifications shall be installed the full height of the structure one tower leg and another full height cable on a full height face mounted external ladder. Additionally, step pegs are required on the other two legs to the height of the mid markers.
		A safety fall protection system incorporating a 3/8" diameter stainless steel cable meeting OSHA/ANSI specifications shall be installed the full height of the pole with full height step pegs.
Ice Bridge:	\square	Not required; Another contractor to provide Provide an option for Ice Bridge
Transmission Ladder:		Not required; carrier to provide Provide (1) Transmission Ladder. Include "per foot" pricing.
Foundation:		Provide Preliminary Design using Presumptive Soil Parameters per the TIA-222-G Standard (Annex F). A Geotechnical Report will be provided later for the final foundation design. Design with Geotechnical Report provided. In accordance with ANSI/TIA-222-G, Annex A, Section A.9.0, the tower manufacturer shall ensure the proper development of anchor rods and anchorage materials.
Antenna Mounts:		Not required; Antenna Mounts provided by carrier.

3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page **3** of **6**

Additional Design Requirements

Structural Guidelines:

All leg capacities for lattice towers shall be computed utilizing a global effective length factor (K) of 1.0. All leg capacities shall be calculated utilizing the working points between panel points. Utilizing the side (gusset) plate length to reduce the un-braced length of the leg is not permitted. Leg members must consist only of steel solid rod and angle members. Tubular steel leg members are not permitted (Not applicable to monopoles).

For round leg latticed towers, bracing member capacities shall be calculated considering the effective length to be the span between the weld lines of the gusset plates at the face of the round legs for both out-of-plane and in-plane buckling modes (Not applicable to monopoles).

Hardened galvanized flat washers (ASTM F436) shall only be used in fully tensioned bolted connections and connections that utilize oversized or slotted holes.

Linear Appurtenances:

The tower analysis model shall include all feed lines, feed line ladders, step pegs, climbing ladder and safety climb.

Discrete Appurtenances:

Effective Projected Area (EPA)A for antennas shall be determined according to TIA-222-G, Section 2.6.9.2, Design Wind Force on Appurtenances. If antenna or mount areas are specified, the provided values shall be used in lieu of calculated values. If height, width, and depth dimensions are provided by the antenna manufacturer, the panel shall be treated as a flat rectangular panel. Force coefficients shall be determined based on antenna aspect ratios and multiplied by the projected areas to calculate front and side EPAs.

Wind tunnel test results shall NOT be used unless the results have been provided to ETS and proposed effective areas have been approved. Back-calculating wind areas from published antenna manufacturer's wind loads are prohibited.

Deliverables: [Once awarded, Final Deliverables shall bear the seal of a North Carolina Professional Engineer]

A PDF softcopy of all deliverables shall be sent to ETS for recording purposes. All tower designs shall be complete with the following:

- General Notes
- Profile drawing (with tower reactions, design drawings, materials grades and referenced codes and standards shall be clearly shown)
- Foundation design drawings
- Supporting design calculations for tower and foundation
- Listing of main structural members
- Mount documentation specifically showing total EPA

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page **4** of **6**

Table 1 - Design Antenna/Coax Loading

			PI	ROPOSED ANTENNA SCHEDULE	75 A.					
OWNER	QTY.	SIZE (FT)	TYPE	MANUFACTURER - ANTENNA MODEL NUMBER	ANTENNA AZIMUTH	MOUNT ELEVATION	LEG	CABLE (QTY.) TYPE		
WATAUGA COUNTY	1		GMNI	Rf1+C0897-11		178-0	А	(1) 7/81 8 (1) 1/2"		
WATAUGA COUNTY	1		O5484	RF:- 00867-11		578'-O*	8	{1} 7/ 6 *		
WATAUGA COUNTY	١		TYA	833	-	175'-0'-				
ACH CORNER PERSON	1		2915 m	2 84 14028		rije ar	1.	-74 NE		
WATAUSA COUNTY	1	,	OMN	RF: - CC807-11	-	1867-91	А	(1) 1-5/8*		
WATAUGA COUNTY	1		Ovits	961 - CC807-11		1501-01	6	(1) 1-5-%*		
AR FALAGA COLOR CIPE. 1988.	:		, 114 t _a 11 ka	+ " + - + #5:30		1981.31	17	** ; * #*		
WATAUGA COUNTY	1		DISH TO SUCKEYS	COMMISSORE - HNG-8W-6WH	ane,	140\0°	· c	(1) (1) 8		
Wernings Color (1970)			1074	া শুরুকে পর্বাদি নাম্বর্তন ক্রাক্তেশ		1264	ř.	(1484.40)		
SOUTH CONTRACTOR OF STATES	1		(90%)	pres 94 - 1402	-	"da J	-3	71, 761		
WATAUGA COUNTY	1		DISH TO WATAUGA CO TRAN STA.	COMMSCOPE - HINE-GW-GWH	194"	306-6-	В	:1) 6U83		
Paradocador (n. 1986)	:		\$15,11	· 275 (1994) 34 (1994)		Bry a g		(3) (§c. +		
WATALESA COUNTY	,	•	DIEN TO PREDRIX	, COMMISCOPE - HIGHWASHW	36.6*	88-9,	Α	(1) 6063		
WATAUGA COUNTY	1		DISH TO HAWKS NEST	COLMSCOPE - FIX6-649 6HW	227'	79-91	8	(f) 6 U83		
SCALOGRAPHED FE			380.E	D-128 B. (487)		62.0	>	6,15		
Saltena en eksette etalt aut		***************************************	\$4 t	- 1 . d = - B4.(a).		2425°		. p5		

Note 1: Builder will supply side arms (4) with side struts (4) for only the omni and dipole antennas listed as current. However, engineer shall design the tower so that all omni and dipole antennas, including future, have side arms with side struts considered in the design loading (9 total).

Note 2: Builder will supply pipe mounts (4), high wind kits (4), and ice shields (4) for only the dish antennas listed as current. However, engineer shall design the tower so that all dish antennas, including future, have pipe mounts, high wind kits, and ice shields considered in the design loading (6 total).

3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page **5** of **6**

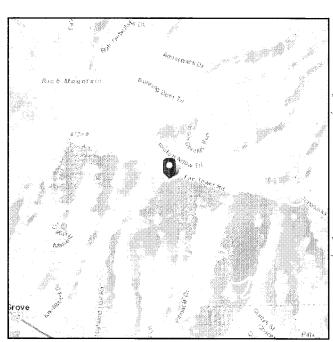
Appendix A
Verification of Design Loads

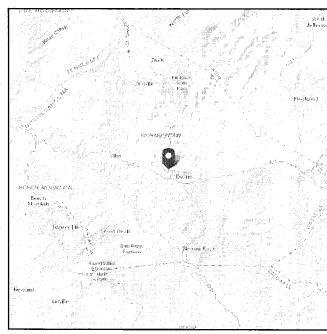
Address:

No Address at This Location

ASCE Hazards Report

Standard: ASCE/SEI 7-10


Risk Category: Ⅳ


Soil Class: D - Stiff Soil

Latitude: 36.233064 Longitude: -81.698689

Elevation: 4667.74622517496 ft (NAVD

88)

Wind

Results:

Wind Speed 120 Vmph
10-year MRI 76 Vmph
25-year MRI 84 Vmph
50-year MRI 90 Vmph
100-year MRI 96 Vmph
Special Special Wi

150 mph ultimate 3-second wind speed (converted to an equivalent 116 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222-G) as required by the 2018 North Carolina Residential Building Code Chapter 3. Topographic effects are already considered per 2018 NCBC. 116 mph nominal wind speed to be used with Structural Class III Importance Factor of 1.15 and Topographic Category 1.

Special Wind Region -- Mountainous terrain, gorges, and special wind regions shown in Fig. 26.5-1 shall be examined for unusual wind conditions. The Authority Having Jurisdiction shall, if necessary, adjust the values given in Fig. 26.5-1 to account for higher local wind speeds. Such adjustment shall be based on meteorological information and an estimate of the basic wind speed obtained in accordance with the provisions in Section 26.5.3.

Data Source:

ASCE/SEI 7-10, Fig. 26.5-1B and Figs. CC-1-CC-4, and Section 26.5.2,

Date Accessed:

incomprating arrata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2.

Seismic

Site Soil Class	s:		D - St	tiff Soil											
Results:															
S _s :			0.263				S _{D1} :			0.1	156				
S ₁ :			0.097				T _L :			12					
Fa:			1.59				PGA:			0.1	137				
F _v :			2.4				PGA N	ν :		0.2	209				
S _{MS} :			0.418			,	F_{PGA}	:		1.5	526				
S _{M1} :			0.234				l _e :			1.5	5				
$S_{ extsf{DS}}$:			0.278												
Seismic Desig	n Categor	esponse y : D	Spect	rum			0.30			Desig	n Resp	onse S	pectrum		
0.40	-						0.25								
0.35															
0.30		•				,	0.20			•					
0.25							0.15		i.	•					
0.15							0.10								
0.10							0.05								
0.05							0								\$
0 2	S _a (g) vs l	ຶ(s)	8 1	10	12	14		0	2	S _a (g) v	/s T(s)	8	10	12	14

Data Accessed:

Fri Apr 04 2025

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness:

0.75 in.

Concurrent Temperature:

15 F

Gust Speed

30 mph

Data Source:

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed:

Fri Apr 04 2025

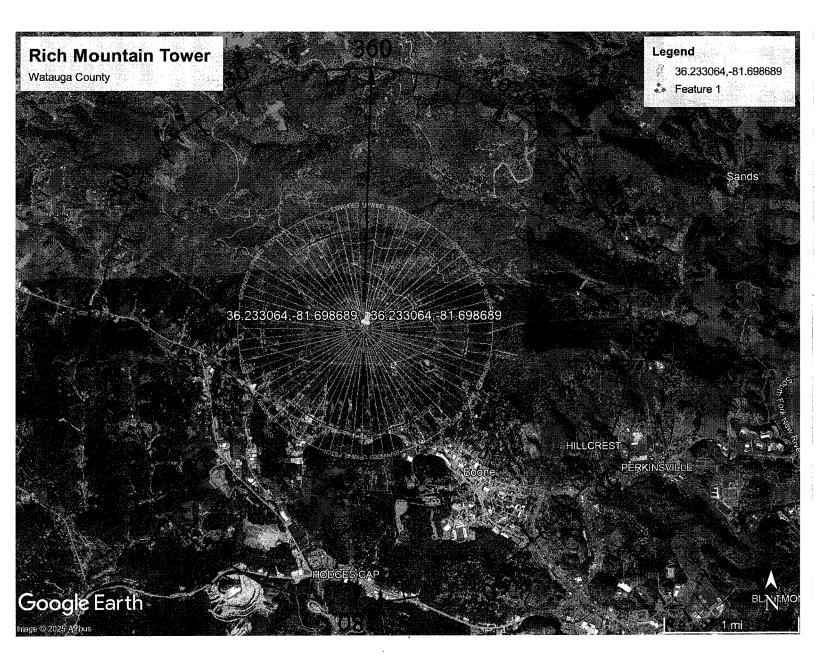
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

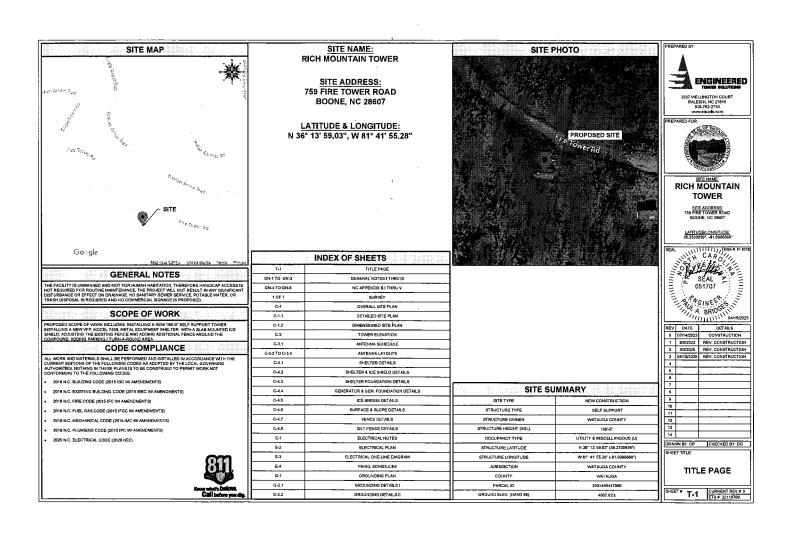
In the Appalachian Mountains, ice thicknesses may vary significantly over short distances.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.


In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.


2025-08-05 BCC Meeting

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page **6** of **6**

Appendix B
Site Vicinity and Location Map

ANTENNA MOUNTING NOTES

21. ALL EXISTING ACTIVE SEMER WATER GAS ELECTRIC AND OTHER UTILITIES SHALL, BE PROTECTED AT ALL TIMES, AND WHERE RECLIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DISPECTED BY THE EINDINEED. STYTEMEL LING CAUTION SHALLD BE USED BY THE CONTRACTOR WHEN EXCAVATION OF DRAILING FOR THE WORKNING CREW, THAS SHALL INCLUDE BUT HOT OF ELIMINET TO A FAIL PROTECTION. B) CONFINED SPACE, C] ELECTRICAL, SAFETY, AND D) TRENDHING & EXCAVATION. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND CARRIER PROJECT SPECIFICATIONS. ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT-DIP GALVANIZED) COATINGS ON IRON AND STEEL PRODUCTS". UNLESS NOTED OTHERWISE. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC-COATING (HOT-DIP) ON IRON AND STEEL HARDWARE", UNLESS NOTEO OTHERWISE. DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED BY COLD GALVANIZING IN ACCORDANCE WITH ASTM A780. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES, GENERAL CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL ANDS CORDAINCES RUES, REGULATIONS, AND LAWFUL GROERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF WORK ALL ANTENNA MOUNTS SHALL BE INSTALLED WITH LOCK NUTS, DOUBLE NUTS AND SHALL BE TORQUED TO MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR SHALL INSTALL ANTENNA PER MANUFACTURER'S RECOMMENDATION FOR INSTALLATION AND GROUNDING. . THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES, AND APPLICABLE REGULATIONS. PRIOR TO SETTING ANTENNA AZIMUTHS AND DOWNTILTS, ANTENNA CONTRACTOR SHALL CHECK THE ANTENNA MOUNT FOR TIGHTNESS AND ENSURE THAT THEY ARE PLUMB, ANTENNA AZIMUTHS SHALL BE SET FROM TIRE MORTH AND BE ORRENTED WITHIN 4-5% AS DEFINED BY THE RFDS. ANTENNA DOWNTILTS SHALL BE WITHIN 4-05% AS DEFINED BY THE RFDS. ANTENNA DOWNTILTS SHALL BE WITHIN 4-05% AS DEFINED BY THE RFDS. REFER TO NO.2007. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED IN THESE DRAWINGS. IN THIS E UNANNUS. PLANS ARE NOT TO BE SCALED, THESE PLANS ARE INTERDED TO BE A DIAGRAMMATE OUT THE OWN MESS OF DEPARTMENT OF THE PLANS ARE INTERDED TO BE A DIAGRAMMATE OUT THE OWN MESS OF THE PLANS ARE THOSE OWN ARE NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUNDING. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT. TORQUE REQUIREMENTS ALL RECONNECTIONS SHALL BE TIGHTENED BY A TOROUG WRENCH ALL RF CONNECTIONS. GROUNDING HARDWARE AND ANTENNA HARDWARE SHALL HAVE A TORQUE MARK INSTALLED IN A CONTINUOUS STRAIGHT LINE FROM BOTH SIDES OF THE CONNECTION. RF CONNECTION BOTH SIDES OF THE CONNECTION GOT SIDES OF THE CONNECTION GOT SIDES OF THE CONNECTION. GOT ANTENNA HARDWARE ON THE INIT SIDE STARTING FROM THE THREADS TO THE SOLD SURFACE. GROUND SAR, ANTENNA BRACKET METAL. THE SUBGRADE SHALL BE BROUGHT TO A SMOOTHUNFORM GRADE AND COMPACTE TO SE PERCENT STANDARD PROCEDOR DENSITY MODER PAVEMENT AND STRUCTURES AND SE PREMEDT STANDARD PROCEDOR DENSITY MODERN PAVEMENT AND STRUCTURES PUBLIC ROHT OF WAY SHALL BE BROWNLED WITH TOWNEL FILL OR OTHER MAKERIAL PRE-PROVED OF THE LOCAL JURISDICTURE OF MAKERIAL PRE-PROVED OF THE LOCAL JURISDICTURE. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. ALL 8M ANTENNA HARDWARE SHALL BE TIGHTENED TO 9 LB-FT (12 NM). IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN IN THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE ENGINEER PRIOR TO PROCEEDING. ALL BROCHURES, OPERATING AND MAINTENANCE MANUALS, CATALOGS, SHOP DRAWINGS, AND OTHER COCUMENTS SHALL BE TURNED OVER TO THE GENERAL CONTRACTOR AT COMPLETION OF CONSTRUCTION AND PRIOR TO PAYMENT. ALL 12M ANTENNA HARDWARE SHALL BE TIGHTENED TO 43 LB-FT (58 NM). CONTRACTOR SHALL SUBMIT A COMPLETE SET OF ASSUILT RECLINES TO THE GENERAL CONTRACTOR UPON COMPLETION OF PROJECT AND PRIOR TO FINAL PAYMENT. ALL GROUNDING HARDWARE SHALL BE TIGHTENED UNTIL THE LOCK WASHER COLLAPSES AND THE GROUNDING HARDWARE IS NO LONGER LOOSE. ALL DIN TYPE CONNECTIONS SHALL BE TIGHTENED TO 18-22 LB-FT (24,4-29.8 NM). ALL N TYPE CONNECTIONS SHALL BE TIGHTENED TO 15-20 LB-IN (1.7-2.3 NM). THE PROPOSED FACILITY WILL BE UNMANNED AND DOES NOT REQUIRE POTABLE WATER OR SEWER SERVICE, AND IS NOT FOR HUMAN HABITAT (NO HANDICAP ACCESS REQUIRED). ERECTION SHALL BE DONE IN WORKMANLIKE MANNER BY COMPETENT EXPERIENCED WORKMEN IN ACCORDANCE WITH APPLICABLE CODES AND THE BEST ACCEPTED PRACTICE. ALL MEMBERS SHALL BE LUD PLUMB AND TRUE AS INDICATED IN THE ORAMMISS. COAXIAL CABLE NOTES TYPES AND SIZES OF THE ANTENNA CABLE ARE BASED ON ESTIMATED LENGTHS, PRIOR TO ORDERING CABLE, CONTRACTOR SHALL VERREY ACTUAL LENGTH SAED ON CONSTRUCTION LAYOUT AND NOTIFY THE PROJECT MANAGER IF ACTUAL LENGTHS EXCEED ESTIMATED LENGTHS. STRUCTURE IS LIMITED TO PERIODIC MAINTENANCE AND INSPECTION, APPROXIMATELY 2 TIMES PER MONTH, BY CARRIER TECHNICIANS. SEAL PENETRATIONS THROUGH FIRE RATED AREAS WITH ULLISTED MATERIALS APPROVED B LOCAL JURISDICTION, CONTRACTOR SHALL KEEP AREA CLEAN, HAZARD FREE, AND DISPOSE OF ALL DEBRIS. 33. NO OUTDOOR STORAGE OR SOUID WASTE CONTAINERS ARE PROPOSED. THE SCOPE OF WORK FOR THIS PROJECT IS REPRESENTED BY DARK SHADED LINES AND NOTES. CONTRACTOR SHALL NOTIFY THE GENERAL CONTRACTOR OF MAY EXISTING CONDITIONS THAT DEVIATE FROM THE DRAWNING PRIOR TO BEGINNING CONSTRUCTION. 34. ALL MATERIAL SHALL BE FURNISHED AND WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE LATEST CARRIER GROUNDING STANDARD. IN CASE OF A CONFLICT BETWEEN THE CONSTRUCTION SPECIFICATION AND THE DRAWINGS, THE DRAWINGS SHALL GOVERN. CONTRACTOR SHALL CONFIRM COAX COLOR CODING PRIOR TO CONSTRUCTION, REFER TO "ANTENNA SYSTEM LABELING STANDARD" ND-09027 LATEST VERSION. CONTRACTOR SHALL PROVIDE WRITTEN NOTICE TO THE CONSTRUCTION MANAGER 48 HOURS PRIOR TO THE COMMENCEMENT OF WORK. ALL JUMPERS TO THE ANTENNAS SHALL BE 1/2" DIA, LDF AND SHALL NOT EXCEED 6"-0". CONTRACTORS SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS REQUIRED FOR CONSTRUCTION. IF CONTRACTOR CANNOT OBTAIN A PERMIT, THEY MUST NOTIFY THE GENERAL CONTRACTOR IMMEDIATELY. ALL COAXIAL CABLE SHALL BE SECURED TO THE DESIGNED SUPPORT STRUCTURE, IN AN APPROVED MANNER, AT DISTANCES NOT TO EXCEED 4:0" OC. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES, ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER. 66, CONTRACTOR SHALL REMOVE ALL TRASH AND DEBRIS FROM THE SITE ON A DAILY BASIS THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION. INFORMATION SHOWN ON THESE DRAWINGS WAS OBTAINED FROM SITE VISITS AND/OR DRAWINGS PROVIDED BY THE SITE OWNER, CONTRACTORS SHALL NOTIFY THE ENGINEER OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION. GENERAL CONTRACTOR SHALL COORDINATE AND MAINTAIN ACCESS FOR ALL TRADES AND CONTRACTORS TO THE SITE AND/OR BUILDING. CONTRACTOR SHALL WEATHERPROOF ALL ANTENNA CONNECTORS WITH SELF AMALGAMATING TAPE. WEATHERPROOFING SHALL BE COMPLETED IN STRICT ACCORDANCE WITH INDUSTRY STANDARD. THE GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR SECURITY OF THE SITE FOR THE DURATION OF CONSTRUCTION UNTIL JOB COMPLETION. GENERAL CABLE AND EQUIPMENT NOTES 88. ALL CABLE INSTALLATIONS TO FOLLOW MANUFACTURER'S INSTRUCTIONS AND THE GENERAL CONTRACTOR SHALL MAINTAIN IN GOOD CONDITION ONE COMPLETE SET OF PLANS WITH ALL REVISIONS, ADDENDA, AND CHANGE ORDERS ON THE PREMISES AT ALL CONTRACTOR SHALL BE RESPONSIBLE TO VERIFY ANTENNA, TMAS, DIPLEXERS, AND CONFIGURATION, MAKE AND MODELS PRIOR TO INSTALLATION. NO WHITE STROBE LIGHTS ARE PERMITTED. LIGHTING IF REQUIRED, WILL MEET FAA STANDARDS AND REQUIREMENTS. ALL CONNECTIONS FOR HANGERS, SUPPORTS, BRACING, ETC. SHALL BE INSTALLED PER MANUFACTURER'S RECOMMENDATIONS. THE GENERAL CONTRACTOR SHALL PROVIDE PORTABLE FIRE EXTINGUISHERS WITH A RATIN OF NO LESS THAN 2-A OR 2-A 10-BC AND SHALL BE WITHIN 25 FEET OF TRAVEL DISTANCE TO ALL PORTIONS OF WHIRE THE WORK IS BEING COMPLETED DURING CONSTRUCTION. CONTRACTOR SHALL REFERENCE THE STRUCTURAL, ANALYSIS/DESIGN DRAWINGS FOR DIRECTIONS ON CABLE DISTRIBUTION/ROUTING.

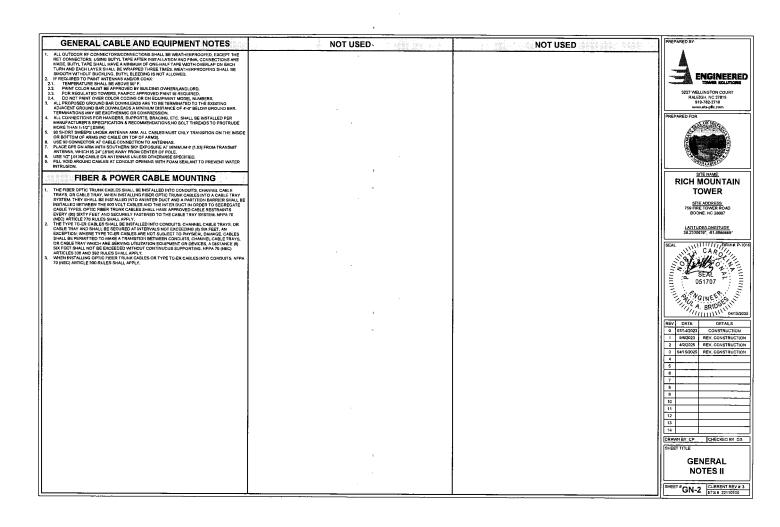
GENERAL NOTES (CONTINUED)

GENERAL NOTES

RICH MOUNTAIN TOWER

SITE ADDRESS: 759 FIRE TOWER ROAD BOONE, NC 28607

LATITUDEA.ONGITUDE: 38.23306391, -81.8986889



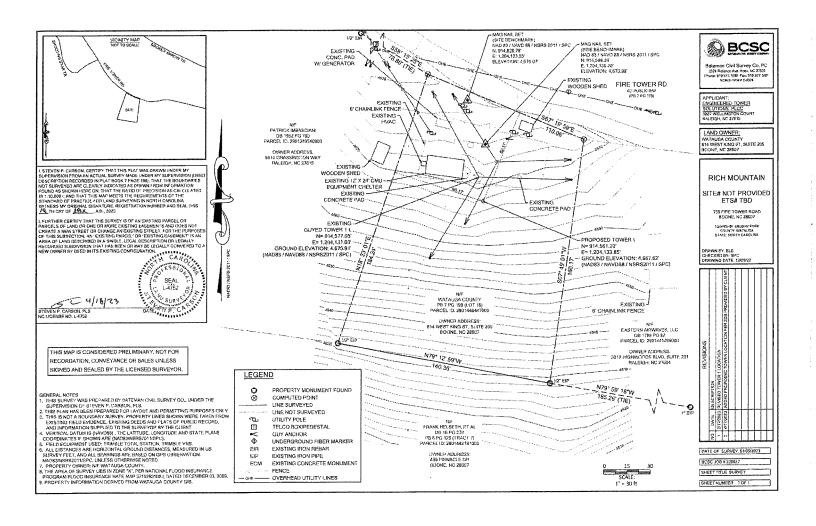
IL	7////////\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
REV	DATE	DETAILS								
0	07/14/2023	CONSTRUCTION								
1	9/6/2023	REV, CONSTRUCTION								
2	4/2/2025	REV, CONSTRUCTION								
3	04/15/2025	REV. CONSTRUCTION								
4										
5										
8										
7										
8										
9										
10										
11										
12										
13										
14										
DRAWN BY CP CHECKED BY C										

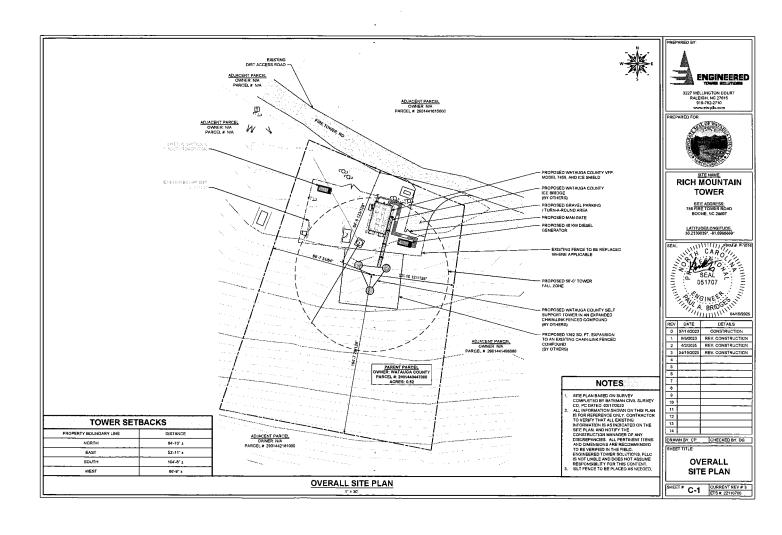
SHEET TITLE

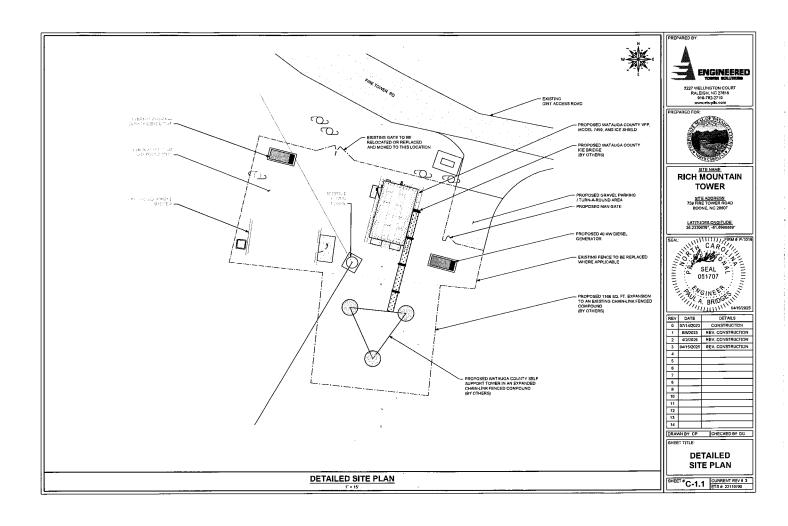
GENERAL NOTES I

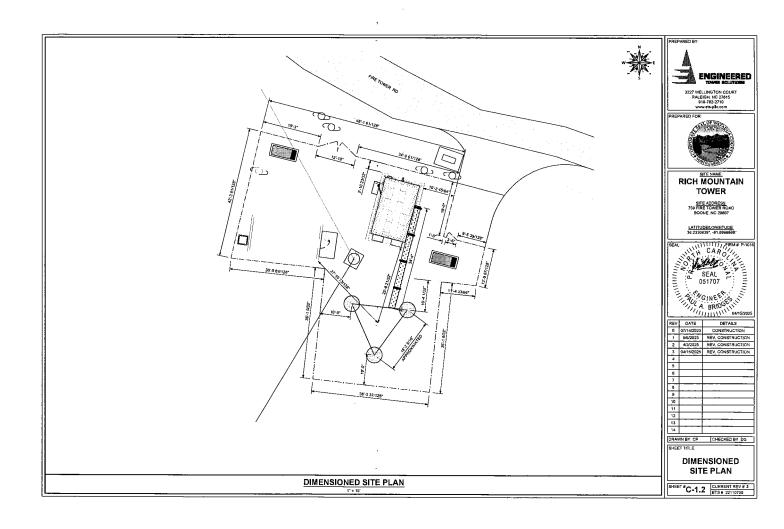
SHEET # GN-1 CURRENT REV # 3

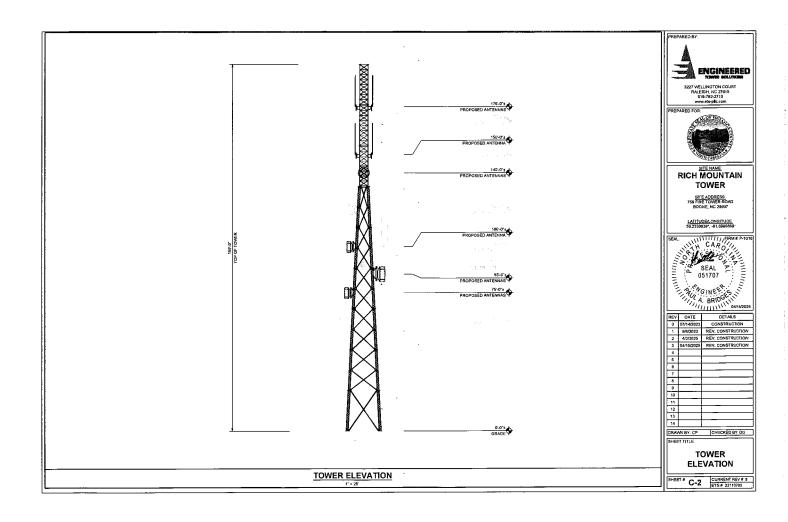
			ABBREVIATIONS			LINETYPES	PREPARED BY
BC BS	AGGREGATE BASE COURSE AIR BREAK SWITCH	FT. FTG.	FOOT, FEET FOOTING	RT RAW	RIGHT RIGHT OF WAY	PARENT PROPERTY BOUNDARY	A
.C.	ASBESTOS CEMENT	GA	GAGE	RWM	RIGHT OF WAY MONUMENT		🥌
C	AIR CONDITIONING	GAL.	GALLON	SAN	SANITARY SEWER	ADJACENT PROPERTY BOUNDARY	ENGINE
.D. .F.F.	AREA DRAIN ABOVE FINISHED FLOOR	GALV,	GALVANIZED GENERAL CONTRACTOR	SB	SOIL BORING	- FASEMENT	ENGINE
r.r. LT.	ALTERNATE	GC G,F,E,	GOVERNMENT FURNISHED FOLIPMENT	SET	SCHEDULE SETRACK	C) Machine 1	
LUM.	ALUMINUM	GIS	GEOGRAPHIC INFORMATION SYSTEM	SET	SQUARE FEET	LEASE AREA	3227 WELLINGTON COL
MP. .O.	AMPERES	GL GM	GAS LINE GAS METER	SHT	SHEET SIAMESE CONNECTION	R/W RIGHT OF WAY	RALEIGH, NC 27615 919-762-2710
PROX.	ACCESS OPENING APPROXIMATELY	G.P.H.	GALLONS/HOUR	SIA SIG	SIGNAL		919-782-2/10 www.ets-pilc.com
RCH,	ARCHITECTURAL	G.P.M.	GALLONS/MINUTE	SOTE	SECURITY OPERATIONS TRAINING FACILITY	SF SILT FENCE	
SPH,	ASPHALT	GND.	GROUND	SP	SIGNAL POLE	X X CHAINLINK FENCE	PREPARED FOR
T.P. W.W.A.	ANTI-TERRORISM FORCE PROTECTION AMERICAN WATER WORKS ASSOCIATION	GOVT	GOVERNMENT GATE VALVE	SPECS	SPECIFICATIONS SQUARE FEET		COFJED
DG.	BUILDING	GW	GUYWRE	SR	STATE ROAD	UGW UNDERGROUND WATER	(2 733334)
d.	BENCH MARK	HC	HANDICAP	SS	SANITARY SEWER	UGP	State of the state
c	BACK OF CURB	HCP HCR	HANDICAP PARKING HANDICAP RAMP	ST.	STATION STANDARD		
	BEARING	HDW	HEADWALL	STAI	STORM		E 1000000000000000000000000000000000000
/C	BEGIN VERTICAL CURVE	HP	HIGH POINT	STL	STEEL		
CE	BEGIN VERTICAL CURVE BEGIN VERTICAL CURVE ELEVATION	HSS	HIGH STRENGTH STEEL	SW	SIDEWALK		
/CS	BEGIN VERTICAL CURVE STATION CURB AND GUTTER	HYD	HEIGHT HYDRANT	SWM	STORMWATER MANAGEMENT TANGENT	DCP DIRECT CURRENT POWER	≪6 CVRO
SG ATV	CABLE TELEVISION	ID.	INSIDE DIAMETER	TBM	TEMPORARY BENCHMARK	F0/00	SITE NAME,
AP.	CAPACITY	INTX.	INTERSECTION	TERR	TERRA COTTA PIPE	FO/DC FIBER/DC POWER COMPOSITE CABLE	RICH MOUNT
В.	CATCH BASIN	INV.	INVERT	TEL	TELEPHONE		
	CABLE CEMENT	ISL ITL	ISLAND INDEPENDENT TESTING LABORATORY	TOD	TOP OF CURB TOP OF BANK		TOWER
m. R.	CERAMIC	J.B.	JUNCTION BOX	TOS	TOP OF BANK	UGF	
EM	CUBIC ESETAMANAS	JCT.	JUNCTION	TOW	TOP OF WALL		SITE ADDRESS. 759 FIRE TOWER RO.
	CUBIC FEET/SECOND	JSOC	JOINT SPECIAL OPERATIONS COMMAND	TPANS	TÉLEPHONE POLE		759 FIRE TOWER RO. BOONE, NC 28507
	CAST IRON PIPE	л.	JOINT K VALVE		TRANSPORMER TYPICAL		BOONE, NC 28807
RC	CIRCULATING	ŘVA	KILOVOLT AMPERE	TYP.	UNDER CONSTRUCTION	SMF SINGLE-MODE FIBER	II
Α.	CONSTRUCTION JOINT/CONTRACTION JOINT	KW	KILOWATT	UG	UNDERGROUND		LATITUDE/LONGITUD 36,2330639*, -81,6986
L M.	CENTER LINE CONCRETE MONUMENT	L.	LENGTH LINEAR FEET	UNO	UNLESS NOTED OTHERWISE		36.2330639*, -81,69860
M.P.	CONCRETE METAL PIPE	LGT	LIGHT	UP VC	UTILITY POLE VERTICAL CURVE		
M,U,	CONCRETE MASONRY UNIT	LP	LIGHT POLE	VCP	VITRIFIED CLAY PIPE		SEAL: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	CLEAN OUT	ĹŤ	LEFT	WF	VERIFY IN FIELD		CARO
DL.	COLUMN CONCRETE	MAX MED	MAXIMUM MEDIAN	WL WW	WATER LINE WATER METER	SM48 FIBER TRUNK - 48 STRAND	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
DNC.	CONDENSATE	MH	MANHOLE	WSEL	WATER SURFACE ELEVATION	***	SEAL POST707
ONN.	CONNECTION	MIN	MINIMUM	wv	WATER VALVE		= CENT P
	CONSTRUCTION	MJ	MECHANICAL JOINT	WTR	WATER		II = a SEAL F
	CONTINUOUS CONTRACTING OFFICERS REPRESENTATIVE	MON MTL	MONUMENT METAL	WWF	WIRE WELD FABRIC		= : U51/U/
	CENTER TO CENTER	MIN	MONITOR WELL (MICROWAVE			SM288 FIBER TRUNK - 288 STRAND	.م مذقاا
Υ.	CUBIC YARD	M.U.T.C.D	MANUAL ON UNIFORM TRAFFIC CONTROL			OND	S. A. Mainett
	DETAIL		DEVICES		·		1/20
A.	DROP INLET DIAMETER	N/A NAD 27	NOT APPLICABLE NORTH AMERICAN DATUM 1927				II WAS BRIDGE
FF.	DIFFUSER	NAD 83	NORTH AMERICAN DATUM 1983				""///////
M.	DIMENSION	NBL	NORTH BOUND LINE			— ETH — ETHERNET CABLE	REV DATE DETA
LP.	DUCTILE IRON PIPE	NC	NORMAL CROWN NATIONAL ELECTRICAL MANUFACTURES		1	CAT6 CAT6 CAT6 CABLE	
SC. A.	DISCONNECT DUMMY JOINT	NEMA	ASSOCIATION		,		0 07/14/2023 CONSTR
	DOWN	NIC	NOT IN CONTRACT		1	——————————————————————————————————————	1 9/6/2023 REV. CONS
i.	DRAIN	NIP	NEW IRON PIPE		. 1	ALM ALARM CABLE	2 4/2/2025 REV. CONS
	DOWN SPOUT	N.T.S.	NOT TO SCALE		į.		3 04/15/2025 REV. CONS
	DOMESTIC WATER DRAWING(S)	O.U. O.V.	ON CENTER OUTSIDE DIAMETER			C CONDUIT	4
	EACH	O.V.	OVERHEAD		l		1
	EXHAUST FAN	OHE	OVERHEAD ELECTRIC		I		
ì	EXISTING GRADE	ONUS,	OLD NORTH UTILITY SERVICE		I	TFT-402 —— COAX FEEDLINE / JUMPER - TFT-402	6
.P.	EXISTING IRON PIPE EXPANSION JOINT	OVH P/A	OVERHANG PARKING AREA		I		7
i. EC.	ELECTRIC ELECTRIC	PC	POINT OF CURVATURE			PTS1-50 ——— COAX FEEDLINE / JUMPER - PTS1-50	8
	ELEVATION	PCC	POINT OF COMPOUND CURVATURE				9
۸.	ELECTRIC METER	PED	PEDESTAL.				10
	EDGE OF PAVEMENT FOLIPMENT	PER, PGL	PERIMETER PROPOSED GRADE LINE		l	LDF4-50 COAX FEEDLINE / JUMPER - LDF4-50	
IUIP. C	END VERTICAL CURVE	PGL	POINT OF INTERSECTION		٠		11
ĊE	END VERTICAL CURVE ELEVATION	PINC	POINT OF INTERSECTION ON CURVE		I		12
CS	END VERTICAL CURVE STATION	PIV	POST INDICATOR VALVE POINT OF VERTICAL INTERSECTION ELEVATION		I		13
н. Р.Л.	EXHAUST EXPANSION JOINT	PIV ELEV	POINT OF VERTICAL INTERSECTION ELEVATION PLATE		•	FSJ4-50 COAX FEEDLINE / JUMPER - FSJ4-50	14
	EXPANSION JOINT EXTERIOR	PSF	POUNDS PER SQUARE FOOT		1		DRAWN BY CP CHECKED
JEXIST.	EXISTING	PSF	POUNDS/SQUARE FOOT			FSJ1-50 — COAX FEEDLINE / JUMPER - FSJ1-50	
	FACE OF CURB	PSI	POUNDS/SQUARE INCH		1	— AL4RPV — GOAX FEEDLINE / JUMPER - AL4RPV	SHEET TITLE:
).) C	FLOOR DRAIN FIRE DEPARTMENT CONNECTION	PIV STA	POINT OF VERTICAL INTERSECTION STATION		1		H
J.C. E.S.	FLARED END SECTION	PVMT	PAVEMENT		1		GENERAL
E.	FINISHED FLOOR ELEVATION	RAD,	RACHUS		1	ļ	
	FINISHED GRADE	RCP	REINFORCED CONCRETE PIPE		. 1	i	NOTES III
	FIRE HYDRANT FINISH FLOOR	REINF. REQ.	REINFORCING REOURED		· 1	· ·	[L
٧.	FORCE MAIN	REV	REVISED REDUCED PRESSURE ZONE		I I		SHEET #GN-3 CURRENT

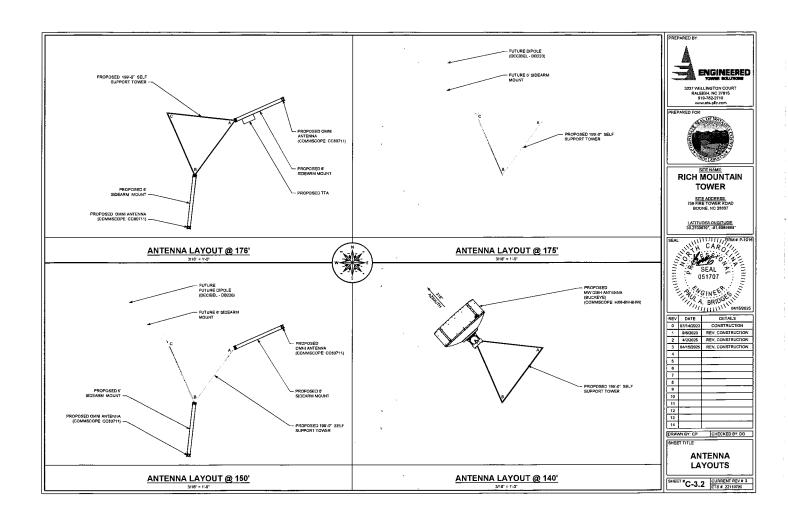

SUILDING CODE SUMMARY FOR ALL COMMERCIAL PROJECTS	Gross Building Area: Judy Judy	PREPARED BY SENGINEERED 227 MELINSTON COURT PRAISING N. C. 27919 WWW. A19-JR: Com PREPARED FOR SITE NAME RICH MOUNTAIN TOWER SITE ADMESS 759 FRET OWNER FOAD BOOKE N. C. 20007 LATITUDES A CHOUNTE SEAL SEAL OS 17707 SEAL SEAL OS 17707 SEAL
2018 NC Administrative Code and Policies Appendig B for Building	2818 NC Administrative Code and Policies Appendix B for Building	SHEET #GN-4 CURRENT REV # 3 ETS # 22110700

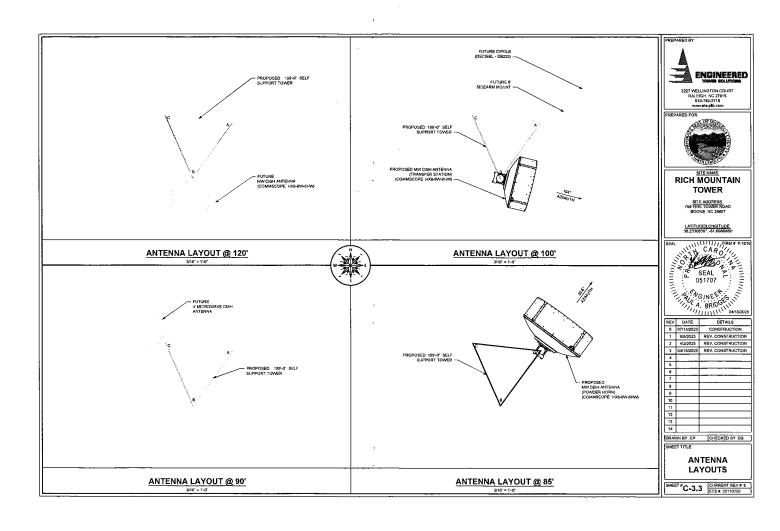

### Part Profit City Middle Manager (1997)																		A
PRE PROTECTION REQUIREMENTS To compare the part of									•									4
The companies Section 2012 Section 2013 Sec										FIRE I	PROTEC	TION REQUI	REMENTS					TOWNS SCLU
The first part 15 15 15 15 15 15 15 1	YEQTE	DESCRIPTION AND	(A)	(e)	(C)	(D)			BURLDING ELEMENT	PR6					SHEET # FOR .			RALEIGH, NC 27615
1 Foreign are increase in the facts applicated year great report being 20 first minimum widn =	HO.	1.0	STORY (ACTUAL)	AREA	INCHEASE ^{1,5}				N 18	DISTANCE	REQU		SHEET#	RATED	RATED FENETRATION	RATED		www.ets-plic.com
Findings are increases from Section 500-30 are computed these 1 1 2 0000000000000000000000000		egup. Sneser	218	5,500	N/A	5,500			including columns, girders,		N/A							Control of the second
The findings have increases from Section 500.3 are composed floar Description De	-			-							Н			-				
Through year to arrestee from Section 50.3 are compared that 1 2 2000	—	!						i	North				VFP					
a. Periodic ways capen speak holy 20 feet minimum width =	1 Frontage	area increases from	Section 506.3 a	re computed thus									207459			H		
e. Rick (PP) = (a. Peri	meter which fronts a	public way or op	en space having		th =(F)		l	South	8	1		SMEET 1					- SECURES -
6. W. Holiston, with of policy way (1) (9.5.3) William (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	b. Tota	if Suilding Perimeter o (F/P) =	(E/P) *	(P)				l		-			\vdash			$\vdash \vdash$		DICH MOUNT
2 Lifeting are applicable under confidence of Section 507. All commands are applicable under confidence of Section 507. All commands are of Copy in participal principal princ	d. W =	Minimum width of p	rublic wav =	(vv)				l	Partitions		N/A				İ			
3 Meximum Building Area = both number of indicate in the building 1 O (maximum 3 shorins) (566.2). 4 The maximum area of open puriting garages must comply with 15th 65C.3. 5 Principle increase in brazed on the unsprinted date who has 50C.4. Building legiste in Feet (1040 50C.3). 2 Substitution of the state of the s	e, Pero	cent of frontage incre	ease I _f = 100 [F/F	P = 0,25] x W/30 : Section 507	(%)			l		_								IOWER
S. Frontige increase is based on the unerprindented seas value in Table 500.2. ALCWASILE HEIGHT Building longing in Part (Table 500.1)	3 Maximun	n Building Area = tot	tal number of stor	ies in the building	x D (maximum 3 sto	ries) (506.2).		l	Fast									SITE ADDRESS
ALCOWABLE HEIGHT ALCOWABLE HE	4 The max	imum area of open p	parking garages r	must comply with	Table 406.5.4			l					1			\vdash		BOONE, NC 28607
Endergy regists of Feet (Table 90.01)* In Privide code indenses of files "Share on Plans" quantity in no handle on Table 90.01.3.1 3 The maximum height of open parking garages must comply with Table 400.5.4 The maximum height of open parking garages must comply with Table 400.5.4 Endergy lamps of the Code	3 Fromage	HILL 6926 12 DESECT	in ale unsprinkter	ou alea value iñ	1 aure 300,4,			l										III
Section Sect			ALL	LOWABLE HEIG	нт				Including supporting beams	a	0	2	207459					LATITUDE/LONGITUDE 36.2330639*, +81.698688
Red Communities Red		627		ALLOYMBLE (TAGLE 5/19)	SHOWN ON PLANS	CODE REFERENCE ¹		ļ			N/A							SEAL: NITTITITITITITITITITITITITITITITITITITI
Busing Height in Spring (Their SSCAF) 2014 20	Building				g.al-	2018		i	Column Supporting Floors		_							
I Provide code sectores of the "Show or Plan" guaraginy is not based on Table 96.3 or 951.4 The maximum height of open parting garages must comply with Table 405.5.4 The maximum height of open parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4 Indicates a section market of the parting garages must comply with Table 405.5.4								i .	Roof Construction, including supporting beams and losts	_	N/A		L		L			11 30 1 E 8 10 1
								`	Roof Ceiling Assembly									= = POPE / N.
	2 The max	imum height of air tr	affic control tower	rs must comply w	ith Table 412.3.1			I							-	\vdash		= 10 051707 F
Comparison Com	3 The maxi	imum height of oper	ı parking garages	must comply wit	h Table 406,5,4			٠,					\vdash			\vdash		III ≣ \ . °°'''' .
Read Batters			_					I	Corridor Separation									III = O'NGINEER'C
Rev Dec								ľ	Occupancy/Fire Barrier									A BRIDGE
Security								I	Party/Fire Wall Separation									William Comment
Touristant Use Separation NA								1					\vdash		-	\vdash		REV DATE DETAIL
Indicate section number permitting reduction								1	Tenant/Dwelling Unit/									0 07/14/2023 CONSTRU
* Indicate section number partiting reduction 1 2 4/3/2022 REV. CONST. 4 4 5 5 6 6 7 7 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10								1	Sleeping Unit Separation						-	\vdash		
4										milling reduct	ion							
S								l ,										
0								1										
8																		6
10																		
THE PROPERTY OF THE PROPERTY O																		
12 13 14 ERAMN BY CP EHECKED SHEET TITLE NC APPENDIX																		
THE TOTAL PROPERTY OF THE CONTROL OF								l '										
ERAWN BY CP ICHECKED SHEET TITLE NC APPENDIX								I										
SHEET TITLE NC APPENDIX								,										
NC APPENDIX] .										
·																		SHEET TITLE
SHET FON E CURRENT																		NC APPENDIX
Iministrative Code and Policies Appendix B for Building 2018 NC Administrative Code and Policies Appendix B for Building TTS # 221							dir B for Building	7018 NC Administrati	, ve Code and Policies							Apper	dix 8 for Building	SHEET *GN-5 CURRENT ETS # 221

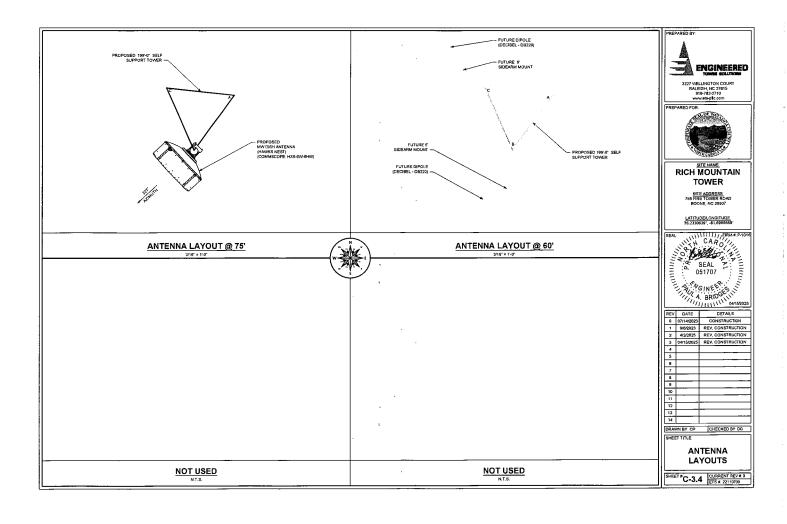

	,	PREPARED BY.
	PREFABRICATED SHELTER SECTION NOT APPLICABLE	ENGINEER TOWN SOLUTION 3227 WELLINGTOON RALEIGH, NC 27615
PERCENTAGE OF WALL OPENING CALCULATIONS FIRE SEPARATION DISTANCE (FEET FROM PROPERTY LINES	ACCESSIBLE DWELLING UNITS (SECTION 1107) UNIT CLASSFIGATION UNITS CLASSFIGATION UNITS (SECTION 1107) ACCESSIBLE UNITS ACCESSIBLE ACCESS	PREPAREO FOR
LIFE SAFETY SYSTEM REQUIREMENTS	ACCESSIBLE PARKING	RICH MOUNTAIL
Emergency Lipting: No 🔄 Yss Extri Signs: No 🔄 Yss Fire Alarm: No 🔄 Yss Smale Colection Systems: No 💆 Yss Carbon Manazida Detaction: 🔯 No 📄 Yes	LOT OR PARKING AREA TOTAL S OF PARKING PARKING SPACES I S OF ACCESSIBLE SPACES PROVIDED RECURRED PROVIDED WE SPACES TOTAL S OF PARKING PARKING SPACES INTO PARKES PROVIDED	TOWER SITE ADDRESS 759 FIRE TOWER ROAD BOONE, NC 28607 LATITUDEA.OMOITUDE 36.2336397. 61.6686889
LIFE SAFETY PLAN REQUIREMENTS Life Safety Plan Sheet #: Fire and/or smoke rated wall locations (Chapter 7) Assumed and real property line locations (if not on the site plan) Exterior wall periper set with respect to distince to assumed property lines (705.8) Occupancy use for each area as it relates to occupant load calculation (Table 1004.1.2) Occupancy use for each area as it relates to occupant load calculation (Table 1004.1.2)	PLUMBING FIXTURE REQUIREMENTS (TABLE 2902.1)	SEAL (NITTITI) FIRM CARO
Coccupans operation (1013) Exit access traval distances (1017) Common path of travel distances (106.2.1 & 2006.3.2(1)) Doad and lengths (1020.4) Closes with with for each exit door Maximum calculated occupant load capacity each exit door can accommodate based on egress width (1005.3) Actual occupant load for each exit door	USE NATIONAL VINNAS UNIAS SOMES SOMES DEBANG FRANTANIS BYACE EXISTS NAME FRANK ORIENT NAME FRANK VALUE FRANK VALUE RED NAME RED NAME NAME NAME NAME NAME NAME NAME NAME	SEAL 051707 SEAL 051707
A separate schematic plan indicating where fire rated ficer/ceiling and/or reof structure is provided for purposes of occupancy separation. Location of doors with pair's hardware (1010,1,10) Location of doors with delayed agress locks and the amount of delay (1010,1,9,7) Location of doors with delevant pair ceiling the special socks (1010,1,9,9) Location of doors and pair ceiling the special socks (1010,1,9,9) Location of doors adulpped with hold-open devices Location of decrease years windows (1030)	SPECIAL APPROVALS Special approval: (Local Aurisdiction, Department of Insurance, SCO, DPI, DHHS, ICC, etc., describe below)	1 9/8/2023 REV. CONSTRU 2 4/2/2025 REV. CONSTR 3 04/15/2025 REV. CONSTR 4 5
The square foolage of each fire area (202) The square foolage of each marke compartment for Occupancy Classification I-2 (407.5) Note any code exceptions or table notes that may have been utilized regarding the frems above		7 8 9 10 10 11 12 13
	,	DRAWN BY CP CHECKED B SHEET TITLE NC APPENDIX E
NC Administrative Code and Policies Appendix B for Building	2018 NC Administrative Code and Policies Appendix 8 for Building	SHEET # GN-6 CURRENT R

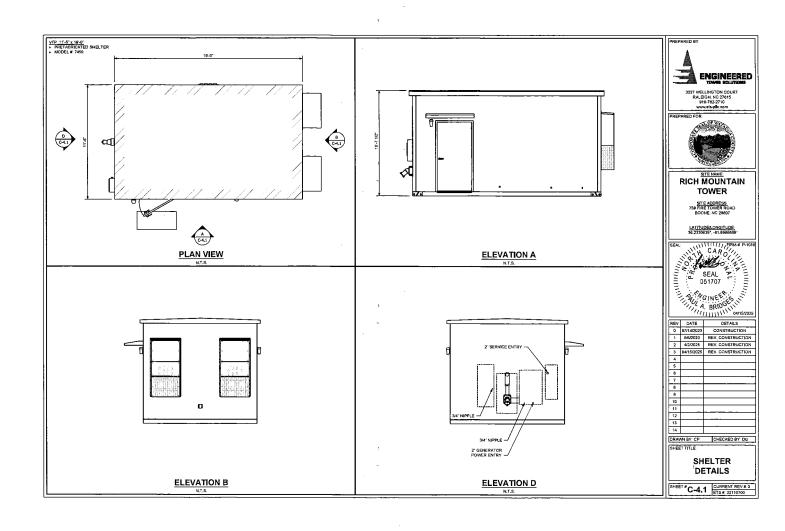

		PREPARED BY
	,	
		ENGINEERED
		3227 WELLINGTON COURT
		RALEIGH, NC 27815 919-782-2710 www.ets-plic.com
	2018 APPENDIX B	FREPARED FOR
ENERGY SUMMARY ENERGY REQUIREMENTS:	BUILDING CODE SUMMARY FOR ALL COMMERCIAL PROJECTS	CC ON THE PARTY
The following data shall be considered minimum and any special attribute required to meet the North Carolina Energy Conservation Code shall also be provided. Each Designer shall furnish the required portions of the project information for	STRUCTURAL DESIGN (PROVIDE ON THE STRUCTURAL SHEETS IF APPLICABLE)	J. Co.
the plan data sheet. If performance method, state the annual energy cost for the standard reference design vs annual energy cost for the proposed design.	DESIGN LOADS:	
Existing building envelope complies with code: No Yes (The remainder of this section is not applicable)	Importance Factors: Snow (I _S) Seismic (I _B)	SITE NAME
Exampt Building: No Yes (Provide Code or Statutiony reference)	Live Loads: Roofpsf	RICH MOUNTAIN
Climate Zone: □ 3A □ 4A □ 5A Method of Compliance: Energy Code □ Portormanco ☑ Prescriptive	Floor psf	TOWER
ASHRAE 90.1 Performance Prescriptive	Ground Snow Load:psf Wind Load: Uffilmete Wind SpeedWAYSS	SITE ADDRESS: 759 FIRE TOWER ROAD BOONE, NC 28807
THERMAL ENVELOPE (Prescriptive method only)	Wind Load: Exposure Category TURAL MA	LATITUDE/LONGITUDE: 36.2330639*81.6968899*
Roof/ceiling Assembly (each assembly) Description of assembly:	Ground Snow Load: Wind Load: Wind Load: Ullimate Wind Speed Expoure Category SEISMIC DESIGN CATEGORY Provide the following Serapit Provide the following Serapit Spectral Response Provide the Spectral Response	
U-Value of total assembly: R-Value of insulation;	Risk Calegory (Talk Spectral Response No. 1975	SEAL: CARO
Skylights in each assembly:	Site Classification (ASA // DA DR DC DD LIE LIE	1 Soll 8407 16
Total square footage of skylights in each assembly: Exterior Walls (each assembly)	Basic structural system Dearing Wall Dual w/Special Moment Frame Building Frame Dual w/Intermediate R/C or Special Steel	SEAL POSTOR
Description of assembly: U-Value of total assembly:	Analysis Procedure: Momant Frame Inverted Pendulum Analysis Procedure: Simplified Equivalent Lateral Force Dynamic	- Stronger -
R-Value of insulation: Openings (windows or doors with glazing)	Architectural, Mechanical, Components anchored? ☐ Yos ☐ No ☐ NA LATERAL DESIGN CONTROL: Earthquake☐ Wind ☐	A BRIDGE
U-Value of assembly: Salar heat gain coefficient:	SOIL BEARING CAPACITIES:	REV DATE DETAILS
Projection factor: Door R-Values:	Presumptive Bearing capacitypsr	0 01714/2023 CONSTRUCTION
Walls below grade (each assembly) Description of assembly: NA	Pile size, type, and capacity	2 4/2/2025 REV. CONSTRUCTION
U-Value of total assembly: R-Value of insulation;		3 04/15/2025 REV. CONSTRUCTION 4
Floors over unconditioned space (each assembly)		6
Description of assembly:		7 8
R-Value of insulation: Floors stab on grade		8 10
Description of assembly: U-Value of total assembly:	-	11 12
R-Value of insulation: Horizontal/Vartical requirement:	,	13
Slab Hested:		DRAWN BY: CP CHECKED BY: DG
		SHEET TITLE
		NC APPENDIX B IV
	•	
2018 NC Administrative Code and Policies Appendix B for Building	2018 NC Administrative Code and Policies Appendix 8 for Building	SHEET # GN-7 CURRENT REV # 3 ETS # 22110700

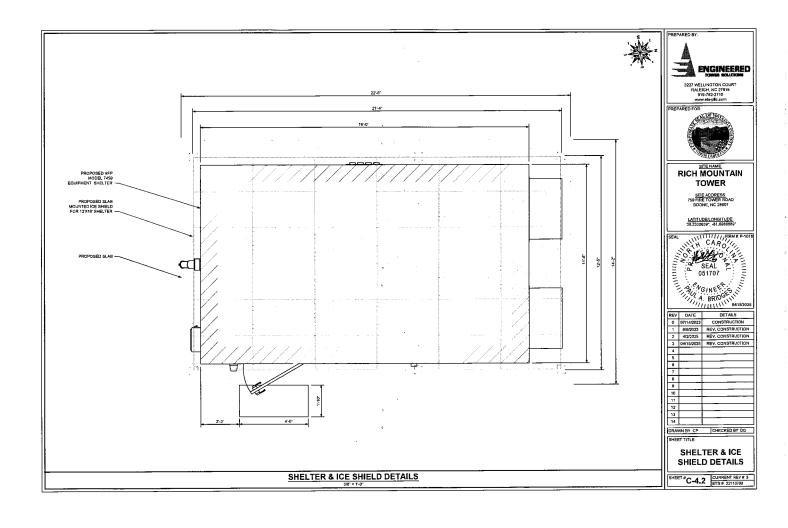

BUILDING CODE SUMMARY FOR ALL COMMERCIAL PROJECTS (PROVIDE ON THE MECHANICS SHEETS IF APPLICABLE) MECHANICAL SUMMARY MECHANICAL SYSTEMS, SERVICE SYSTEMS AND EQUIPMENT Therral Zone whated dry buils: summer	## BUILDING CODE SUMMARY FOR ALL COMMERCIAL PROJECTS ELECTRICAL DESIGN (PROVIDE ON THE ELECTRICAL SUMMARY ELECTRICAL SYSTEM AND EQUIPMENT Method of Compiliance: Energy Code:	PREPARED BY ENGINEERED TOWN REJURIES 322 WELLINSTON COUNT RALEIGN NO 27915 919-72-2710 WHO AND
---	---	--

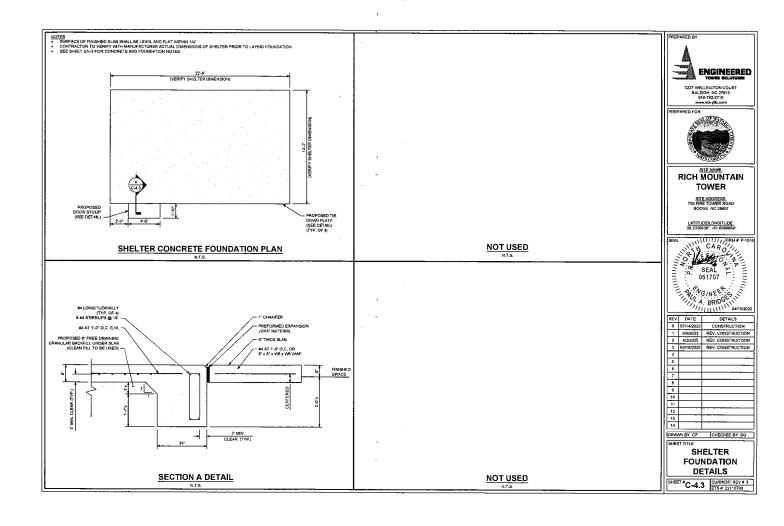


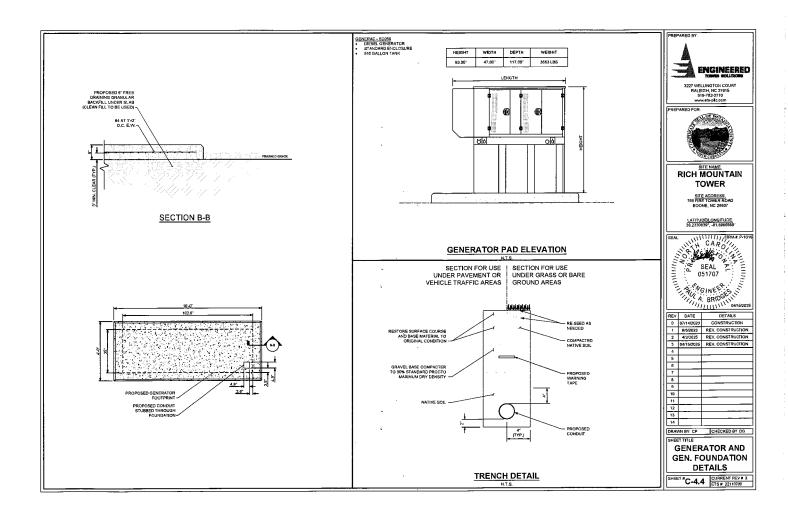


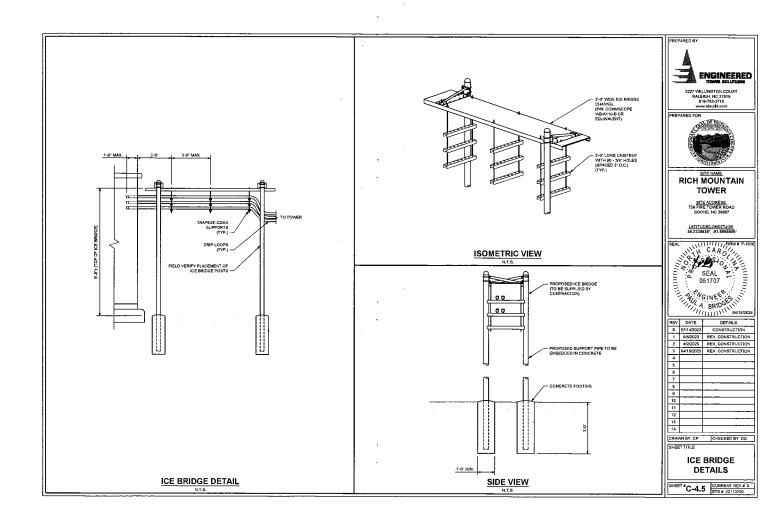


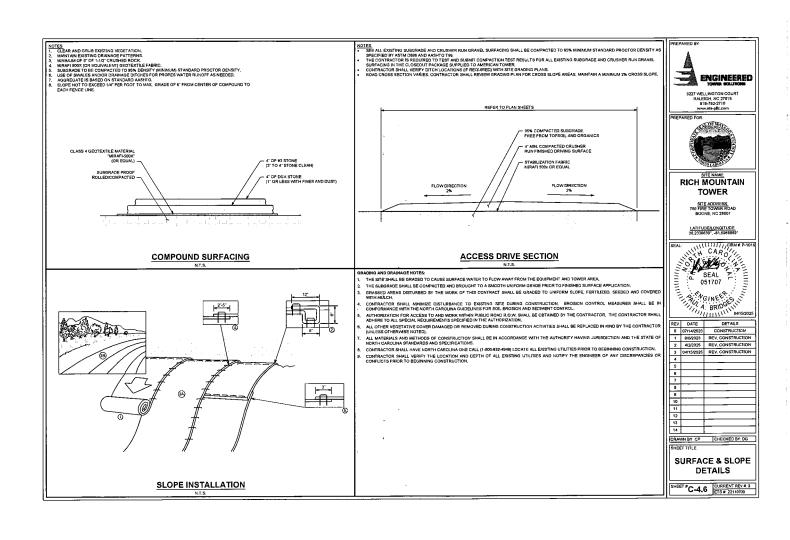


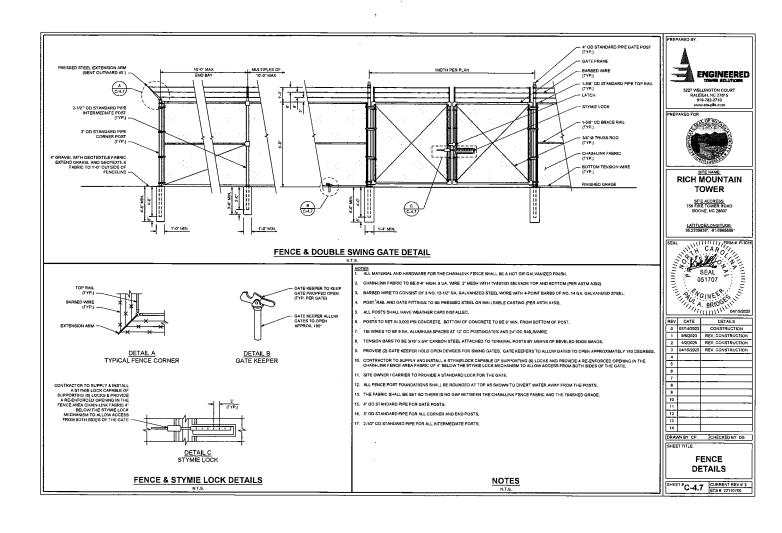

OWNER	QTY,	SIZE	TYPE	MANUFACTURER - ANTENNA	ANTENNA	MOUNT		CABLE (QTY.)	A
OWNER	QIY.	(FT)	IYPE	MODEL NUMBER	AZIMUTH	ELEVATION	LEG	TYPE	ENGIN
WATAUGA COUNTY	1	-	OMNI	RFI - CC807-11	-	176'-0'	A	(1) 7/8" & (1) 1/2"	TOWER SE
WATAUGA COUNTY	1		OMNI	RFI - CC807-11	-	176'-0"	B	(1) 7/8"	3227 WELLINGTON C RALEIGH, NC 278
WATAUGA COUNTY	1	-	TTA	. TTA	-	175°-0"		-	919-782-2710 www.ets-pilc.com
nvenkusõhidus jaansistu meikag		-	,4429,5	organistic contacts	-	a music		4 1 fa	PREPARED FOR
WATAUGA COUNTY	1		OMNI	RFI - CC807-11	-	150-0"	Α	(1) 1-5/8"	AND THE
WATAUGA COUNTY	1	•	OMNI	RFI - CC807-11	-	150'-0"	В	(1) 1-5/8"	
every use consumers read:			194764	16.356 787	-	1.567		+ + I.,) §
WATAUGA COUNTY	1		DISH TO BUCKEYE	COMMSCOPE - HX6-5W-5WH	318*	140'-0"	С	(1) EU63	E.
PGC 3-422-27524 Cj1-463	+ -		0.0594	(C SCC + C	"	.1.3	1	1,1184	To Carolic
rokiny u skiji juusinni arti Yuresti	+		TPF(%))	en es est	-	What	٠.	. 17.,	SITE NAME
WATAUGA COUNTY	1	-	DISH TO WATAUGA CO TRAN, STA.	COMMSCOPE - HX6-6W-6WH	104"	190-0	8	(1) EU63	RICH MOUN
Weller Gold Guerriche Teste:		-	:79:	engretation and the com-	··	#		2.895	TOWER
WATAUGA COUNTY	1		DISH TO PHEONIX	COMMSCOPE - HX8-8W-8HW	36,61	85'-0"	Α	(1) EU83	SITE ADDRESS 759 FIRE TOWER R
WATAUGA COUNTY	1	•	DISH TO HAWKS NEST	COMMSCOPE - HX6-6W-8HW	227-	75'-0"	В	(1) EU63	759 FIRE TOWER RE BOONE, NC 2860
MADE AND COMPANY			DESCRI	DEC4 E. + 1617.		:6:	8	21.2	
technological exercises;			CP4.34	pê ase. Moani		91.6		4.4.47	LATITUDE/LONGITY 36,2330639*, -81,698
FY FINAL DESIGN AND LOADING WITH: TEXT = FUTURE LOADING	STRUCTURAL AN	R TO CONSTRUC ALYSIS PRIOR TO	TION CONSTRUCTION						111 .5/3/8 .5/4/6
IEF FRAL DESIGN AND LOADING WITH INF FRAL DESIGN AND LOADING WITH INF FRAL DESIGN AND LOADING INF FRAL ELFANDER OTSHES WILL HAVE AN ICE SHIELD ABO	STRUCTURAL AN	R TO CONSTRUC ALYSIS PRIOR TO	TION						WAR CARO
IFY FINAL DESIGN AND LOADING WITH: Y TEXT = FUTURE LOADING	STRUCTURAL AN	R TO CONSTRUC ALYSIS PRIOR TO	TION CONSTRUCTION						SEALU
FY FINAL DESIGN AND LOADING WITH: Y TEXT = FUTURE LOADING	STRUCTURAL AN	R TO CONSTRUC ALYSIS PRIOR TO	TION						SEAL O
FY FINAL DESIGN AND LOADING WITH: TEXT = FUTURE LOADING	STRUCTURAL AN	R TO CONSTRUC	TION CONSTRUCTION						SEAL O. SEAL O. STATO O.
TY FINAL DESIGN AND LOADING WITH:	STRUCTURAL AN	R TO CONSTRUC	TION CONSTRUCTION						SEAL C. OS1707 CINE C. OS1707 C. OS1
FY FINAL DESIGN AND LOADING WITH: TEXT = FUTURE LOADING	STRUCTURAL AN	R TO CONSTRUCE	TION						C SEAL
Y FINAL DESIGN AND LOADING WITH:	STRUCTURAL AN	r to construct	TION						SEAL SEAL O. 051707 O.
FY FINAL DESIGN AND LOADING WITH: Y TEXT = FUTURE LOADING	STRUCTURAL AN	R TO CONSTRUCE	TION						SEAL CO CO SEAL CO SEAL CO SEAL CO SEAL CO SEAL CO

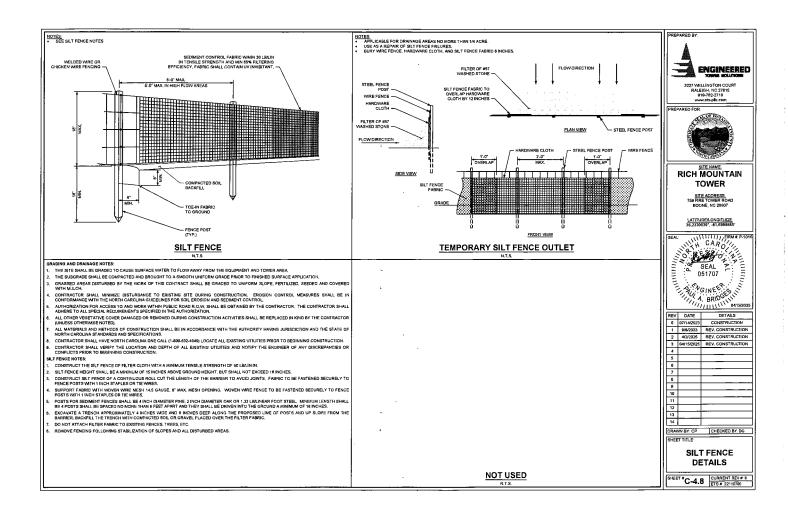


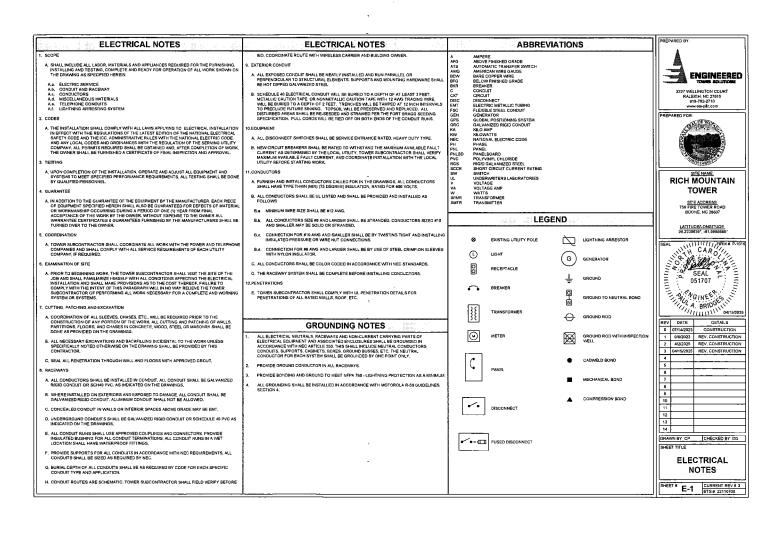


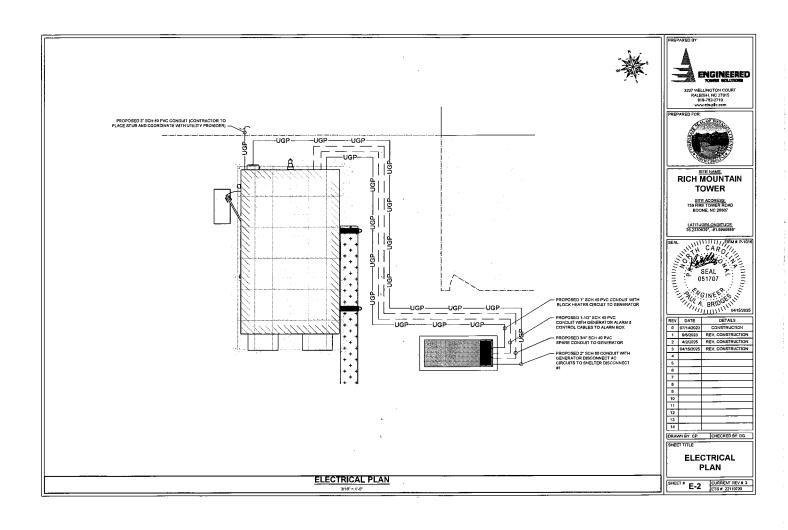


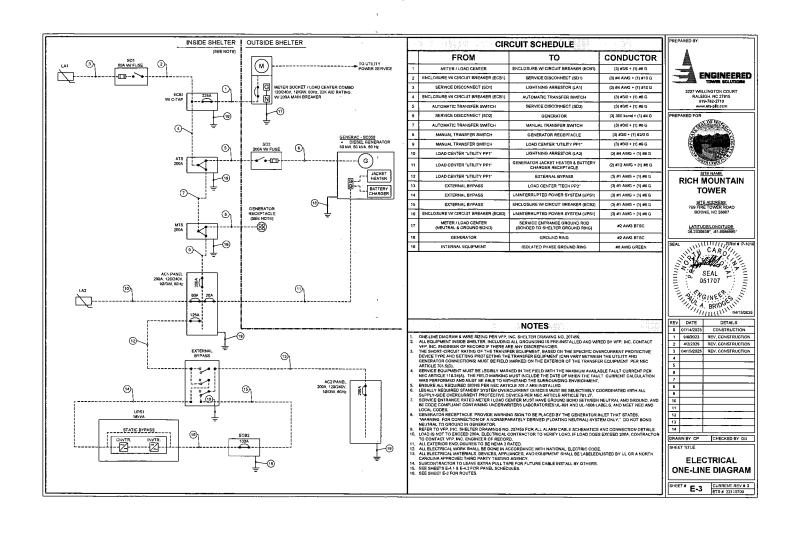


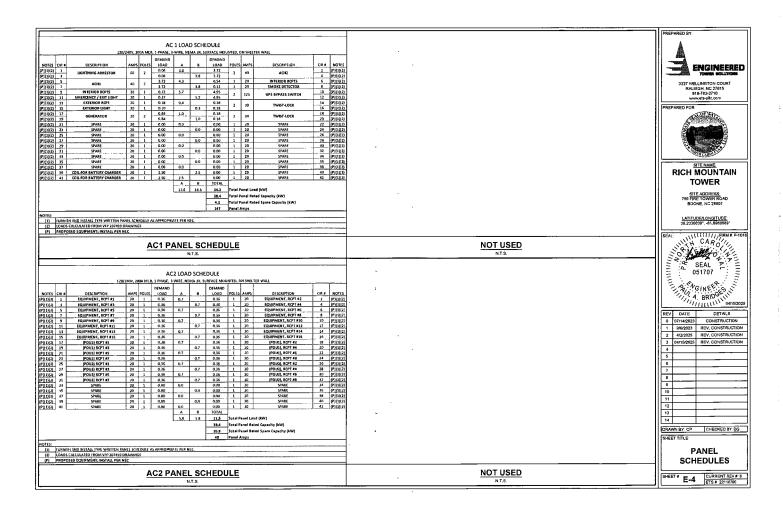


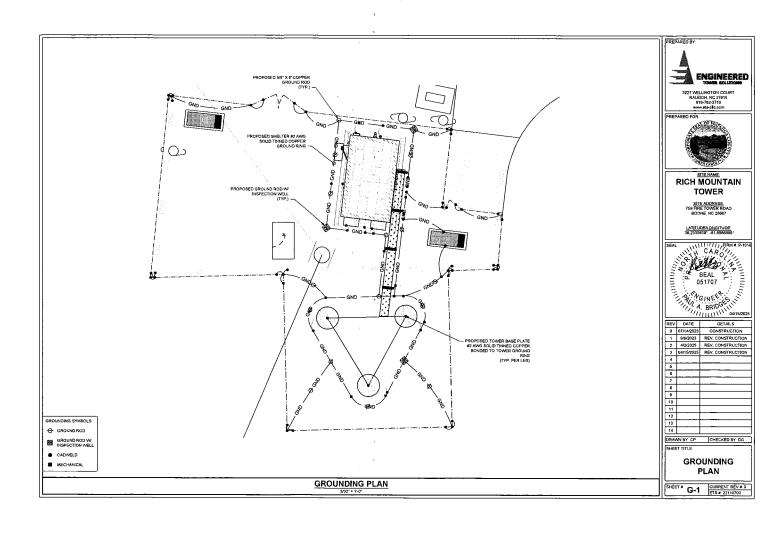


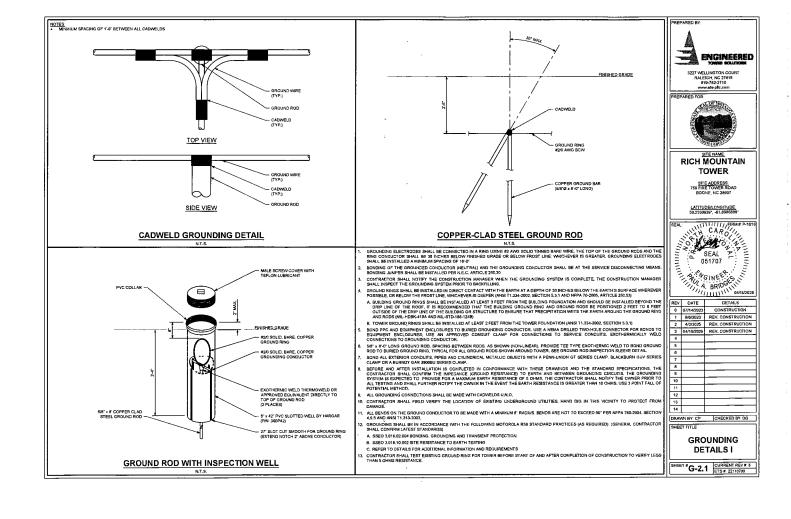


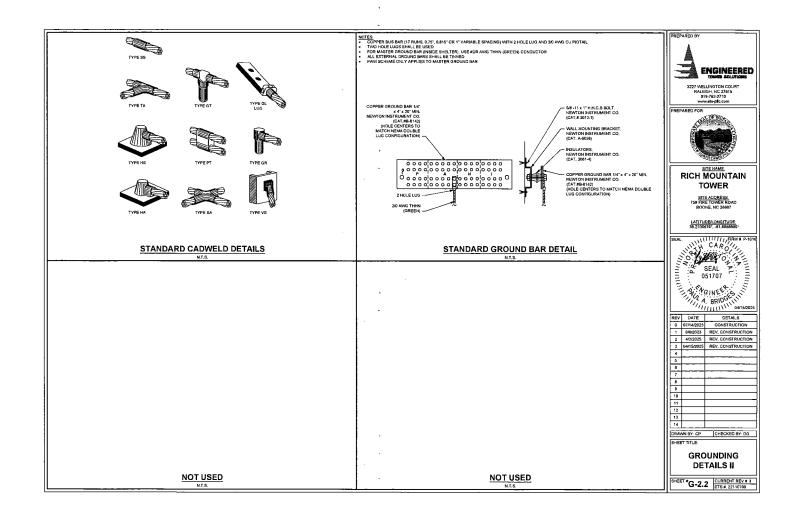








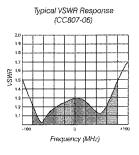


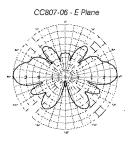


800 MHz Corporate Collinear Antennas

746-870 MHz

CC807 Series


These industry leading PIM and PIP rated collinear arrays allow site operators to combine, with complete integrity, a large number of communications services into a single, low profile collinear antenna array.


The true corporate feed of these arrays maintains total pattern integrity over a very broad operating and width, similar to that previously available only in exposed dipole configurations. This is now achieved in the preferred from factor of a fully enclosed fiberglass radome. The corporate collinears employ a unique corporate phasing system enabling precision control of the element placements ensuring phase purity resulting in exceptional bandwidth and electrical performance.

Gain is maximised and side lobes reduced dramatically. In a patented design approach the individual dipole elements are soldered to a brass support tube which is directly connected to the mounting tube and the lightning spike at the top of the antenna.

Features:

- 500W Continuous Power rating for CC807-11, CC807-08, CC807-06
- -150dBc Passive Intermodulation (PIM) rating
- 25 kW Peak Instantaneous (PIP) rating
- Extraordinary bandwidth characteristics with superior pattern control
- DC grounding on all elements for the ultimate in lightning protection and dissipation of static noise.

Electrical Specifications

Model Number	CC807-03-P	CC807-06-P CC807-08-	P CC807-11-P
Nominal Gain <i>dBd (dBi)</i>	3 (5.1)	6 (8.1) 8 (10.1)	10.5 (12.6)
Frequency MHz		746 - 870	
Tuned Bandwidth MHz		Full Band	
VSWR (Return Loss)		<1.5:1	
Downtilt ^{e (1)}	Not Offered	0 *Std, -3°,-5° 0 **	Std, -1°, -2°, -3°, -4°, -5°
Vertical Beamwidth°	28	17 . 9	4.5
Horizontal Beamwidth®		Omni +/- 0.5dB	
Input Power W	250	500	
Passive IM 3rd order (2x20W) dBc		-150	
Peak Instantaneous Power kW		25	

Mechanical

Model Number		CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P	
Construction			Sky blue fibreglass rado			
Length mm (inches)		1203 (47)	1741 (69)	2817 (111)	5219 (205)	
Radome Diameter mm (inches)			76	(3)	and the state of the	
Weight kg (lbs)		4 (9)	7 (16)	12(27)	22 (49)	
Shipping Weight kg (lbs)		8 (18)	11 (25)	18 (40)	30 (66)	
	. H		. 115	(4.5)		
Shipping Dimensions mm (inches)	W	115 (4.5)				
min (inches)	L	1400 (55)	. 1900 (75)	3000 (118)	5600 (220)	
Termination			4.3-10 fix	ed female		
Suggested Clamps (not included	d)		2 x U	C-114		
Invertible Mounting			Ye	∍ (1)		
D. ' 2 (62)	No Ice	806 (0.9)	1268 (1.4)	2320 (2.5)	4560 (4.9)	
Projected area cm² (ft²)	With Ice	1048 (1.2)	1571 (1.7)	2880 (3.1)	5760 (6.2)	
Lateral Thrust @160km/h N (100 mph lbs)		96 (22)	150 (34)	276 (62)	540 (121)	
Wind Gust Rating km/h (mph)	oh) No Ice		>240	(>150)		
Torque @ 160km/h Nm (100mph ft-lbs)		20 (15)	73 (54)	278 (205)	1032 (761)	

(1) To order pre-set downtilt versions available, simply add a -T2 or -T4, etc towards the end of the part number to denote the downtilt model required. For eg. CC807-11-T2-P to order a CC807-11-P with 2 deg of downtilt. Please note: Models with downtilt are NOT field invertible.

UNITED STATES OF AMERICA FEDERAL COMMUNICATIONS COMMISSION ANTENNA STRUCTURE REGISTRATION

OWNER: Engineered Tower Solutions, PLLC

CC Registration Number (FRN): 0028400505 ATTN: Eric Dickerson	Antenna Structure Registration Number
	1327000
Engineered Tower Solutions, PLLC	
3227 Wellington Ct Raleigh, NC 27615	Issue Date
Kaleign, NC 27013	01/10/2024
Location of Antenna Structure	Ground Elevation (AMSL)
759 Fire Tower Road	4400.04
Boone, NC 28607	1423.0 meters Overall Height Above Ground (AGL)
County:WATAUGA	Overall Height Above Orbana (AGE)
	61.0 meters
Latitude Longitude	Overall Height Above Mean Sea Level (AMSL)
36- 13- 58.8 N 081- 41- 55.3 W NAD83	1484.0 meters
Center of Array Coordinates	Type of Structure
N/A	LTOWER
	Lattice Tower
Painting and Lighting Requirements:	
FAA Chapters 4, 8, 15	
Paint and Light in Accordance with FAA Circular Number 70/746	5U-1 M
	,
	about Tarks .
Conditions:	
conditions.	

This registration is effective upon completion of the described antenna structure and notification to the Commission. YOU MUST NOTIFY THE COMMISSION WITHIN 5 DAYS OF COMPLETION OF CONSTRUCTION OR CANCELLATION OF YOUR PROJECT, please file FCC Form 854. To file electronically, connect to the antenna structure registration system by pointing your web browser to https://www.fcc.gov/antenna-structure-registration. Electronic filing is required. Use purpose code "NT" for notification of completion of construction; use purpose code "CA" to cancel your registration.

The Antenna Structure Registration is not an authorization to construct radio facilities or transmit radio signals. It is necessary that all radio equipment on this structure be covered by a valid FCC license or construction permit.

You must immediately provide a copy of this Registration to all tenant licensees and permittees sited on the structure described on this Registration (although not required, you may want to use Certified Mail to obtain proof of receipt), and *display* your Registration Number at the site. See reverse for important information about the Commission's Antenna Structure Registration rules.

You must comply with all applicable FCC obstruction marking and lighting requirements, as set forth in Part 17 of the Commission's Rules (47 C.F.R. Part 17). These rules include, but are not limited to:

- Posting the Registration Number: The Antenna Structure Registration Number must be displayed in a conspicuous place so that it is readily visible near the base of the antenna structure. Materials used to display the Registration Number must be weather-resistant and of sufficient size to be easily seen at the base of the antenna structure. Exceptions exist for certain historic structures. See 47 C.F.R. 17.4(g)-(h).
- Inspecting lights and equipment: The obstruction lighting must be observed at least every 24 hours in order to detect any outages or malfunctions. Lighting equipment, indicators, and associated devices must be inspected at least once every three months.
- Reporting outages and malfunctions: When any top steady-burning light or a flashing light (in any
 position) burns out or malfunctions, the outage must be reported to the nearest FAA Flight Service Station,
 unless corrected within 30 minutes. The FAA must again be notified when the light is restored. The owner
 must also maintain a log of these outages and malfunctions.
- Maintaining assigned painting: The antenna structure must be repainted as often as necessary to maintain good visibility.
- Complying with environmental rules: If you certified that grant of this registration would not have a
 significant environmental impact, you must nevertheless maintain all pertinent records and be ready to
 provide documentation supporting this certification and compliance with the rules, in the event that such
 information is requested by the Commission pursuant to 47 C.F.R. 1.1307(d).
- **Updating information:** The owner must notify the FCC of proposed modifications to this structure; of any change in ownership; or, within 30 days of dismantlement of the structure.

Copies of the Code of Federal Regulations (which contain the FCC's antenna structure registration rules, 47 C.F.R Part 17) are available from the Government Printing Office (GPO). To purchase CFR volumes, call (202) 512-1800. For GPO Customer Service, call (202) 512-1803. For additional FCC information, consult the Antenna Homepage on the internet at https://www.fcc.gov/antenna-structure-registration or call (877) 480-3201 (TTY 717-338-2824).

DB224-A

1-port omni exposed dipole antenna, 150–160 MHz, 360° HPBW, fixed electrical tilt

- Broad response
- Two-piece mast for ease of shipping

General Specifications

Antenna Type

Omni

Band

Single band

Color

Silver

Grounding Type

RF connector inner conductor and body grounded to reflector and mounting bracket

Performance Note

Outdoor usage

Radiator Material

Aluminum

RF Connector Interface

N Male

RF Connector Location

Bottom

RF Connector Quantity, low band

RF Connector Quantity, total

1

Dimensions

Length

6477 mm | 255 in

Net Weight, without mounting kit

15.9 kg | 35.053 lb

Electrical Specifications

Impedance

50 ohm

Operating Frequency Band

150 - 160 MHz

Polarization

Vertical

Electrical Specifications

Frequency Band, MHz

150-160

Gain, dBi

8.1

Beamwidth, Horizontal,

360

degrees

Beamwidth, Vertical, degrees

16

Page 1 of 2

DB224-A

Beam Tilt, degrees

0

VSWR | Return loss, dB

1.5 | 14.0

Input Power per Port,

500

maximum, watts

Mechanical Specifications

Wind Loading @ Velocity, maximum

560.5 N @ 100 mph (126.0 lbf @ 100 mph)

Wind Speed, maximum

130 km/h (81 mph)

Regulatory Compliance/Certifications

Agency

Classification

ISO 9001:2015

Designed, manufactured and/or distributed under this quality management system

Included Products

DB365-OS

Pipe Mounting Kit that consists of two clamps for mounting antennas to round members 1.25 - 3.5 in (35 - 89 mm) OD round members.

* Footnotes

Performance Note

Severe environmental conditions may degrade optimum performance

Page: 1 **Watauga County**

BIDDER: K-Co Enterprises, Inc.

WATAUGA COUNTY, NC	INVITATION FOR BIDS -Rich Mt.
<u>BID #</u>	Bids will be publicly opened: June 13th, 2025 at 3:00pm
	Questions Due by: June 2 nd , 2025
Refer <u>ALL</u> Inquiries to: Marty Randall Telephone No. 828-527-2416	Commodity: Install New Tower Site 759 Fire Tower Road, Boone, North Carolina 28607 with access road per design documents.
E-Mail: marty.randall@1018consulting.com	Using Agency Name: Watauga County Emergency Services
(See page 2 for mailing instructions.)	

NOTICE TO BIDDERS

Sealed bids, subject to the conditions made a part hereof, will be received at 814 W. King Street, Boone NC 28607 until 3:00 PM on the day of opening and then opened, for furnishing and delivering the commodity as described herein. Refer to page 2 for proper mailing instructions.

Bids submitted via facsimile (FAX) machine in response to this Invitation for Bids will not be acceptable. Bids are subject to rejection unless submitted on this form.

EXECUTION

In compliance with this Invitation for Bids, and subject to all the conditions herein, the undersigned offers and agrees to furnish and deliver any or all items upon which prices are bid, at the prices set opposite each item within the time specified herein. By executing this bid, I certify that this bid is submitted competitively and without collusion (G.S. 143-54).

Failure to execute/sign bid prior to submittal shall render bid invalid.

Late bids are not acceptable.

BIDDER:	FEDERAL ID OR SOCIAL SECURITY NO.		
K-Co Enterprises, Inc.	26-1278195		
STREET ADDRESS:		P.O. BOX:	ZIP:
613 Hurricane Creek Rd	•		
CITY & STATE & ZIP:		TELEPHONE NUMBER:	TOLL FREE TEL. NO
Piedmont, SC 29673	864-947-8704 (800)		
PRINCIPAL PLACE OF BUSINESS ADDRESS IF DIFFERENT FI	UCTIONS TO BIDDERS ITE	M #21):	
TYPE OF PRINT WAYS & TITLE OF PERSON CIONING		LEAVARIA DED	
TYPE OR PRINT NAME & TITLE OF PERSON SIGNING:		FAX NUMBER:	
Ernest Rood - Project Manager	864-947-8204		
AUTHORIZED SIGNATURE: DATE: 6-12-25		E-MAIL:	
Ernest Rood	0-12-20	bids@kcoenterprises.com	

Offer valid for 120 days from date of bid opening unless otherwise stated here: days

ACCEPTANCE OF BID

If any or all parts of this bid are accepted by Watauga County, NC, an authorized representative of Watauga County, NC shall affix their signature hereto and this document and the provisions of the Instructions to Bidders, special terms and conditions specific to this Invitation for Bids, the specifications, and the North Carolina General Contract Terms and Conditions shall then constitute the written agreement between the parties. A copy of this acceptance will be forwarded to the successful bidder(s).

FOR Watauga County, NC USE ONLY		
Offer accepted and contract awarded this	day of	, 20 , as indicated on attached certification,
by		(Authorized representative of Watauga County, NC).

Page: 2	
Watauga	County

BIDDER:	K-Co Enterprises, Inc.
	-

In an effort to support the sustainability efforts of Watauga County, North Carolina we solicit your cooperation in this effort.

It is desirable that all responses meet the following requirements:

- All copies should be printed double sided.
- All submittals and copies should be printed on recycled paper with a minimum post-consumer content of 30% and indicate this information accordingly on the response.
- Unless absolutely necessary, all bids and copies should minimize or eliminate use of non-recyclable or non reusable materials such as plastic report covers, plastic dividers, vinyl sleeves, and GBC binding. Three-ringed binders, glued materials, paper clips, and staples are acceptable.
- Materials should be submitted in a format which allows for easy removal and recycling of paper materials.

MAILING INSTRUCTIONS: Send two fully executed bid documents. Address envelope and insert bid name as shown below. It is the responsibility of the bidder to have the bid in this office by the specified time and date of opening.

DELIVERED BY US POSTAL SERVICE	DELIVERED BY ANY OTHER MEANS	
	SEND SUCH AS FEDX, UPS, ETC. FOR NEXT DAY	
814 W. King Street	814 W. King Street	
Boone, NC 28607	Boone, NC 28607	

Watauga County, NC Tower Construction Project

Boone, North Carolina

<u>Scope of Work</u> – Watauga County, NC proposes to install a communications tower site per the following specifications at a site in Watauga County, North Carolina. All work shall comply with applicable North Carolina Building Codes and ANSI/TIA/EIA Standards. If the following Specification calls for a condition that is greater than the TIA/EIA Standards or North Carolina Building Codes, use the specifications shown in this document. All work shall be coordinated with Watauga County, NC. The tower and all appurtenances shall be installed and affixed with the highest quality of workmanship. The selected Contractor will advise Watauga County, NC's Contracting Officer and Marty Randall (10-18 Consulting 828-527-2416 marty.randall@1018consulting.com) two weeks in advance of the date the work will start. The contractor will provide Marty Randall weekly project progress reports and immediately report any abnormal conditions encountered during construction.

As a minimum, the Tower and Foundation shall be designed to the requirements of ANSI/TIA/EIA-222-G, including released addendums. Design with Geotechnical Report provided, the tower manufacturer shall ensure the proper development of anchor roads and anchorage materials.

COMPLETION DEADLINE: Work should be completed within 90 days of receipt of materials, not counting bad weather days.

If the above time is not possible, state comple	tion time in days from co	ontract issue.	Days
Understand all requirements in the Scope of Work	YesX	No	

Page: 3 Watauga County

BIDDER:	K-Co Enterprises, Inc.	

CONTRACTING OFFICER

This project will be under contract with Watauga County, NC and will be under the direction of the Contracting Officer. The Contracting Officer will be:

Will Holt Watauga, NC Office:828-264-4235 Cell: 828-434-3491

NOTE: Any questions prior to issue of a contract should be directed to marty.randall@1018consulting.com as stated on page one of this document.

Understand the Contact information as listed above

Yes X

No____

CONTRACTOR REQUIREMENTS

The Contractor shall submit the following items with their bid:

- 1. A drawing of the tower profile sealed by a North Carolina Registered Engineer.
- 2. A list of all antennas and appurtenances that were considered in the tower and foundation designs.
- 3. Tower foundation design drawings, with a complete set of <u>DESIGN CALCULATIONS</u> showing the reactions of the tower on the foundation, sealed by a <u>North Carolina Registered Engineer</u>.
- 4. The Contractor awarded this project must submit a set of final erection drawings, sealed by a **North Carolina Registered Engineer** to the Contracting Officer and Marty Randall for written approval before starting the project. **If these drawings are submitted on paper they must also be accompanied by digital copies. We must have these drawings in digital format.**
- The proposal from the tower manufacturer must specifically state that all pricing will be honored for the duration of this contract.
- 6. Contractor must supply a rigging plan for tower erection. If the contractor intends to use a gin pole for tower erection, then they must provide a copy of their gin pole certification and load charts. All gin pole certifications and load charts must be current, must be sealed by a qualified engineer licensed in the state of North Carolina, and must state they are in compliance with ANSI/TIA-322. All rigging plans must be in compliance with ANSI/TIA-322 and ANSI/ASSE A10.48 and completed by a qualified engineer licensed in the state of North Carolina.
- 7. Each bid must be accompanied by a bid bond, for an amount equal to 5% of the total base bid, at the time the bid is filed with the County. No bid shall be considered if the bond is not received simultaneously with the bid. Bid bonds may be submitted in any form allowed under the laws of North Carolina including cash, cashier's check, certified check or surety issued bid bond.
- 8. Performance and payment bonds are required once bid is awarded.

Bids and tower designs that are submitted for opening will be submitted by Watauga County, NC to a Third-party <u>North Carolina Registered Engineer</u> for review of design accuracy and compliance before an award can be made. This is the reason for requiring the above-listed items to be sent with the bid response. Watauga County reserves the right to accept or reject any or all bids and to waive minor irregularities.

Two complete copies of your bid response must be submitted with your package. Failure to submit the above-listed items will forfeit your bid.

Understand Contractor Requirements Process

Yes_X

No____

BIDDING INSTRUCTIONS

Contractors bidding on this project must fully acquaint themselves with the following specifications, any attachments to this Invitation for Bid and conditions at the Designated Construction Site (DCS). The contractor is required to visit the DCS to fully understand any potential obstacles that would prevent speedy completion of this project. Any questions concerning any portion of the work or interpretation of documents should be referred to Marty Randall and the Contracting Officer.

Page: 4 Watauga County	BIDDER:	K-Co	Enterpr	ises, Inc.		
Bids must be submitted on this form and methis form must be completed for considerate			ies of t	his bid do	ocument.	e. All parts of
Understand Bidding Instructions			Yes_	X	No	
PRE-AWARD ENGINEERING REVIEW Bids and tower designs submitted for this II design accuracy and compliance with all seresponsible bid failing this engineering revibidder that meets the Engineering Review	stipulated sta view will be i requirements	ndards nvalid a s.	and bu and the	ilding cod bid will b	es before an award can be e awarded to the next lowe	made. A low
Understand Pre-Award Engineering Rev	view Proces	S	Yes_	<u>X</u>	No	
PROJECT DESCRIPTION This project shall consist of the furnishing specifications.	and installati	on of a	commi	unications	tower, per the following and	any attached
Understand Project Description		*	Yes_	X	No	
COORDINATION OF THE WORK The Tower Contractor shall notify Marty Ratwo weeks prior to the desired construction 6609) at least 2 weeks prior to construction may result in delay of the starting date. Fa and unable to perform and work.	time. Contra	actor mu ite the s	ust cont staking ced noti	act Matt F of the tow ce may re	ields <u>(matt.fields@ets-pllc.</u> er location. Failure to give a	<u>com</u> 919-427- dvance notice
Understand the Coordination Requirem	ent		Yes_	<u> </u>	No	
DESIGN CAPACITY REQUIREMENT The tower must be designed so that when in TABLE that follows, the tower superstruction by a third party, Engineered Towthe bid will not be accepted. Each bidder methat this Design Capacity Requirement is meadditionally, each bidder shall record eith provided below.	ture and su wer Solution nust provide a et. This towe	bstruct s, the d s part c r shall t	ture <u>sh</u> esign c of the bid be design	all NOT omputes t d submiss ned for a	exceed 95% of its capa of be at a greater stress level to ion package design calcular 50-ft fall radius per the contra	city. If, upon than specified, tions verifying ct documents
Rated Capacity			Pe	rcent of S	Stressed Value	
Understand the Design Capacity Requir	ement.		Yes_	X	No	
PERMITS Permits are required for this tower insta inspections with the permitting office. The information.						
Understand the Permit Process			Yes_	<u>X</u>	No	
FOUNDATION INSPECTION MANAGEME Prior to Construction Start, the Tower Co		obtain				ver Solutions

Prior to Construction Start, the Tower Contractor will obtain the services of third party Engineered Tower Solutions ("ETS") to oversee, inspect, and document each phase of the foundation construction to ensure compliance with the Tower Manufacturer's Tower Design Drawings and Specifications. (Watauga County, NC has a contract with ETS to perform these inspections with no more than two trips being made by ETS. Fees will be paid by Watauga County, NC for all initial inspections. Additional inspections due to non-conformity with contract documents are at the contractor's expense. For scheduling, email Matt Fields: (matt.fields@ets-pllc.com 919-427-6609") prior to Construction Start, all materials to be used in the construction of the foundation shall be inspected to ensure compliance with the Tower Manufacturer's Tower Design Drawings and Specifications. The Tower Contractor shall immediately report to Marty Randall and the Contracting Officer any deviations found during the on-site pre-construction start inspection and present a correction plan. The Tower Contractor shall provide to Marty Randall and the Contracting Officer, a written report, sealed by

Page: 5 Watauga County	BIDDER: K-C	Co Enterprises, Inc.		
Engineered Tower Solutions tincluding a comprehensive set o		all results of the fou	ndation oversight and inspection	process
Understand the Inspections M	anagement Process	Yes_X	No	
oversight of the concrete pouring with the Tower Manufacturer's T party, (<u>ETS)</u> , takes all steps to e pouring process, and to ensure a a contract with ETS to perfor sampling, breaks, and reports Tower Contractor shall provide	n the services of the third page process and the inspection of ower Design Drawings and ensure competent monitoring accurate recording of the time the concrete testing. It is, For scheduling, email in to Marty Randall and the liance with mix specifications	arty, Engineered To and recording of end Specifications. The g of the concrete same of day each same Fees will be paid and Matt Fields: (matt.) Contracting Office	TING wer Solutions ("ETS"), to ensure ach concrete delivery ticket for contrect of the Tower Contractor shall ensure ampling process used during the ole was taken. (Watauga County, by Watauga County, NC. This is itselds@ets-pllc.com 919-427-660, a written report, sealed by (Esentation of the concrete testing, to	mpliance the third concrete, NC has includes (79)). The (75) that
Understand Concrete Complia	nce and Testing Process	Yes_X_	No	
	– ection will be condu		Consulting. Mr. Marty at least 72 hours prior to requi	Randall ring this
Understand Grounding Inspec	tion Process	Yes_X_	No	
EXPEDITE CONSTRUCTION				
It is expected that the contracto favorable working conditions.	r will expedite completion of	of the project, taking	g full advantage of the weather a	nd othe
Understand Post Construction	Inspection Process	Yes_X_	No	
POST CONSTRUCTION INSPE	CTION (PCI)	•		
("ETS") to conduct the Post Cor of the Inspection. (Watauga Cou NC for all initial inspections. contractor's expense. For sche deviation from the Tower Manufa	nstruction Inspection ("PCI") Inty, NC has a contract to p Additional inspections du eduling, email Matt Fields: acturer's Design Drawings and the Contracting Officer, a re), and to generate a provide this service to non-conform (matt.fields@ets-jend Specifications is ed-lined copy of each	third party Engineered Tower Secomplete report documenting the e. Fees will be paid by Watauga ity with contract documents arollc.com 919-427-6609)). In the efound during, or as a result of the ch Drawing and/or Specification the icable.	findings County re at the vent any PCI, the
Understand Final Inspection P	rocess	Yes_X_	No	
CONTRACTOR LICENSES				
The Tower Contractor, and/or the be licensed to operate a contract NC General Contractors License	ting business in the State of		actor, performing work on this towe equired under NCGS 87.	<u>∍r, must</u>
were adopted in February 2005 a	and any following revisions.		nent of Labor's Tower Climbing rul	es that
Understand Requirements for		Yes_X_	No	
CONSTRUCTION & MATERIAL	2			

The tower shall be constructed of **hot-dipped** galvanized steel with solid round, or angular members. The tower may be either solid weld or knockdown construction. All components of the tower including but not limited to bolts, nuts, mounting

Page: 6 Watauga County

BIDDER:	K-Co Enterprises, Inc.
---------	------------------------

brackets, torque arms, etc. shall, at a minimum, be **hot-dipped** galvanized. The tower shall conform, at a minimum, to the North Carolina Building Code Chart 1606, Basic Wind Speed and any county/jurisdictional specified requirements.

The Tower must have climbing facilities on each tower leg for installation and maintenance. **Tower Contractor must** provide and install a safety cable at the climbing ladder.

Ur	derstand	Construct	tion and	Materials
v	iaci Staila	OULISH GO	uon ana	muterials

Yes	Χ

No____

EROSION CONTROL

The Contractor will be responsible for Erosion Control practices and any fines levied if not practiced.

Understand Erosion Control Methods and responsibilities

res ^	Yes	Χ
-------	-----	---

No____

STRUCTURE SPECIFICATIONS TABLE

Please enter Yes or No that you meet the specification in the Right-hand column

Item	Description	Comply Yes or No
1	Location is 759 Fire Tower Road, Boone NC 28607 Latitude 36.2330639° North Longitude -81.6986889° West	Yes
2	Tower is to be a self-supporting structure.	Yes
3	Tower Height is to be 199-ft AGL with a 50-ft Fall Zone.	Yes
4	Tower will be positioned on the DCS as indicated in the attached Construction Drawings.	Yes
5	The Tower Structure shall utilize solid round or angle structural steel members. No other materials or shapes will be given consideration. Note all members must be hot dipped galvanized to prevent corrosion.	Yes
6	All structural bolts must meet the ASTM A325 or A490 Specification.	Yes
7	The Tower Contractor will provide all materials to Complete the Tower & Foundation Installation.	Yes
8	The Tower Contractor will build the Foundation and erect the Tower.	Yes
9	The Tower Contractor will provide a detailed set of foundation drawings (sealed by a North Carolina Registered Engineer) showing all details including all rebar sizes and quantities, and concrete volumes. The Tower Contractor shall install the tower foundation. The Tower Contractor may construct the foundation using the most cost-effective method. The type of foundation presented in this Bid shall be designed and constructed in accordance with the Geotechnical Parameters specified in the Subsurface Exploration Report provided by Engineered Tower Solutions. That document is an attachment to this IFB.	Yes
10	Any damage to the access road, thru the housing development, from construction of this tower must be repaired by the contractor so to restore road to the original condition. If there are repairs required to the existing access road in order to construct the tower those repairs must be included in the bid. The contractor is responsible for tower construction. Civil work will be completed by Civil contractor.	Yes
11	All back-fill for grading tower base must be compacted and tamped. This would be 8 inches of fill and adding moisture if need between each tamping.	Yes
12	As a minimum this Tower and Foundation shall be designed to the requirements of ANSI/TIA-222G, including released addendums.	Yes
13	One hot-dipped galvanized expanded metal Vertical Cable/Wave-Guide Ice-Bridge, capable of mounting twenty (20) lines. Waveguide bridge shall be installed between the tower and shelter per the design drawings. The width of the Horizontal Cable/Wave-Guide Ice-Bridge shall be installed by the civil contractor.	Yes
14	The Tower shall have a safety fall protection system incorporating a 3/8" stainless steel cable meeting OSHA/ANSI specifications installed the full height of the structure on one tower leg with full height step pegs. Additionally, step pegs are required on the other two legs to the height of the mid markers.	Yes
15	The Tower Contractor shall install one (1) #2/0 AWG bare tinned copper conductor between the base of <u>each tower leg</u> and a 10-ft ground rod at <u>each</u> tower leg. The top of the ground rod must be at least 3-ft below finished grade. Each of these #2/0 AWG bare tinned copper conductors shall be <u>Exothermically Bonded</u> to the ground rod, tower leg, and tower halo ring. Grounding must be in compliance with Motorola R56 specifications and standards NOTE: All grounding shall conform to construction drawings.	Yes

Page: 7 Watauga County

BIDDER: K-Co Enterprises, Inc.

	NOTE A SOLUTION OF A SOLUTION	
	NOTE: A representative of Watauga County, NC shall inspect the connections to the ground rods prior to filling the trench. This inspection does not eliminate the requirement for installing inspection tubes. The Tower Contractor shall notify the Contracting Officer at least forty-eight (48) hours prior to schedule and conduct this inspection.	Yes
17	The Civil Contractor is responsible for providing and installing a temporary power pole on the site for use during construction. Civil contractor is responsible for removing the temporary power pole once permanent power has been installed at the DCS.	Yes
18	Tower Contractor is required to submit best and final price for this effort. Change orders will only be considered for circumstances or unusual situations not included in the contract documents. Any change orders must be approved in writing before work is started. Customer understands any additional work requested may incur additional costs outside of this contract pricing.	Yes
	The Tower Contractor shall provide Tinned Copper Ground Bars (TCGBs) capable of attaching a minimum of twenty (20) ground kits. Tower must include a 6' lightning rod at the top of structure.	
	NOTE: The TCGB shall be mechanically attached directly to the Tower Structure with Stainless Steel Hardware using pre-drilled holes in the Tower Structural Steel provided expressly for this purpose.	Yes
19	The TCGBs shall be installed at approximately ten 10-ft AGL at the base of the cable ladder. The Tower Contractor shall install a sufficient length of #2/0 AWG bare tinned copper conductor between this TCGB and the tower halo ring closest to the cable ladder. A second set of TCGB's to be install at the approx. 150 ft level with the TCGB's bonded to the tower structure. Exothermic Bonding shall be used to provide the electrical connections of the #2/0 AWG bare tinned copper conductor to the TCGB and the ground ring.	
20	The Tower Contractor shall provide and install antenna mounts in accordance with the included Antenna Mount Schedule (AMS) and Antenna Loading Requirements.	Yes
21	The location of the site is as shown on the attached drawings.	Yes
22	Excess soil created from foundation installation must be removed from the site. If soil is suitable, it may be used for backfilling and tower foundation leveling.	Yes
23	The Tower Contractor shall remove all tower construction materials and debris from the site.	Yes
24	Bidding contractors must attend a mandatory pre-bid site walk on June 9th at 11:00AM.	Yes

ANTENNA MOUNT SCHEDULE (AMS)

Contractor to provide and install the following Antenna Mounts on the Tower

Item #	Antenna Mount Description	Comply Yes or No
1	Two 6-ft standoff sidearm mounts with stabilizer at 176-ft	Yes
2	Two 6-ft standoff sidearm mounts with stabilizer at 155-ft	Yes
3	One Microwave 4.5" pipe mount at 140' with ice shield	Yes
4	One Microwave 4.5" Pipe Mount at 100' with ice shield	Yes
5	One Microwave 4.5" Pipe Mount at 85' with ice shield	Yes
6	One Microwave 4.5" Pipe Mount at 75' with ice shield	Yes

6' standoff mounts must be rated to accommodate listed antennas in Antenna Mounting table. If an alternate mount is used specifications must be provided by the manufacturer.

ANTENNA LOADING REQUIREMENTS:

Refer to the attached TEP Tower Procurement Document for tower specifics, antennas and required loading.

Page: 8 **Watauga County**

BIDDER: K-Co Enterprises, Inc.

TOWER COST BREAKDOWN:

1. Total cost of tower materials only

- 2. Total cost of all other services, including:

- a. All shipping
- b. Complete Installation
- c. Engineering Services
- d. All Inspections
- 3. Total cost to construct the tower with lighting 1. (Sum of Item-1 and Item-2, above)

NA

4. Total cost to construct the tower without lighting². (Sum of Item-1 and Item-2, above)

LIST OF ATTACHMENTS

- 1. Subsurface Exploration Report, prepared by Engineered Tower Solutions.
- 2. Construction Drawings, prepared by Engineered Tower Solutions.
- 3. Bid Document
- 4. Antenna Datasheets

Call the Contracting Officer prior to the opening date if you did not receive these attachments.

GEOTECHNICAL REPORT OF SUBSURFACE INVESTIGATION

May 20, 2024

PROPOSED SELF SUPPORT TOWER RICH MOUNTAIN TOWER

759 Fire Tower Road Boone, NC 28607

36.2331, -81.6986

Prepared for:

Matt Nesbit, E.I.

Geotechnical Engineer I

all Neslit

lorge Varela Date: 2024.05.2 20:06:38 -04'00'

> Jorge Varela, P.E. Registered NC 051545

Engineered Tower Solutions, PLLC - 3227 Wellington Court - Raleigh, NC 27615 (919) 782-2710

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Project Summary

Item	Description
Project Description	A geotechnical exploration and report have been prepared for this proposed 199-foot self-supported tower. Included in this report are the results of the field exploration and the recommendations for the design of the foundation system.
Site Coordinates	Latitude: 36.2331 Longitude: -81.6986
Site Condition	The proposed tower will be installed at 759 Fire Tower Road in Boone, North Carolina
Frost Depth	Based on the TIA Standard (TIA-222-H), dated October 2017, the recommended design frost penetration depth to be used for Watauga County, NC is 12 inches (0.8 ft).
Groundwater	Groundwater was encountered at 7 feet below ground surface at the time of drilling. Please note that subsurface water levels will fluctuate with seasonal and cyclical temperatures and precipitation and can be higher or lower at other times.
Proposed Foundation	We assume the proposed foundation will be supported with either pad and pier or drilled shaft (caisson).

Geotechnical Report of Subsurface Investigation RICH MOUNTÂIN TOWER

Job Number: 22110700

Field Exploration

Item	Description
Date	May 7 th , 2024
Number of Borings	3
Location	B-1: Latitude: 36.2332 Longitude: -81.6986 B-2: Latitude: 36.2331 Longitude: -81.6985 B-3: Latitude: 36.2331 Longitude: -81.6986
Equipment Used	550X
Advancement Method	Hollow Stem Auger-(HSA) and Rock Coring
Sampling Method	ASTM D-1586 with 1.5 I.D. Split Spoon Sampler ASTM D2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site Exploration

Laboratory Classification and Testing

Standard	Description
ASTM D2488	Standard Practice for Description and Identification of Soils

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Subsurface Profile

Based on the results of our borings, the soils beneath the surface can be summarized in the table below:

Material Encountered	Description	Consistency / Density		
SAND	Brown, moist silty sand with gravel	Loose to Very Dense		
PWR	Partially Weathered Rock sampled as silty sand with rock fragments			
GRANITE	Slightly weathered with close spaced fractures			

^{1.} Refer to individual boring logs for layer stratification details

Detailed descriptions of conditions encountered at each exploration point are indicated on the individual logs in the Appendix B. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual.

Groundwater was encountered at 7 feet below ground surface at the time of drilling. Groundwater levels will fluctuate with seasonal and climatic changes and may be different at other times.

Earthwork Recommendations - Equipment Mat

Earthwork is anticipated to include excavations and fill placement. The following sections provide recommendations for use in the preparation of the equipment mat foundation area and access drive.

Site Preparation

The subgrade should be evaluated under the direction of the Geotechnical Engineer. Areas where soft material are present or excessively wet or dry material should either be removed, or moisture conditioned and recompacted.

Geotechnical Report of Subsurface Investigation **RICH MOUNTAIN TOWER**

Job Number: 22110700

Fill Material Types

Soil Type	USCS Classification	Acceptable Parameters (for Structural Fill)		
Imported Low- to Moderate- Plasticity Soil ²	CL, ML, SC or SM	All locations and elevations		
Sand / Gravel with greater than 12% fines	GW/GP, SW/SP	Crushed stone base course may be used for the access roadway or beneath shallow foundations as replacement material for overexcavated soils.		
Near-Surface On-site soils ²	SM	On-site soils generally appear suitable for use as fill when they contain at least 12% fines (clay and/or silt) and are compacted at an appropriate moisture content.		

- Controlled, compacted fill should consist of approved materials that are free of organic matter and debris. A sample of each material type should be submitted to the geotechnical engineer for evaluation.
- Low- to moderate-plasticity cohesive soil or granular soil having at least 12% fines

Fill Compaction Requirements

Item	Structural Fill	General Fill
Maximum Lift Thickness	8 inches or less in loose thickness when heavy, self- propelled compaction equipment is used	Same as Structural fill
Minimum Compaction Requirements ^{1, 2}	98% of max. below foundations and within 1 foot of finished pavement subgrade 95% of max. above foundations, below floor slabs, and more than 1 foot below finished pavement subgrade	92% of max.
Water Content Range ¹	Low plasticity cohesive: -2% to +3% of optimum High plasticity cohesive: 0 to +4% of optimum Granular: -3% to +3% of optimum	As required to achieve min. compaction requirements

- 1. Maximum density and optimum water content as determined by the standard Proctor test (ASTM D 698).
- High plasticity cohesive fill should not be compacted to more than 100% of standard Proctor maximum dry density.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Excavations

Groundwater was encountered at 7 feet below ground surface at the time of drilling. Although not expected, if encountered in deep trench excavations during construction, groundwater or perched groundwater will require dewatering until backfilling operations are complete.

All excavations that may be required should, at a minimum, comply with applicable local, state and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards to provide stability and safe working conditions.

Slopes

For permanent slopes in unreinforced compacted fill areas, we recommended maximum configurations of 3:1 (Horizontal: Vertical) for the cohesive soils (clay) found at the site.

If steeper slopes are required for site development, stability analyses should be completed to design the grading plan. The face of all slopes should be compacted to the minimum specification for fill embankments. Fill slopes should be overbuilt and trimmed to compacted material.

Earthwork Construction Considerations

The near-surface, on-site soils will lose strength when exposed to moisture. To the extent practical, earthwork should be performed during drier periods of weather. Increased remedial measures due to wet and soft or otherwise unsuitable conditions should be expected if earthwork is performed during colder and wetter periods of weather.

A qualified geotechnical engineer should be retained during the earthwork phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation; to monitor proof-rolling, placement and compaction of controlled compacted fills, and backfilling of excavations to the completed subgrade.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Foundations Recommendations

The following recommendations are made based on our review of the test boring data and our past experience with similar projects and subsurface conditions. Ultimate soil strength parameters are presented on table below.

Ultimate Strength Parameters

Boring #	Depth (ft)	Unified Soil Classification	Total Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)
	0.0 - 2.0	PWR	130	38	→ ••
	2.0 – 4.0	PWR	· 130	38	
B-1	4.0 - 6.0	PWR	130	38	
	6.0 - 8.5	PWR	130	38	
	8.5 – 34.0	GRANITE	145	45	
	0.0 - 2.0	SM	105	29	
	2.0 - 4.0	PWR	130	38	
B-2	4.0 - 6.0	PWR	130	38	
	6.0 – 8.5	PWR	130	38	
	8.5 – 10.0	PWR	130	38	
	0.0 - 2.0	SM	105	29	
B-3	2.0 - 4.0	SM	. 120	30	
	4.0 – 6.0	SM	· 130	38	
	6.0 – 8.0	PWR	130	38	

^{1.} Groundwater was encountered at 7 feet below ground surface at the time of drilling. Utilize bouyon unit weight below this depth

Based on the subsurface conditions and typical design foundation loads for similar self-support towers, we recommend that either a caisson (drilled shaft) or a pad/pier be used to support the new tower.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Modulus of Subgrade Reaction

A vertical and horizontal modulus of subgrade reaction may be derived using the following equations and soils parameters expressed in the above table:

$$k_{s-v} = 12 \cdot SF \cdot q_a$$

 $k_{s-h} = k_{s-v} \cdot B$

Where:

qa = Allowable Bearing Capacity (ksf)

SF = Safety Factor

B = Base width (ft), use 1 if B < 1ft

 $k_{s-\nu}$ =Vertical Modulus of Subgrade Reaction (kcf)

k_{s-h} = Horizontal Modulus of Subgrade Reaction (ksf)

Caisson (Drilled Shaft)

Should caissons (drilled shafts) be used, the caissons (drilled shafts) will achieve compressive (downward) and tensile (uplift) resistance through skin friction along the sides of the shafts. In addition to skin friction, bearing resistance at the caisson's tip will contribute to compressive capacity. We recommend the values given the table below be used for this project. Please note the tip bearing capacity and skin frictions are net ultimate and ultimate values respectively. Appropriate factors of safety or resistance factors should be used. Lateral loads can be resisted by the lateral stiffness of the soil. Parameters for analysis of the laterally loaded caisson are also given the table below.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

Caisson (Drilled Shaft) Parameters

	Depth	Net Ultimate	Ultimate Skin Friction ¹ (ksf)		Lateral	850	
Boring #	(ft)	Tip Bearing Capacity (ksf)	Compressive	Uplift	Modulus (pci)	(in/in)	
***************************************	0.0 - 2.0			·			
	2.0 – 4.0		0.2	0.2	125		
B-1	4.0 - 6.0		0.3	0.3	125		
	6.0 - 8.5		0.4	0.4	125		
	8.5 – 34.0	40	2.3	2.3	125		
	0.0 - 2.0		0.2	0.2	125		
	2.0 - 4.0		0.3	0.3	125		
B-2	4.0 - 6.0	-	0.3	0.3	125		
	6.0 – 8.5		0.4	0.4	125		
	8.5 – 10.0	40	0.5	0.5	125	- -	
	0.0 - 2.0						
D 2	2.0 – 4.0		0.2	0.2	60		
B-3	4.0 – 6.0		0.3	0.3	125		
	6.0 – 8.0	40	0.4	0.4	125		

We recommend the skin friction be ignored for the top 3 ft of the caisson

Based on the subsurface soil conditions, excavations for the caissons (drilled shafts) should be possible using a large, truck-mounted, hydraulic-advanced drill rig. All debris, loose or disturbed soil should be removed from the excavation prior to placing reinforced steel and/or concrete. Reinforcing steel and/or concrete should be placed immediately upon completion of the excavation.

The excavations may be susceptible to caving. Drilling fluid or casing could be used to assist in keeping the drilled hole open. If casing is used, we recommend it be removed from the excavation as concrete is being placed. Continuous vibration or other approved methods should be used during casing withdrawal to reduce the potential for void-space formation within the concrete. If water is

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

present during concrete placement and/or drilling fluids are used to maintain hole stability, concrete should be pumped or otherwise discharged to the bottom of the hole via a hose or tremie pipe. The end of the hose or tremie pipe must remain below the top surface of any water, drilling fluid and the in-place concrete at all times. Additionally, concrete should be consolidated using vibration methods over the entire length and width of the caissons and the consolidation should be performed only after these fluids are removed and to the extent possible.

Pad & Pier / Single Mat Foundation

If the site has been prepared in accordance with the requirements noted in *Earthwork Recommendations – Equipment Mat*, the tower's foundation capacity can be determined using the soil's bearing capacity, passive pressure resistance, and a sliding friction factor.

Net Ultimate Bearing Capacity and Sliding Friction Factor

Depth ² (ft)	Net Ultimate Bearing Capacity ¹ (psf)	Sliding Friction Factor ¹
0.0 - 2.0		
2.0 – 4.0	7,000	0.35
4.0 – 15.0	11,000	0.55

^{1.} This value is a net ultimate value and an appropriate factor of safety or resistance factor should be used

Geotechnical Report of Subsurface Investigation **RICH MOUNTAIN TOWER**

Job Number: 22110700

Ultimate Passive Pressure and Friction Factor

Boring #	Depth (ft)	Ultimate Passive Pressure ¹ (psf) ¹
**************************************	0.0 - 2.0	0 – 800
	2.0 - 4.0	800 – 1,600
B-1	4.0 - 8.0	1,600 – 3,200
	8.0 - 12.0	3,200 – 4,800
	12.0 - 20.0	4,800 – 11,200

^{1.} Ultimate passive pressure can be interpolated for foundation depths with the depth ranges given

Seismic Parameters

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Section 20.4 of ASCE 7 and the International Building Code (IBC)

Seismic Site Classification

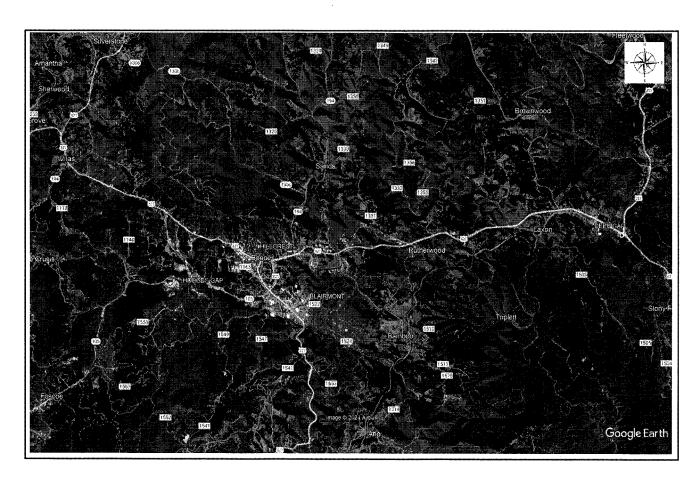
Item	Seismic Parameter
2018 International Building Code Seismic Site Classification	\mathbf{D}^{1}
Design Spectral Response Acceleration Parameters	$\begin{split} S_{ds} &= 0.273 g \\ S_{d1} &= 0.133 g \end{split}$

^{1.} The IBC seismic site classification is based on the subsurface profile depth of 100 feet. The scope of work did not authorize exploration to a depth of 100 feet. A seismic Site Soil Classification of D should be used if insufficient details are known about the 100-foot soil profile.

Geotechnical Report of Subsurface Investigation RICH MOUNTAIN TOWER

Job Number: 22110700

LIMITATIONS OF REPORT


This report has been prepared in accordance with generally accepted geotechnical engineering practices for the specific application of this project. The conclusions in this report are based on the applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The analyses and conclusions submitted herein are based, in part, upon the data obtained from the subsurface exploration performed for this analysis. The soil and ground water conditions can vary across the site. Opinions and conclusions are subject to change if new or additional information is submitted for review.

APPENDIX A LOCATION INFORMATION

SITE LOCATION PLAN RICH MOUNTAIN TOWER Job Number: 22110700

May 20, 2024 | 13

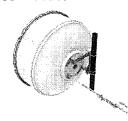
BORING LOCATION PLAN RICH MOUNTAIN TOWER Job Number: 22110700

May 20, 2024 | 14

SITE PHOTO RICH MOUNTAIN TOWER

Job Number: 22110700

May 20, 2024 | 15


APPENDIX B SOIL TEST BORING

				BORING			R B-1
	3		IGINEERED OWER SOLUTIONS			IAGE	. 1 01 1
CI	LIENT			NAME Rich Mountain Tower			
				LOCATION _759 Fire Tower Road, Boone,	NC 2860)7	
	DATE _5/6/2024 COORDINATES _36.2332, -81.6986					_	
				WATER LEVELS:			
				TIME OF DRILLING _14.70 ft / Elev 4663.30) ft		
				END OF DRILLING 29.10 ft / Elev 4648.90			
N	OTES		<u> </u>	TER DRILLING 14.70 ft / Elev 4663.30 ft			
GPJ	(#) O	LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)
OWER R	-		PARTIALLY WEATHERED ROCK (PWR), Sampled as silty sand with	n rock fragments.	SS 1		0-18-50/5'
NA NA	+		•		≥ ss		50/5"
					2		
E E	5		•		SS 3		50/1"
ETS - BORING WYROCK CORING 2 - ETS DATABASE JUNGO.GDT - 5/15/24 09:21 - WETS.LOCA.IETSPUBI.C/2022/110700 RICH MOUNTAIN TOWER GEN TOWER					SS 4		50/0"
<u></u> - -	-						
	10		GRANITE, slighly weathered with close spaced fractures.		RC	100	
JOH H			•		RC-1	(83)	
- RC	-8						
1070	->		,		RC	87	
2022	15		<u>I</u>		RC-2	(47)	
	- 1				_		_
2-	*						
<u> </u> -					RC RC-3	68 (45)	
	20				KC-3	(43)	
09:21	-						
15/24	->				RC	92	
- 2	25				RC-4	(62)	
30.05							
BASE	\Rightarrow		_		RC	88	
<u></u>	30		<u>I</u>		RC-5	(70)	
SETS]
- \G	*				RC	81	
COR -	-				RC-6	(78)	
§ -		<i>//</i> //	Bottom of borehole at 34.0 fee	et.		.1	I
© ₩							
SORIN							
TS-E							

					2025-08-05 BG	CC Meetir	ng
	E	NGINEERED	1	В	ORING N		ER B-2 GE 1 OF 1
CLIE	NT W	/atauga County		PROJECT NAME Rich Mountain Tower			
1		NUMBER 22110700		PROJECT LOCATION 759 Fire Tower F	Road, Boone, NC	28607	
	E _5/7/			COORDINATES 36.2331, -84.6985			
DRIL	LING N	METHOD Hollow Stem	n Auger (HSA) and Rock Coring	GROUND WATER LEVELS:			
DRILL	ING E	QUIPMENT _550X		$\overline{\mathcal{Y}}$ at time of drilling $\underline{}$ 7.20 ft / E	Elev 4757,80 ft		· · · · · ·
LOG	GED B	Y M. Nesbit		X AT END OF DRILLING 8.60 ft / E			
NOTE	ES			AFTER DRILLING 7.20 ft / Elev 4	757.80 ft		
DEPTH (ft)	GRAPHIC LOG		MATERIAL DESC	RIPTION	SAMPLE TYPE	NUMBER RECOVERY %	BLOW COUNTS (N VALUE)
5 10		SILTY SAND WIT	H GRAVEL (SM), brown, moist, dense.			SS 1	1-3-4
<u>}</u>		BARTALLY	ATUEDED DOOK (DWD) Completed		7 1	SS	(7)
-	-	PARTIALLY WEA	ATHERED ROCK (PWR), Sampled as sil	ty sand with rock fragments.	A	2	24-50/4"
5					×	SS	50/3"
	1		•		L	3	
		Ā				SS 4	50/1"
-	4			•			
	-	Ţ				SS 5	50/2"
10	1		Bottom of borehole	at 10.0 feet.	1	<u> </u>	
5							
			•				
				•			
				•			
3							
5							
5							
				•			
			4				
;]			,				
.1							

B	E	NGINEERED TOWER SOLUTIONS	BORING			R B-3 1 OF 1
CLIEN	т_ <u>w</u>	atauga County	PROJECT NAME Rich Mountain Tower			
PROJI	ECT N	UMBER 22110700	PROJECT LOCATION 759 Fire Tower Road, Boone	, NC 2860)7	
DATE	5/7/2	2024	COORDINATES 36.2331, -81.6986			
DRILL	ING N	ETHOD Hollow Stem Auger (HSA) and Rock Coring	GROUND WATER LEVELS:			
DRILLI	NG E	QUIPMENT 550X	∡ AT TIME OF DRILLING 7.20 ft / Elev 4668.8) ft		
LOGG	ED B	M. Nesbit	▼ AT END OF DRILLING 7.20 ft / Elev 4668.80	ft		
NOTE	S		▼ AFTER DRILLING 7.20 ft / Elev 4668.80 ft			
	GRAPHIC LOG	MATERIAL DESC	RIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)
		SILTY SAND (SM), brown, moist, loose to medium dense.		SS 1		0-3-3 (6)
- - -		•		M ss		4-5-13
				2		(18)
5 5		SILTY SAND (SM), brown, moist, very dense.		SS 3		16-30-22
취		DADTIAL LYING ATUEDED DOOK (DWD) O			-	(52)
N		PARTIALLY WEATHERED ROCK (PWR), Sampled as sil	ity sand with rock fragmentss.	\times ss 4		34-50/5"
2		Bottom of borehol		SS 5		50/0"
ETS - BOKING WIROCK CORING 2 - ETS DATABASE_JUNGU, SD. 1-575/24 09:27 - NETS, LOCALIETS-POBLICKOZZITUVO, RICH MOUNTAIN TOWERGERRICH MOON AND TOWERGERRICH						

Base Product

1.8m | 6ft ValuLine® High Performance, High XPD Antenna, dualpolarized, 5.925 – 7.125 GHz

Product Classification

Product Type Microwave antenna

Product Brand ValuLine®

General Specifications

HX - ValuLine® High Performance, High XPD **Antenna Type**

Antenna, dual-polarized

1.8°

1.1

Polarization Dual

Side Struts, Included 1

Side Struts, Optional

Dimensions

VSWR

Diameter, nominal 1.8 m | 6 ft

Electrical Specifications

Operating Frequency Band 5.925 - 7.125 GHz

Gain, Low Band 38.3 dBi

39.1 dBi Gain, Mid Band

39.9 dBi Gain, Top Band

Boresite Cross Polarization Discrimination (XPD) 33 dB

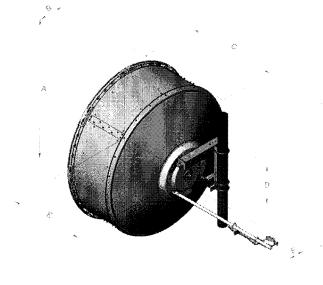
Front-to-Back Ratio 70 dB

Beamwidth, Horizontal

1.8° Beamwidth, Vertical

Return Loss 26 dB

Radiation Pattern Envelope Reference (RPE) 7376


Electrical Compliance ACMA FX03_6b, 6p7b | ETSI 302 217 Class

3 | IC 3059A | IC 3064A | US FCC Part 101A

Page 1 of 7

Cross Polarization Discrimination (XPD) Electrical Compliance	•	ETSI EN 302217 XPD Category 2
Electrical Specifications, Band 2		
Operating Frequency Band		5.725 – 5.850 GHz
Gain, Mid Band		38.4 dBi
Beamwidth, Horizontal		2°
Beamwidth, Vertical	•	2°
Mechanical Specifications		
Compatible Mounting Pipe Diameter		115 mm-120 mm 4.5 in-4.7 in
Fine Azimuth Adjustment Range		±15°
Fine Elevation Adjustment Range		±5°
Wind Speed, operational	,	200 km/h 124.274 mph
Wind Speed, survival		200 km/h 124.274 mph

Antenna Dimensions and Mounting Information

	Dimensions in inches (mm)								
Antenna size, ft (m)	A	В	С	D	E	F			
6 (1.8)	74,8 (1899)	13.4 (340)	47.5 (1206)	20.9 (530)	39.4 (1001)	8.4 (214)			

Wind Forces at Wind Velocity Survival Rating

Axial Force (FA)

Angle a for MT Max

Side Force (FS)

Twisting Moment (MT)

Force on Inboard Strut Side

Zcg without Ice

Zcg with 1/2 in (12 mm) Radial Ice

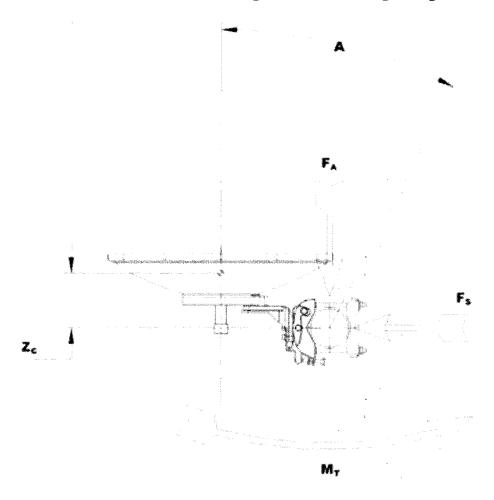
Weight with 1/2 in (12 mm) Radial Ice

6960 N | 1,564.671 lbf

-130

1566 N | 352.051 lbf

3923 N-m | 34,721.477 in lb


4075 N | 916.097 lbf

363 mm | 14.291 in

541 mm | 21.299 in

237 kg | 522.495 lb

Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Weight, net 85 kg | 187.393 lb

Regulatory Compliance/Certifications

Agency

Classification

ISO 9001:2015

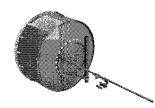
Designed, manufactured and/or distributed under this quality management system

* Footnotes

Operating Frequency Band

Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

Page 5 of 7


Gain, Mid Band	For a given frequency band, gain is primarily a function of antenna size. The gain of Andrew antennas is determined by either gain by comparison or by computer integration of the measured antenna patterns.
Boresite Cross Polarization Discrimination (XPD)	The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.
Front-to-Back Ratio	Denotes highest radiation relative to the main beam, at 180° ± 40 °, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise.
Return Loss	The figure that indicates the proportion of radio waves incident upon the antenna that are rejected as a ratio of those that are accepted.
VSWR	Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band.
Radiation Pattern Envelope Reference (RPE)	Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of +/-1° throughout
Cross Polarization Discrimination (XPD) Electrical Compliance	The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.
Wind Speed, operational	For VHLP(X), SHP(X), HX and USX antennas, the wind speed where the maximum antenna deflection is 0.3 x the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than 0.1 degrees.
Wind Speed, survival	The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without permanent deformation. Realignment may be required. This wind speed is applicable to antenna with the specified amount of radial ice.
Axial Force (FA)	Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.
Side Force (FS)	Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this

Twisting Moment (MT)

parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Base Product

2.4m | 8ft ValuLine® High Performance, High XPD Antenna, dual-polarized, 5.925 – 7.125 GHz

\square	عــ لــ	C1:£:	:
Pro	auct	Classific	cation

Product Type Microwave antenna

General Specifications

Antenna Type HX - ValuLine® High Performance, High XPD

Antenna, dual-polarized

Polarization Dual

Side Struts, Included

Side Struts, Optional

Dimensions

Diameter, nominal 2.4 m | 8 ft

Electrical Specifications

Operating Frequency Band 5.925 – 7.125 GHz

Gain, Low Band40.8 dBiGain, Mid Band41.6 dBi

Gain, Top Band 42.4 dBi

Boresite Cross Polarization Discrimination (XPD) 33 dB

Front-to-Back Ratio 70 dB

Beamwidth, Horizontal 1.3 °

Beamwidth, Vertical

Return Loss 26 dB

VSWR 1.1

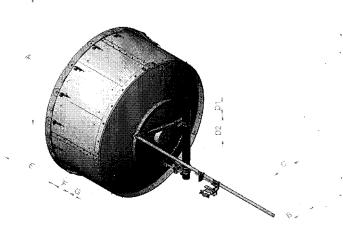
Radiation Pattern Envelope Reference (RPE) 7389

Electrical Compliance ACMA FX03_6b, 6p7b | ETSI 302 217 Class

3 | IC 3059A | IC 3064A | US FCC Part

101A | US FCC Part 74A

Page 1 of 7



Cross Polarization Discrimination (XPD) Electrical Compliance	ETSI EN 302217 XPD Category 2
Electrical Specifications, Band 2	
Operating Frequency Band	5.725 – 5.850 GHz
Gain, Mid Band	40.7 dBi
Beamwidth, Horizontal	1.3°
Beamwidth, Vertical	1.3°
Mechanical Specifications	
Compatible Mounting Pipe Diameter	115 mm 4.5 in
Fine Azimuth Adjustment Range	±5°
Fine Elevation Adjustment Range	±5°
Wind Speed, operational	201 km/h 124.896 mph
Wind Speed, survival	200 km/h 124.274 mph

Antenna Dimensions and Mounting Information

HX8

Dimensions in inches (mm)								
Antenna size, ft (m)	А	В	c	D1	D2	E	F	G
8 (2.4)	95.1 (2416)	8.0 (203)				42.4 (1078)	12.1 (306)	10.3 (262)

Wind Forces at Wind Velocity Survival Rating

Axial Force (FA)

Angle α for MT Max

Side Force (FS)

Twisting Moment (MT)

Force on Inboard Strut Side

Zcg without Ice

Zcg with 1/2 in (12 mm) Radial Ice

Weight with 1/2 in (12 mm) Radial Ice

10599 N | 2,382.751 lbf

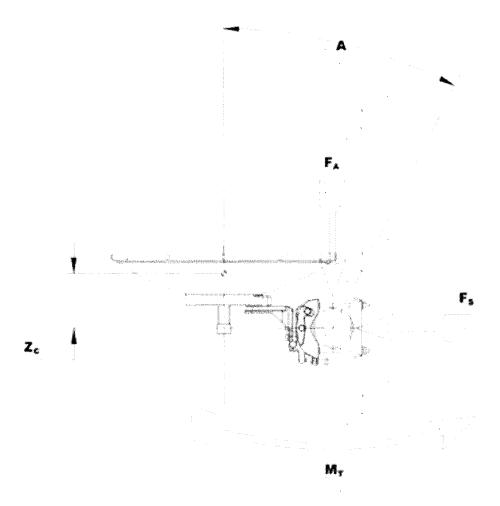
-140°

4594 N | 1,032.773 lbf

-6518 N-m | -57,689.16 in lb

11263 N | 2,532.024 lbf

532 mm | 20.945 in


675 mm | 26.575 in

342 kg | 753.98 lb

Page 3 of 7

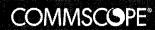
Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Weight, net 187 kg | 412.264 lb

Regulatory Compliance/Certifications

Agency Classification


ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

* Footnotes

Operating Frequency Band

Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

Page 5 of 7

Gain, Mid Band

For a given frequency band, gain is primarily a function of antenna size. The gain of Andrew antennas is determined by either gain by comparison or by computer integration of the measured antenna patterns.

Boresite Cross Polarization Discrimination (XPD)

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

Front-to-Back Ratio

Denotes highest radiation relative to the main beam, at 180° ±40°, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise.

Return Loss

The figure that indicates the proportion of radio waves incident upon the antenna that are rejected as a ratio of those that are accepted.

VSWR

Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band.

Radiation Pattern Envelope Reference (RPE)

Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of +/-1° throughout

Cross Polarization Discrimination (XPD) Electrical Compliance

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

Wind Speed, operational

For VHLP(X), SHP(X), HX and USX antennas, the wind speed where the maximum antenna deflection is 0.3 x the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than 0.1 degrees.

Wind Speed, survival

The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without permanent deformation. Realignment may be required. This wind speed is applicable to antenna with the specified amount of radial ice.

Axial Force (FA)

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Side Force (FS)

Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this

Page 6 of 7

Twisting Moment (MT)

parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page 1 of 6

Site Name:		Rich Mountain Tower
Site Address:		759 Fire Tower Road, Boone, NC 28607
Latitude:		36.2330639 °
Longitude:		-81.6986889°
Structure Type:		Proposed 199.0-ft Self Support Tower
Contact Information:		Contact the owner with questions regarding the content of this Document. All questions or concerns shall be directed to the contact stipulated in the Bid Document.
Design Capacity:		The tower shall be designed so that, once installed with all loading as shown in Table 1 - Design Antenna/Coax Loading, the tower superstructure and substructure shall NOT exceed 95% of its capacity . If, upon evaluation, the design computes to be at a greater stress level than specified the bid will not be accepted. All bidders must provide design calculations verifying that this <a deliverables"="" details."="" for="" href="Design Capacity Requirement is met; see ">Design Capacity Requirement is met; see "Deliverables" for details.
Materials:		Tower structures shall utilize structural steel round or polygonal poles only. No other materials or shapes shall be given consideration. Structural bolts must meet the ASTM A325 specification, or equivalent if approved by the design engineer of record.
Design Fall Radius:		No Fall Radius Required Fall Radius Required from Centerline of Tower: 50-ft
Standard:	\boxtimes	As a minimum, all towers shall be designed to the requirements of ANSI/TIA-222-G, including released addendums
Design Wind Speed:	X	150 mph ultimate 3-second gust wind speed (converted to an equivalent 116 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222-G) as required by the 2018 North Carolina Residential Building Code (2015 IBC) and ASCE 7-10.
Structure Class:		
Risk Category:		Risk Category I – Low Hazard Risk Category II – Moderate Hazard (Default) Risk Category III – Substantial Hazard Risk Category IV – Essential Hazard (Essential Communications)
Topographic Category:		Category I — No abrupt changes in general topography (Topographic effects are already considered in the prescribed windspeed above per the 2018 NCBC Chapter 3). Category II — Structures located at or near the crest of an escarpment Category III — Structures located in the upper half of a hill Category IV — Structures located in the upper half of a ridge Category V — Wind speed up criteria based on a site-specific investigation (see attached)
Exposure Category:		Exposure B – Urban and Suburban Areas Exposure C – Open Terrain where Exposure B or D does not apply. Exposure D – Flat, Unobstructed Shorelines
Design Ice Loading:		ANSI/TIA-222-H: x.xx inch escalating with a xx mph 3 second gust wind speed ANSI/TIA-222-G: 0.75 inch escalating with a 30 mph 3 second gust wind speed

3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

☐ ANSI/TIA/EIA-222-F: x.xx inch escalating with an xx mph fastest mile wind speed

2025-08-05 BCC Meeting Tower Procurement Package
Rich Mountain Tower
May 7, 2025
ETS Job No. 22110700.STR.9425 Rev. 2
Page 2 of 6

Seismic:		Seismic Ss: 0.263 / Seismic S1: 0.097 / Seismic TL: 12 Ss exceeds 1.0. Seismic loads shall be evaluated in accordance with the Standard
Tower Finish:		Galvanized Painted per FAA Advisory Circular AC 70/7460-1K Painted per Local Requirements All structural steel products shall be hot dip galvanized in accordance with ASTM A123 specifications. Tower manufacturer shall produce documentation verifying the appropriate galvanizing process is utilized. All steel hardware shall be galvanized in accordance with ASTM A153 or ASTM B695 specifications
Tower Lights:		Not Required Tower lighting system with E2 Avian Compliant Obstruction Lighting System (white strobes by day, and red lights at night). Beacons and Obstruction lights shall be all LED and Dual Red/White medium intensity and shall meet the requirements of FAA Advisory Circular AC 70/7460-1K. Towers 200-ft to 350-ft Tower lighting system with E2 Avian Compliant Obstruction Lighting System (white strobes by day, and red lights at night). Beacons and Obstruction lights shall be all LED and Dual Red/White medium intensity and shall meet the requirements of FAA Advisory Circular AC 70/7460-1K. A lighting system by Drake Lighting, that complies with the FAA regulation, is required. Towers over 350-ft
Grounding:		Grounding, lightning protection, and surge protection systems shall be installed as required in compliance with R56 specifications and the construction documents. Coordinate with the Duke Energy bid administrator for the portion of tower grounding scope of work as shown in the construction documents. Minimum of the tower ground ring, connections from the ring to the tower, the bottom tower ground bar, and the connection from the tower ground ring to the bottom ground bar shall be included.
Climbing Facilities:	_	Not Required A safety fall protection system incorporating a 3/8" diameter stainless steel cable meeting OSHA/ANSI specifications shall be installed the full height of the structure one tower leg and another full height cable on a full height face mounted external ladder. Additionally, step pegs are required on the other two legs to the height of the mid markers. A safety fall protection system incorporating a 3/8" diameter stainless steel cable meeting OSHA/ANSI specifications shall be installed the full height of the pole with full height step pegs.
Ice Bridge:	\boxtimes	Not required; Another contractor to provide Provide an option for Ice Bridge
Transmission Ladder:		Not required; carrier to provide Provide (1) Transmission Ladder. Include "per foot" pricing.
Foundation:		Provide Preliminary Design using Presumptive Soil Parameters per the TIA-222-G Standard (Annex F). A Geotechnical Report will be provided later for the final foundation design. Design with Geotechnical Report provided. In accordance with ANSI/TIA-222-G, Annex A, Section A.9.0, the tower manufacturer shall ensure the proper development of anchor rods and anchorage materials.
Antenna Mounts:		Not required; Antenna Mounts provided by carrier. Provide mounts per Table 1 – Design Antenna/Coax Loading

3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page **3** of **6**

Additional Design Requirements

Structural Guidelines:

All leg capacities for lattice towers shall be computed utilizing a global effective length factor (K) of 1.0. All leg capacities shall be calculated utilizing the working points between panel points. Utilizing the side (gusset) plate length to reduce the un-braced length of the leg is not permitted. Leg members must consist only of steel solid rod and angle members. Tubular steel leg members are not permitted (Not applicable to monopoles).

For round leg latticed towers, bracing member capacities shall be calculated considering the effective length to be the span between the weld lines of the gusset plates at the face of the round legs for both out-of-plane and in-plane buckling modes (Not applicable to monopoles).

Hardened galvanized flat washers (ASTM F436) shall only be used in fully tensioned bolted connections and connections that utilize oversized or slotted holes.

Linear Appurtenances:

The tower analysis model shall include all feed lines, feed line ladders, step pegs, climbing ladder and safety climb.

Discrete Appurtenances:

Effective Projected Area (EPA)A for antennas shall be determined according to TIA-222-G, Section 2.6.9.2, Design Wind Force on Appurtenances. If antenna or mount areas are specified, the provided values shall be used in lieu of calculated values. If height, width, and depth dimensions are provided by the antenna manufacturer, the panel shall be treated as a flat rectangular panel. Force coefficients shall be determined based on antenna aspect ratios and multiplied by the projected areas to calculate front and side EPAs.

Wind tunnel test results shall NOT be used unless the results have been provided to ETS and proposed effective areas have been approved. Back-calculating wind areas from published antenna manufacturer's wind loads are prohibited.

Deliverables: [Once awarded, Final Deliverables shall bear the seal of a North Carolina Professional Engineer]

A PDF softcopy of all deliverables shall be sent to ETS for recording purposes. All tower designs shall be complete with the following:

- General Notes
- Profile drawing (with tower reactions, design drawings, materials grades and referenced codes and standards shall be clearly shown)
- Foundation design drawings
- Supporting design calculations for tower and foundation
- Listing of main structural members
- Mount documentation specifically showing total EPA

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page **4** of **6**

Table 1 - Design Antenna/Coax Loading

			iii P	ROPOSED ANTENNA SCHEDULE	. 18			4.1 74
OWNER	QTY.	SIZE (FT)	TYPE	MANUFACTURER - ANTENNA MODEL NUMBER	ANTENNA AZIMUTH	MOUNT ELEVATION	LEG	CABLE (QTY.) TYPE
WATAUGA COUNTY	1		GMNI	R/T-00897-11		178-0	А	(1) 748 & (1) 547
WATAUGA COUNTY	1		OMNI	ŘF1 - \$C867-11		1781-0"	8	(1) 7/8"
WATALSA COUNTY	1		TFA	, 177 4		175'-0"		
SALKSKA I DUNTE (EL TURE -	:		7a8/ga s	, Besable 14020		· 24: kg·	- 4	(142F)
WATAUSA COUNTY	1		OMNE	RF1 - CC807-31	-	15070"	Α	(5) 3-6/8*
WATALGA COUNTY	1	,	OARH	RF1 - CC887-11		180"-0"	8	(1) 6-5-9"
ANTAULACIERTE PER 1960	:		, 187 (S. F.	O:Side (#ns	-	:38.3	C	11, 2.81
WATALIGA COUNTY	. 1		CISH TO BUCKEYE	COMMSCOPE - HNG-BW-GWH	3183	140%)"	6	(1)£1283
well goes country of the report.	:		FoF +4			(864)	В	(\$+H:GG)
345 W. H. (00, 40 to \$157 (80))	. :		1974.0			'sa a	4.	.51596
WATAUGA OGUNTY	1		DISH TO WATAUGA CO TRAN STA.	COMMISCOPE - HX6-GX-6Y84	1941	100'-9"	₿	:1)6063
iteranga nggan gapagas	3		43.55	e der et all daß Stran		954.		(3,80+1)
WATAUSA COUNTY	1		O(SH TO PHECINIX	COMMISCORE - HX8-697-6H/V	36.61	88-0	А	(1) EUG3
WATAUGA COUNTY	1		DISH TO HAWKS HEST	COMMSCOPE PIXE AW 6HW	227"	79-0"	8	;1) EU83
4474444444444444444419191919191919191919	:		5863	CANADA ABAB		40.0		41,14
VLAS Projekter, i kompter projektije i projektije i			[m(.), 8]	r¥ air - Baskar		at call		1.14

Note 1: Builder will supply side arms (4) with side struts (4) for only the omni and dipole antennas listed as current. However, engineer shall design the tower so that all omni and dipole antennas, including future, have side arms with side struts considered in the design loading (9 total).

Note 2: Builder will supply pipe mounts (4), high wind kits (4), and ice shields (4) for only the dish antennas listed as current. However, engineer shall design the tower so that all dish antennas, including future, have pipe mounts, high wind kits, and ice shields considered in the design loading (6 total).

3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

Tower Procurement Package Rich Mountain Tower May 7, 2025 ETS Job No. 22110700.STR.9425 Rev. 2 Page **5** of **6**

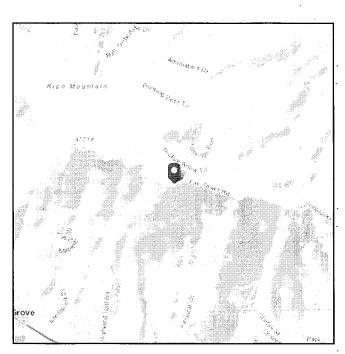
Appendix A
Verification of Design Loads

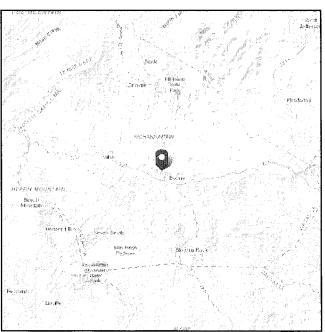
Address:

No Address at This Location

ASCE Hazards Report

ASCE/SEI 7-10 Standard:


Risk Category: Ⅳ


Soil Class: D - Stiff Soil

36.233064 Latitude: Longitude: -81.698689

Elevation: 4667.74622517496 ft (NAVD

88)

Wind

Results:

Wind Speed 10-year MRI 25-year MRI 50-year MRI 100-year MRI Special

120 Vmph 76 Vmph 84 Vmph

90 Vmph

96 Vmph

116 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222-G) as required by the 2018 North Carolina Residential Building Code Chapter 3. Topographic effects are already considered per 2018 NCBC. 116 mph nominal wind speed to be used with Structural Class III Importance Factor of 1.15 and Topographic Category 1.

150 mph ultimate 3-second wind speed (converted to an equivalent

Special Wind Region -- Mountainous terrain, gorges, and special wind regions shown in Fig. 26.5-1 shall be examined for unusual wind conditions. The Authority Having Jurisdiction shall, if necessary, adjust the values given in Fig. 26.5-1 to account for higher local wind speeds. Such adjustment shall be based on meteorological information and an estimate of the basic wind speed obtained in accordance with the provisions in Section 26.5.3.

Data Source:

ASCE/SEI 7-10, Fig. 26.5-1B and Figs. CC-1-CC-4, and Section 26.5.2,

Date Accessed:

incomprating orrata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2.

Seismic

Site Soil Class: Results:		D - Sti	ff Soil								
S _s :		0.263		. ;	S _{D1} :		0.156				
S ₁ :		0.097		-	T _L ;		12				
Fa:		1.59		,	PGA :		0.137				
F _v :		2.4		- 1	PGA _M :		0.209				
S _{MS} :		0.418		.	F _{PGA} :		1.526				
S _{M1} :		0.234			l _e :		1.5				
S_{DS} :		0.278									
Seismic Design 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05	n WGE g Beston	se Spectr	um		0.30 0.25 0.20 0.15 0.10		Design Respo	onse Sp	Dectrum		
0 2	S _a (g) vs T(s)	8 1	0 12	14 .	0	2	S _a (g) vs T(s)	8	10	12	14

Data Accessed:

Fri Apr 04 2025

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness:

0.75 in.

Concurrent Temperature:

15 F

Gust Speed

30 mph

Data Source:

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed:

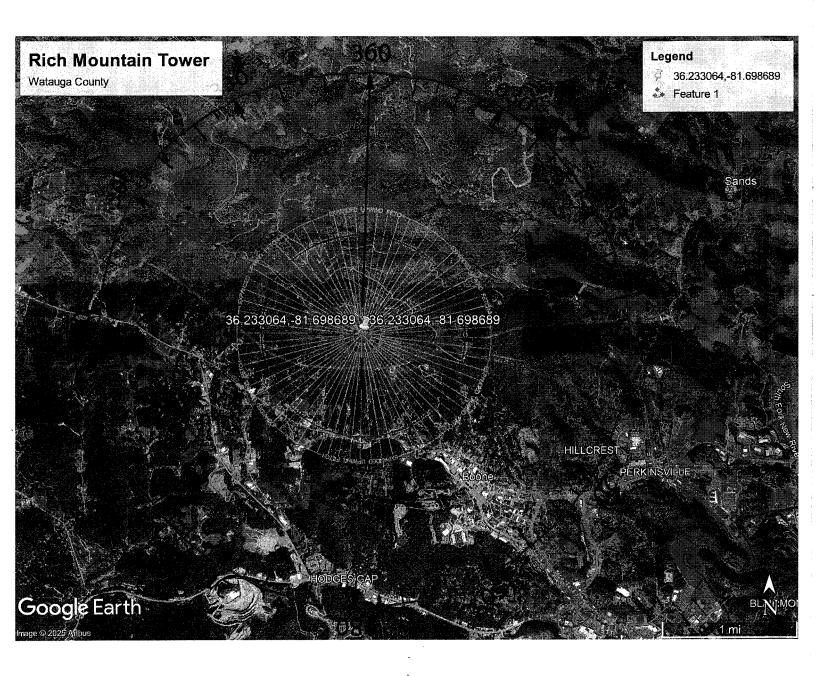
Fri Apr 04 2025

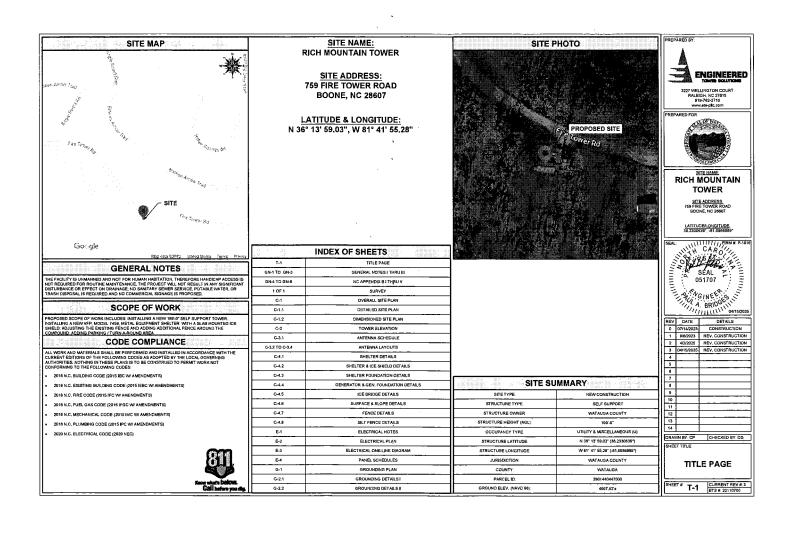
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

In the Appalachian Mountains, ice thicknesses may vary significantly over short distances.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.


In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

2025-08-05 BCC Meeting
Tower Procurement Package
Rich Mountain Tower
May 7, 2025
ETS Job No. 22110700.STR.9425 Rev. 2
Page 6 of 6

Appendix B
Site Vicinity and Location Map

PREPARED BY

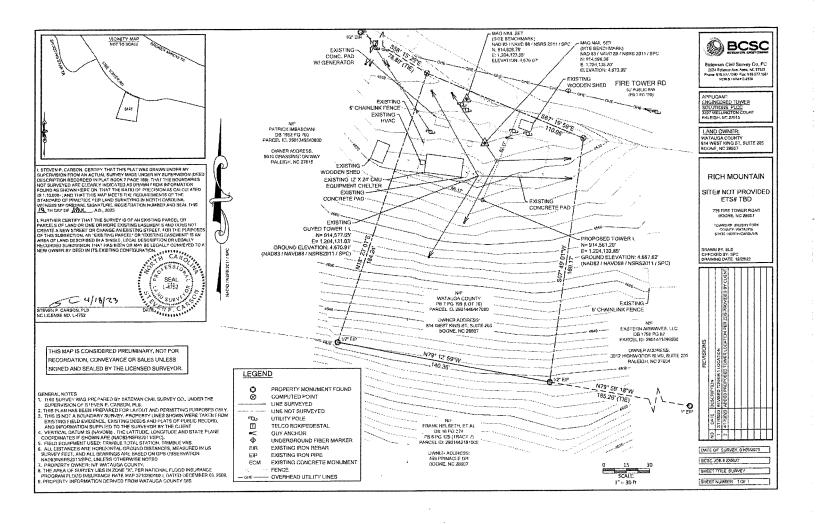
ANTENNA MOUNTING NOTES

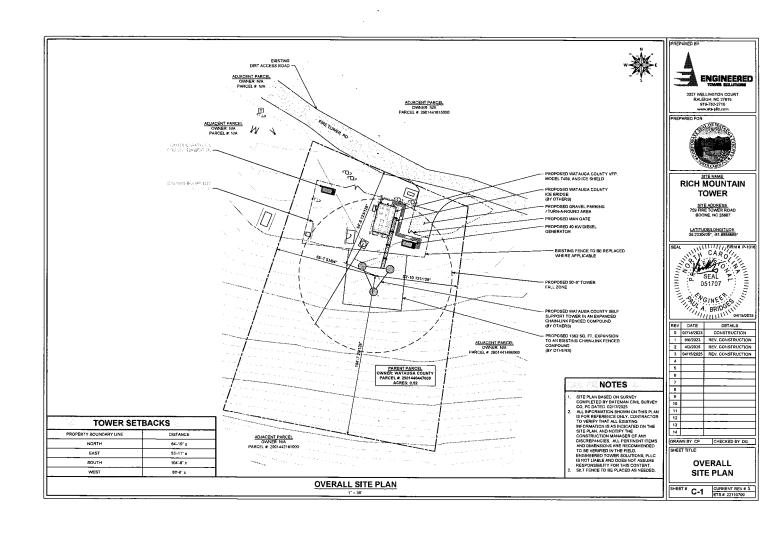
ALL EXISTING ACTIVE SEWER WATER GAS, ELECTRIC, AND OTHER UTILITIES SHALL B PROTECTED AT ALL TIMES, AND WHERE RECUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE PROPER EXECUTION OF CAUTION SHOULD BE USED BY THE CONFINCTION WHEN EXCAVATING OR DIFFLLING PIERS AROUND OF NABU RUTLIFIES, CONTRACTOR SHALL PROVIDE SEAFTY TRAINING FOR THE WORKING CREW, THIS SHALL INCLUDE BUT NOT BE LIMITED TO A FALL PROTECTION, BO CONTRECTOR SHALL INCLUDE BUT NOT BE LIMITED TO A FALL PROTECTION, BO CONTRECTOR SHALL INCLUDE BUT NOT BE LIMITED TO A FALL PROTECTION, BO CONTRECTOR SHALL INCLUDE BUT NOT BE LIMITED TO A FALL PROTECTION, BO CONTRECTOR SHALL INCLUDE BUT NOT BE LIMITED TO A FALL PROTECTION, BO CONTRECTOR SHALL PROTECTION BY CONTRECTOR SHALL PROTECTION BY CONTRECTOR SHALL PROTECTION. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND CARRIER PROJECT SPECIFICATIONS. ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT-DIP GALVANIZED) COATINGS ON IRON AND STEEL PRODUCTS", UNLESS NOTED OTHERWISE, CONTROL OF VIEW OF VERY CONTROL OF VERY CONTRO ENGINEERED ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153. "ZIND-COATING (HOT-DIP) ON IRON AND STEEL HARDWARE", UNLESS NOTED OTHERWISE. DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED BY COLD GALVANIZING IN ACCORDANCE WITH ASTM A780, ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED, CAPPED, PLUGGED OR OTHERWISE DISCONNECTED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SILBLECT TO THE APPROVAL OF THE OWNER WHORD INCOLOR UTILITIES. ALL ANTENNA MOUNTS SHALL BE INSTALLED WITH LOCK NUTS, DOUBLE NUTS AND SHALL BE TORQUED TO MANUFACTURER'S RECOMMENDATIONS. S. Cornella CONTRACTOR SHALL INSTALL ANTENNA PER MANUFACTURER'S RECOMMENDATION FOR INSTALLATION AND GROUNDING. THE AREAS OF THE CWINER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, ECUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES, AND APPLICABLE REGULATIONS. PRIOR TO SETTING ANTENNA AZIMUTHS AND DOWNTILTS, ANTENNA CONTRACTOR SHALL CHECK THE ANTENNA MOUNT FOR TIGHTNESS AND ENSURE THAT THEY ARE PLUME. ANTENNA AZIMUTHS SHALL BE SET FROM TINE MORTH AND BE ORDING WITHIN 4-6% AS DEFINED BY THE RYDS, ANTENNA DOWNTILTS SHALL BE WITHIN 4-6. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO THE EXISTING SITE DURING CONSTRUCTION, EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE FEDERAL AND LOCAL JURISDICTION FOR EROSION AND SEDIMENT CONTROL, UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED IN THESE ORWANIOS. PLANS ARE NOT TO BE SCALED. THESE PLANS ARE INTENDED TO BE A CIMERAMMATIC OUTLING ONLY WARES OTHERWASE NOTED, DIMERSIONS SHOWN ARE TO PRINSED SURPACE USES OTHERWASE NOTED, SHOWN ARE TO PRINSED SURPACE USES OTHERWASE NOTED, SHANKED BETWEEN EQUIPMENT IS THE MINIMAL REQUIRED CLEARANCE THESEFORE IT IS CRITICAL TO PLEED VERIFY DIMERSIONS, SHOULD THERE BE AN OURSTIONS REARRANCE THE CONTRACTOR SHALL BE USED OF THE CONTRACTOR SHALL BE USED OF THE CONTRACTOR SHALL BE USED. THE CONTRACTOR SHALL BE USED. THE WORK, CETALS ARE INTENDED TO SHOW DEPORTMENT MODIFICATIONS MAY BE INCLUDED AS PART OF WORK AND PREPARED BY THE ENGINEER PRIOR TO PROCEEDING WITH. NO FILL OR EMBANMENT MATERIAL SHALL BE PLACED ON FROZEN GROUNDING, FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANMENT. RICH MOUNTAIN TORQUE REQUIREMENTS TOWER ALL RF CONNECTIONS SHALL BE TIGHTENED BY A TORQUE WRE ALL RF CONNECTIONS, GROUNDING HARDWARE AND ANTENNA HARDWARE SHALL HAVE A TORQUE MARK INSTALLED IN A CONTRUCTUS STRAIGHT LINE FROM BOTH SIDES OF THE CONNECTION. RF CONNECTION BOTH SIDES OF THE CONNECTOR, GROUNDING AND ANTENNA HARDWARE ON THE BUT SIDE STARTING FROM THE THREADS TO THE SOULD SURFACE: GROUND BAR, ANTENNA BRACKET METAL. THE SUBGRADE SHALL BE BROUGHT TO A SMOOTH UNIFORM GRADE AND COMPACT TO 85 PERCENT STANDARD PROCTOR DENSITY UNDER PAVEMENT AND STRUCTURE AND OF STANDARD PROCTOR DENSITY NO POEN SPACE. ALL TERHOLES IN PUBLIC RIGHT OF WAY SHALL BE BACKLED WITH FLOWABLE FILL OR OTHER MATERIAL PRE-APPROVED BY THE LOCAL JURISDICTION. SITE ADDRESS; 759 FIRE TOWER ROAD BOONE, NC 28607 LATITUDE/LONGITUDE THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. CAN PHOTE ALL NECESSARY RUBBISH, STUMPS, DEBRIS, STICKS, STONES, AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF IN A LAWFUL MANNER, ALL 8M ANTENNA HARDWARE SHALL BE TIGHTENED TO 9 LB-FT (12 NM) IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN IN THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY TENDINGER PRIOR TO PROCEEDING. CARO ALL BROCHURES, OPERATING AND MAINTENANCE MANUALS. CATALOGS, SHOP DRAWNIGS, AND OTHER COCUMENTS SHALL BETURNED OVER TO THE GENERAL CONTRACTOR AT COMPLETION OF CONSTRUCTION AND PRIOR TO PAYMENT. ALL 12M ANTENNA HARDWARE SHALL BE TIGHTENED TO 43 LB-FT (58 NM). SEAL 2051707 SEAL 051707 GINES DETALS ORISTRUCTION THE PROPERTY OF THE ALL GROUNDING HARDWARE SHALL BE TIGHTENED UNTIL THE LOCK WASHER COLLAPSES AND THE GROUNDING HARDWARE IS NO LONGER LOOSE, CONTRACTOR SHALL SUBMIT A COMPLETE SET OF AS-BUILT REDLINES TO THE GENERAL CONTRACTOR UPON COMPLETION OF PROJECT AND PRIOR TO FINAL PAYMENT. ALL DIN TYPE CONNECTIONS SHALL BE TIGHTENED TO 18-22 LB-FT (24.4-29.8 NM). GENERAL CONTRACTOR SHALL COORDINATE WORK AND SCHEDULE WORK ACTIVITIES WITH OTHER DISCIPLINES. ALL N TYPE CONNECTIONS SHALL BE TIGHTENED TO 15-20 LB-IN (1.7-2.3 NM). 30. CONTRACTOR SHALL LEAVE PREMISES IN A CLEAN CONDITION. THE PROPOSED FACILITY WILL BE UNMANNED AND DOÈS NOT REQUIRE POTABLE WATER OR SEWER SERVICE, AND IS NOT FOR HUMAN HABITAT (NO HANDICAP ACCESS REQUIRED). ERECTION SHALL BE CONE IN WORKMANLIKE MANNER BY COMPETENT EXPERIENCED WORKMEN IN ACCORDANCE WITH APPLICABLE CODES AND THE BEST ACCEPTED PRACTICE, ALL MEMBERS SHALL BE LAID PLUMB AND TRUE AS INDICATED IN THE DRAWINGS. COAXIAL CABLE NOTES TYPES AND SIZES OF THE ANTENNA CABLE ARE BASED ON ESTIMATED LENGTHS, PRIOR TO ORDERING CABLE, CONTRACTOR SHALL VERIFY ACTUAL LENGTH BASED ON CONSTRUCTION LAYOUT AND NOTIFY THE PROJECT MANAGER IF ACTUAL LENGTHS EXCEED ESTIMATED LENGTHS. SEAL PENETRATIONS THROUGH FIRE RATED AREAS WITH ULLISTED MATERIALS APPROVED I LOCAL JURISDICTION, CONTRACTOR SHALL KEEP AREA CLEAN, HAZARD FREE, AND DISPOSE OF ALL DEBRIS. STRUCTURE IS LIMITED TO PERIODIC MAINTENANCE AND INSPECTION, APPROXIMATELY 2 TIMES PER MONTH, BY CARRIER TECHNICIANS. NO OUTDOOR STORAGE OR SOULD WASTE CONTAINERS ARE PROPOSED. CONTRACTOR SHALL VERIFY THE DOWN-TILT OF EACH ANTENNA WITH A DIGITAL LEVEL ALL MATERIAL SHALL BE FURNISHED AND WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE LATEST CARRIER GROUNDING STANDARD. IN CASE OF A CONFLICT BETWEEN THE CONSTRUCTION SPECIFICATION AND THE DRAWINGS, THE DRAWINGS SHALL GOVERN. CONTRACTOR SHALL CONFIRM COAX COLOR CODING PRIOR TO CONSTRUCTION, REFER TO "ANTENNA SYSTEM LABELING STANDARD" ND-00027 LATEST VERSION. CONTRACTOR SHALL PROVIDE WRITTEN NOTICE TO THE CONSTRUCTION MANAGER 48 HOURS PRIOR TO THE COMMENCEMENT OF WORK. ALL JUMPERS TO THE ANTENNAS SHALL BE 1/2" DIA. LDF AND SHALL NOT EXCEED 6-0". ALL COAXIAL CABLE SHALL BE SECURED TO THE DESIGNED SUPPORT STRUCTURE, IN AN APPROVED MANNER, AT DISTANCES NOT TO EXCEED 4-0" OC. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CUR LANDSCAPING AND STRUCTURES, ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER. CONTRACTOR SHALL FOLLOW ALL MANUFACTURER'S RECOMMENDATIONS REGARDING BOTH THE INSTALLATION AND GROUNDING OF ALL COAXIAL CABLES, CONNECTORS, ANTENNAS, ANTALOTHER EQUIPMENT. CONTRACTOR SHALL REMOVE ALL TRASH AND DEBRIS FROM THE SITE ON A DAILY RASIS THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION CONTRACTOR SHALL WEATHERPROOF ALL ANTENNA CONNECTORS WITH SELF AMALGAMATING TAPE, WEATHERPROOFING SHALL BE COMPLETED IN STRICT ACCORDANCE WITH INDUSTRY STANDARDS. INFORMATION SHOWN ON THESE DRAWINGS WAS OBTAINED FROM SITE VISITS AND/OR DRAWINGS PROVIDED BY THE SITE OWNER, CONTRACTORS SHALL NOTIFY THE ENGINEER OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION. GENERAL CONTRACTOR SHALL COORDINATE AND MAINTAIN ACCESS FOR ALL TRADES AND CONTRACTORS TO THE SITE AND/OR BUILDING. THE GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR SECURITY OF THE SITE FOR THE DURATION OF CONSTRUCTION UNTIL JOB COMPLETION. GENERAL CABLE AND EQUIPMENT NOTES ALL CABLE INSTALLATIONS TO FOLLOW MANUFACTURER'S INSTRUCTIONS AND RECOMMENDATIONS. CHECKED BY CONTRACTOR SHALL BE RESPONSIBLE TO VERIFY ANTENNA, TMAS, DIPLEXERS, AND COAX CONFIGURATION, MAKE AND MODELS PRIOR TO INSTALLATION. . NO WHITE STROBE LIGHTS ARE PERMITTED. LIGHTING IF REQUIRED, WILL MEET FAA STANDARDS AND REQUIREMENTS, ALL CONNECTIONS FOR HANGERS, SUPPORTS, BRACING, ETC, SHALL BE INSTALLED PER MANUFACTURER'S RECOMMENDATIONS, THE GENERAL CONTRACTOR SHALL PROVIDE PORTABLE FIRE EXTINGUISHERS WITH A RATING OF NO LESS THAN 2-A OR 2-A 10-BC AND SHALL BE WITHIN 25 FEET OF TRAVEL DISTANCE TO ALL PORTIONS OF WHERE THE WORK IS BEING COMPLETED DURING CONSTRUCTION. GENERAL NOTES I CONTRACTOR SHALL REFERENCE THE STRUCTURAL ANALYSIS/DESIGN DRAWINGS FOR DIRECTIONS ON CABLE DISTRIBUTION/ROUTING. SHEET # GN-1 CURRENT REV # 3

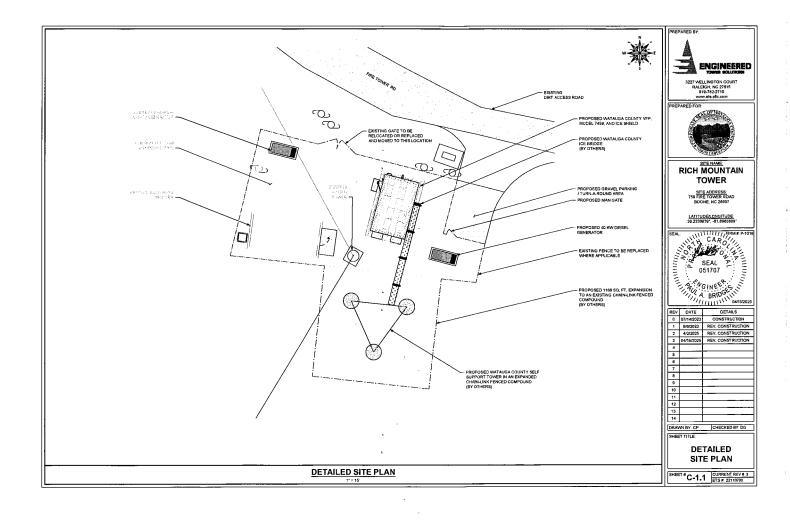
GENERAL NOTES (CONTINUED)

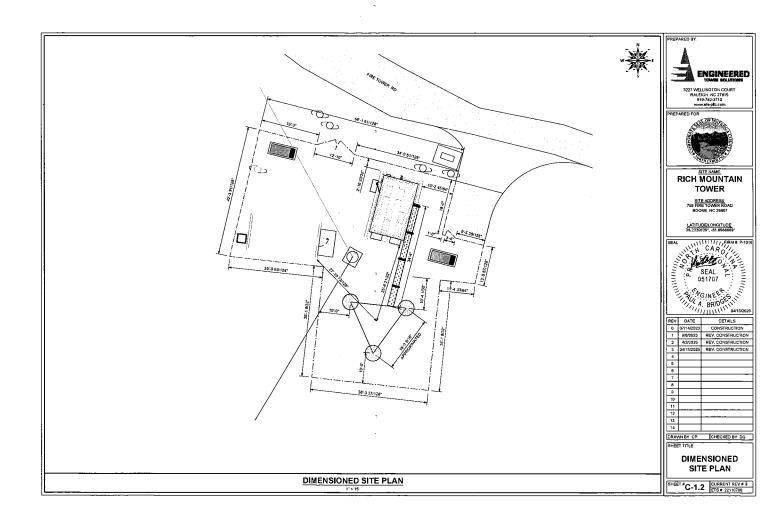
GENERAL NOTES

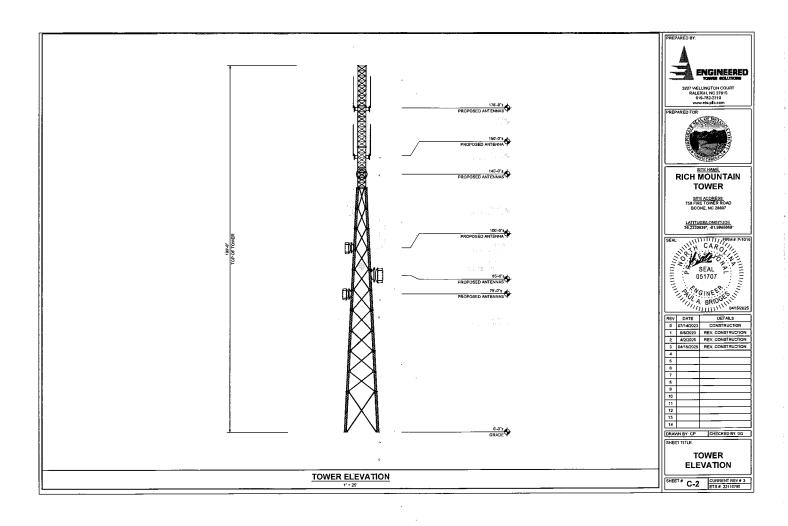
		-	 		
GENERAL CABLE AND EQUIPMENT NOTES		NOT USED		NOT USED	PREPARED BY:
1. ALL OUTDOOR RY CONNECTORSCONNECTORIS SHALL BE WEAT REPROPED ELECT THE RET CONNECTORS. USING BUTY, THE AFFER THE ATTENDATION AND PRINCIPONIC SHOWS BY THE AFFER THE ATTENDATION AND PRINCIPONIC SHALL BE MICHAEL THE AFFER THE A					ENGINEERED TOWN SELLINGS 327 VELLINETON COUNTY AGRICUM COUNTY AGRICUM COUNTY AGRICUM COUNTY AGRICUM COUNTY AGRICUM COUNTY AGRICUM AGR
5. 99 SHORT SWEEPS UNDER ANTENNA ARM ALL CABLES MUST ONLY TRANSITION ON THE INSIDE OR BOTTOM OF AMEN GIN CABLE ON TOP OF ARMS. 9. USE BY CONNECTION AT CABLE CONNECTION TO ANTENNAS. 7. PLACE GIVE OF ARM MINT SOUTHERN SICE PLACEMENT AT MINIMUM ST (1.29) FROM TRANSMIT 8. USE MY (1) THE CABLES OF A MATCH AND A MANUAL ST (1.29) FROM TRANSMIT 8. USE MY (1) THE CABLES OF A MATCH AND ST (1.29) OF A MATCH AND A MANUAL ST (1.29) FROM TRANSMIT AND A MANUAL ST (1.29) OF A MATCH AND A MANUAL ST (1.29) OF A MANUAL ST					SITE NAME.
FIBER & POWER CABLE MOUNTING	1				RICH MOUNTAIN
 THE FIRSE OFFICE TRAINS CARLES SHALL SE INSTALLED INTO CONCURS CHANNEL CABLE TRAYLS OR CARLE TRAY. WHICH RATEL AND PRISE OFFIC TRUM CABLES BYOTO, CABLE TRAY SYSTEM, THEY SHALL, SE INSTALLED INTO AN INTER DUCT AND A PARTITION SWITCHES SHALL SE SYSTEM, THEY SHALL SE INSTALLED INTO AN INTER DUCT AND A PARTITION SWITCHES SHALL HAVE SYSTEM OF THE STANDARD CONCURS. THE SHALL WAS PROPRIED CABLE STREAM TO EVERY 80D SIXTY FEET AND SECURAL Y ASSTRICTOR TO THE CABLE TRAY SYSTEM MFPA TO RICH ANTICLET OR BLIES SHALL APPLY. 					TOWER SITE ADDRESS: 756 FIRE TOWER ROAD BOONE, NC 28607
2. THE TYPE TOER CABLES SHALL BE INSTALLED INTO CONDUITS CHANNEL CABLE TRAYS OR CABLE TRAY AND SHALL BE SECURED AT INTERVAYS NOT SCREENING BY SKYRET. AN EXCEPTION WERE TYPE TO-BY CARLES ARE NOT SUBJECT TO PHYSICAL DAMAGE CABLES SHALL BE PERMITTED TO MAKE A TRANSITION BETWEEN CONDUITS CHANNEL CABLE TRAYS.					LATITUDE/LONGITUDE 36.2330639*, -81.6986889*
CHE TRAY WHICH ARE SERVING UILLIATION REQUIRED TO EXPENSE A DISTANCE OF STATE OF STA		,			95A (11111) (11111) (11111) (11111) (11111) (11111) (11111) (11111) (11111) (11111) (11111) (11111) (11111)
					A BRIDGING ANSO25
					NEV DATE DETAILS
					5 6 7 8 8
		,			8 10 11 12 13
					DRAWN BY CP CHECKED BY DG SHEET TITLE:
					GENERAL NOTES !!
	<u></u>		 <u> </u>		 SHEET # GN-2 CURRENT REV # 3 ETS # 22110700

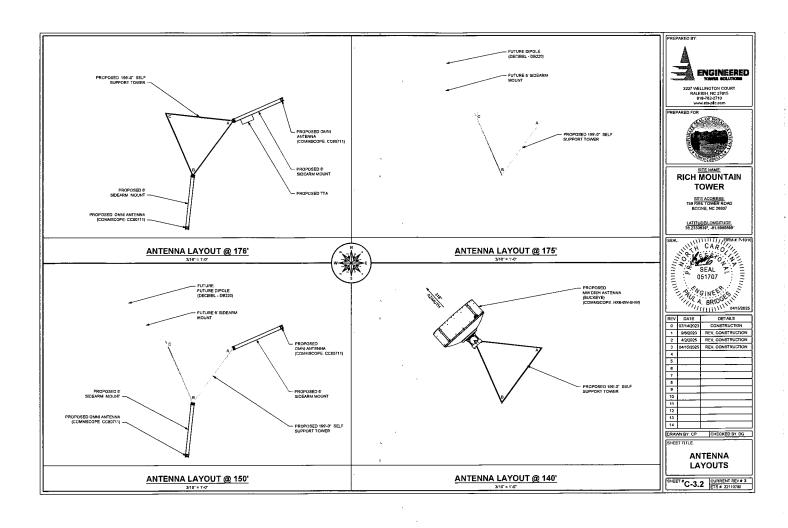

r.	AGGREGATE BASE COURSE	FT.	FOOT, FEET	RT	RIGHT				⊣ ∥ 🛕
s	AIR BREAK SWITCH	FTG.	FOOTING	R/W	RIGHT OF WAY			PARENT PROPERTY BOUNDARY	🗥
	ASBESTOS CEMENT AIR CONDITIONING	GA GAL.	GAGE	RWM SAN	RIGHT OF WAY MONUMENT SANITARY SEWER			ADJACENT PROPERTY BOUNDARY	
,	AREA DRAIN	GALV.	GALLON GALVANIZED	SB	SOIL BORING			ADJACENT PROPERTY BOUNDARY	ENGINE
F.	ABOVE FINISHED FLOOR	GC	GENERAL CONTRACTOR	SCH	SCHEDULE			EASEMENT	TOWNER SCA.
r	ALTERNATE	G.F.E.	GOVERNMENT FURNISHED EQUIPMENT	SET	SETBACK	_		(FACE AREA	
JM. P.	ALUMINUM AMPERES	GIS GL	GEOGRAPHIC INFORMATION SYSTEM GAS LINE	SF SHT	SQUARE FEET			LEASE AREA	3227 WELLINGTON COL RALEIGH, NC 27615
r.).	ACCESS OPENING	GM	GAS METER	SIA	SIAMESE CONNECTION	-	— R/W ———	RIGHT OF WAY	919-762-2710
PROX.	APPROXIMATELY	G.P.H.	GALLONS/HOUR	SIG	SIGNAL.				www.ets-pilc.com
CH,	ARCHITECTURAL	G.P.M.	GALLONS/MINUTE	SOTE	SECURITY OPERATIONS TRAINING FACILITY		— sf ——	SILT FENCE	PREPARED FOR:
PH.	ASPHALT ANTI-TERRORISM FORCE PROTECTION	GND. GOVT	GROUND GOVERNMENT	SP SPECS	SIGNAL POLE SPECIFICATIONS		× ×	CHAIN-LINK FENCE	PREPARED FOR:
.w.a.	AMERICAN WATER WORKS ASSOCIATION	GV	GATE VALVE	SQFT	SQUARE FEET				
G.	BUILDING	GW	GUY WIRE	SR	STATE ROAD		—ugw ———	UNDERGROUND WATER	III AZINGING
	BENCH MARK	HCP	HANDICAP	SS	SANITARY SEWER		SPUGP	UNDERGROUND ROWER	
C L	BACK OF CURB BOLLARD	HCP HCR	HANDICAP PARKING HANDICAP RAMP	ST. STD.	STATION STANDARD	-			
L G	BOLLARD	HCR	HANDICAP RAMP HEADWALL	STD,	STORM		OHP	OVERHEAD POWER	H Samera
5.	BEGIN VERTICAL CURVE	HDW	HIGH POINT	STL	STEEL.		465	ALTERNATING CURRENT POWER	
CE	BEGIN VERTICAL CURVE BEGIN VERTICAL CURVE ELEVATION BEGIN VERTICAL CURVE STATION	HSS	HIGH STRENGTH STEEL	SW	SIDEWALK				
cs	BEGIN VERTICAL CURVE STATION	HT	HEIGHT	SWM	STORMWATER MANAGEMENT		— DCP	DIRECT CURRENT POWER	AGA CVIEGO.
3	CURB AND GUTTER	HYD	HYDRANT	T	TANGENT TEMPORARY BENCHMARK :				SITE NAME
rv P.	CABLE TELEVISION CAPACITY	ID. INTX.	INSIDE DIAMETER INTERSECTION	TBM	TERRA COTTA PIPE	-	— FO/DC ———	FIBER/DC POWER COMPOSITE CABLE	
	CATCH BASIN	INV.	INVERT	TEL	TELEPHONE	1	- HYBRID	LIVERID CARLE	RICH MOUNT
L	CABLE	ISL	ISLAND	TOC	TOP OF CURB ·	1			TOWER
м,	CEMENT	ITL.	INDEPENDENT TESTING LABORATORY	TOB	TOP OF BANK	U	SFUGF	UNDERGROUND FIBER	III IOWER
R, M.	CERAMIC CUBIC FEET/MINUTE	J.B. JCT.	JUNCTION BOX	TOS	TOP OF SLOPE TOP OF WALL				SITE ADDRESS
.M. .S.	CUBIC FEET/MINUTE CUBIC FEET/SECOND	JCT. JSDC	JUNCTION JOINT SPECIAL OPERATIONS COMMAND	TP	TOP OF WALL TELEPHONE POLE		— онг	OVERHEAD FIBER	SITE ADDRESS 759 FIRE TOWER ROA
	CURB INLET	JT.	JOINT	TRANS	TRANSFORMER		MMF	MULTI-MODE FIRER	BOONE, NC 28807
P.	CAST IRON PIPE	×	K VAI VE	TYP.	TYPICAL				IH
IC.	CIRCULATING	KVA	KILOVOLT AMPERE	U/C	UNDER CONSTRUCTION		SMF	SINGLE-MODE FIBER	LATITUDELCNGITUD
	CONSTRUCTION JOINT/CONTRACTION JOINT CENTER LINE	ĸw	KILOWATT	UNG	UNDERGROUND		— SM6 ———		36,2330639*, -61,69668
i	CONCRETE MONUMENT	i.e	LINFAR FEFT	UP	UNLESS NOTED OTHERWISE		— SIVIB ——	FIBER TRUNK - 8 STRAND]]]
i.P.	CONCRETE METAL PIPE	LGT	LIGHT	VC	VERTICAL CURVE VITRIFIED CLAY PIPE		- SM12	FIBER TRUNK - 12 STRAND	SEAL:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1,U.	CONCRETE MASONRY UNIT	LP	LIGHT POLE	VCP	VITRIFIED CLAY PIPE				Iller Alliant
).	CLEAN OUT	LT	LEFT	VIF	VERIFY IN FIELD		— SM24 ————	FIBER TRUNK - 24 STRAND	SEAL: CARO
L.	COLUMN	MED	MAXIMUM MEDIAN	WL	WATER LINE WATER METER		- SM48	FIDER TOURS AS CTRAND	SEAL CARO
NC, ND.	CONCRETE CONDENSATE	WED	MANHOLE	WSEL	WATER METER WATER SURFACE ELEVATION				11 50 10 30000
NN.	CONNECTION	MIN	MINIMUM	w	WATER VALVE		— SM96 ————	FIBER TRUNK - 96 STRAND	SEAL OSTOTO
NST.	CONSTRUCTION	MJ	MECHANICAL JOINT	WTR	WATER				III = & SEAL F
NT.	CONTINUOUS	MON	MONUMENT	WWF	WIRE WELD FABRIC		- SM144	FIBER TRUNK - 144 STRAND	= 051707
R D.C.	CONTRACTING OFFICERS REPRESENTATIVE CENTER TO CENTER	MTL	METAL MONITOR WELL / MICROWAVE				- SM288	FIBER TRUNK - 288 STRAND	
UC.	CUBIC YARD	MUTCO	MANUAL ON UNIFORM TRAFFIC CONTROL						11 3 0 Warres
ř.	DETAIL		DEVICES				GND	GROUND WIRE	11 240 OINE
	DROP INLET	N/A	NOT APPLICABLE				— GAS	DAG LINE	A BRIDGE
	DIAMETER	NAD 27	NORTH AMERICAN DATUM 1927 NORTH AMERICAN DATUM 1983				GAS	GASLINE	III Williams
F.	DIFFUSER DIMENSION	NAD 83 NBL	NORTH AMERICAN DATUM 1983 NORTH BOUND LINE		:		— ETH ———	ETHERNET CABLE	77113
P.	DUCTILE IRON PIPE	NG	NORMAL CROWN						REV DATE DETA
c.	DISCONNECT	NEMA	NATIONAL FLECTRICAL MANUFACTURES				— CAT6 ———	CATE CABLE	0 07/14/2023 CONSTR
	DUMMY JOINT		ASSOCIATION		•		—CAT5 ———	CATE CARLE	1 8/6/2023 REV, CONST
	DOWN	NIC	NOT IN CONTRACT						
	DRAIN DOWN SPOUT	NIP N.T.S.	NEW IRON PIPE NOT TO SCALE			ı —	— ALM ———	ALARM CABLE	
	DOWN SPOUT DOMESTIC WATER	N.1.S. O.U.	ON CENTER			l	— с ——		3 04/15/2025 REV. CONS
G,(S)	DRAWING(S)	0.V.	OUTSIDE DIAMETER				c	CONDUIT	4
	FACH	OН	OVERHEAD				- COAX	COAX FEEDLINE	5
	EXHAUST FAN	OHE	OVERHEAD BLECTRIC						8
	EXISTING GRADE EXISTING IRON PIPE	ONUS, OVH	OLD NORTH UTILITY SERVICE OVERHANG				– TFT-402 ———	COAX FEEDLINE / JUMPER - TFT-402	
Ρ.	EXISTING IRON PIPE EXPANSION JOINT	OVH P/A	OVERHANG PARKING AREA					COAX FEEDLINE / JUMPER - PTS1-50	7
C.	ELECTRIC	PC	POINT OF CURVATURE						8
	FLEVATION	PCC	POINT OF COMPOUND CURVATURE			ı —	-LMR-240	COAX FEEDLINE / JUMPER - LMR-240	9
t.	ELECTRIC METER	PED	PEDESTAL						10
	EDGE OF PAVEMENT	PER.	PERIMETER PROPOSEC GRADE LINE				- LDF4-50	COAX FEEDLINE / JUMPER - LDF4-50	
UIP,	EQUIPMENT END VERTICAL CURVE	PGL	PROPOSED GRADE LINE POINT OF INTERSECTION				1 DE1 50	COAX FEEDLINE / JUMPER - LDF1-50	55
DE .	END VERTICAL CURVE END VERTICAL CURVE ELEVATION	PINC	POINT OF INTERSECTION ON CURVE						12
cs	END VERTICAL CURVE STATION	PIV	POST INDICATOR VALVE POINT OF VERTICAL INTERSECTION ELEVATION			. —	- HL4RPV	COAX FEEDLINE / JUMPER - HL4RPV	13
4.	EXHAUST	PIV ELEV	POINT OF VERTICAL INTERSECTION ELEVATION						14
JT.	EXPANSION JOINT	PLT	PLATE		•	l —	- FSJ4-50	CDAX FEEDLINE / JUMPER - FSJ4-50	
r.	EXTERIOR EXISTING	PSF PSF	POUNDS PER SQUARE FOOT POUNDS/SQUARE FOOT			l	- ES I1-50	COAX FEEDLINE / JUMPER - FSJ1-50	DRAWN BY: CP CHECKE
EXIST.	FACE OF CURB	PSI	DOUNDS/SOUARE INCH						SHEET TITLE
	FLOOR DRAIN	PIVSTA	POINT OF VERTICAL INTERSECTION STATION				- AL4RPV	COAX FEEDLINE / JUMPER - AL4RPV	I I I sheet mile.
.c.	FIRE DEPARTMENT CONNECTION	PT	POINT			l			0=1==::
.s.	FLARED END SECTION	PVMT	PAVEMENT		4	l			GENERAL
Ε.	FINISHED FLOOR ELEVATION	RAD.	RADIUS			l			NOTES III
	FINISHED GRADE FIRE HYDRANT	RCP REINF.	REINFORCED CONCRETE PIPE REINFORCING			l			III NOTES III
	FIRE HYDRANT FINISH FLOOR	REINF.	REQUIRED			l			<u> </u>
	FORCE MAIN	REV	REVISED			l			SHEET *GN-3 CURREN
c	FACE OF CURB	R.P.Z.	REDUCED PRESSURE ZONE						

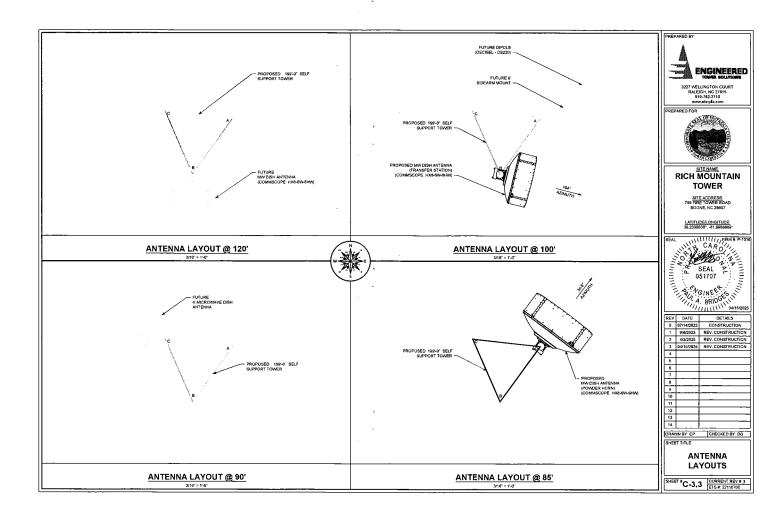

2018 APPENDIX B BUILDING CODE SUMMARY FOR ALL COMMERCIAL PROJECTS	Gross Building Area: FLOOR	PREPARED BY ENGINEERED THAM SOLUTION 327 WELLINGTON COURT NOT THE TOTAL TH
CONTACY:	Basement	
Architectural	ALLOWARI FARFA	1
Electrical () () () () () () () () () (Primary Occupancy Classification: <u>SELECT ONE</u> Assembly □ A-1 □ A-2 □ A-3 □ A-4 □ A-5	759 FIRE TOWER ROAD BOONE, NC 28607
Sprinkler-Standpipe ()	Educational Factory DE-1 Moderate DE-2 Low	38.2330639*, -81.6986889*
Retaining Walls >5 High(_)	Institutional I-1 Condition 1 2	SAN CAROUS
☐ 1st Time Interior Completion ☐ Shell/Core Phased Construction - Shell/Core	1-3-Condition 1 2 3 4 5	SEAL P
2018 NC EXISTING BUILDING CODE: Prescriptive Repair Chapter 14 Alteration: Level I Level II Level III Chapter 01 CONSTRUCTED:(date) ORIGINAL OCCUPANCY(S) (Ch. 3)	Accessory Occupancy Classification(s): nicitented Uses (Table 509): Special Uses (Chapter 4 – List Code Sections): Special Provisions: (Chapter 5 – List Code Sections): Mixed Occupancy: ☑ No □ Yes Separation: Hr. Exception:	A BRIDGIAN CANSTOOS REV DATE DETAILS 0 07/14/2023 CONSTRUCTION
RENOVATED: (date)CURRENT OCCUPANCY(\$) (Ch. 3) RISK CA TEGORY (table 1904.5)	The required type of construction for the building shall be determined by applying the height and area limitations for each of the applicable occupancias to the entire building. The most restrictive type of construction, so determined, shall apply to the entire building. Separated Use (508.4)	1 9/6/2023 REV. CONSTRUCTION 2 4/2/2025 REV. CONSTRUCTION 3 04/15/2025 REV. CONSTRUCTION 4
BASIC BUILDING DATA Construction Type: - - - - - - - - - - - - - - - - - -	See below for area calculations for each story, the area of the occupancy shall be such that the sum of the ratios of the actual floor area of each use advised by the allowable for area of orac use of the actual control	5 6 7
Sprinklers: ⊠ No □ Panial □ Yes □ NFPA 13 □ NFPA 13D Standpipes: ⊠ No □ ∪ Yes □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		8 9 10
Special Inspections Required: ⊠No	·	11 12 13
NOTE THE PROJECT SITE IS NOT LOCATED IN ANY FLOOD HAZARD AREAS OR FUTURE CONDITIONS FLOOD HAZARD AREAS, AS SHOWN ON FERIA MAR NUMBER 37/02/2010(0), ON ED 12/2/2020.		DRAWN BY: CP CHECKED BY: DG SHEET TITLE:
		NC APPENDIX B I
2019 NC Administrative Code and Policies Appendix B for Building 0	2018 NC Administrative Code and Policies Appendix B for Building	SHEET #GN-4 CURRENT REV # 3 ETS # 22110700

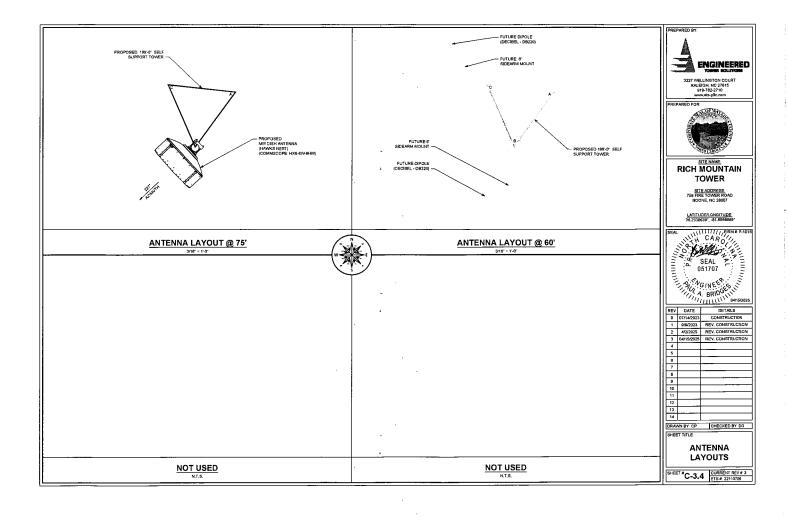

							,									1
																PREPARED BY:
									FIRE	PROTEC	TION REQUI	REMENTS				3227 WELLINGTON COUR
STURY NO.	DESCRIPTION AND USE SIZE STOR	(A) DAREA PER TAB EVIAGRALI	(9) LE 505.2* AREA	(C) AREA FOR PROSTAGE SINCREASEPA	(I)) ALLOWABLE AREA PER STORY OR UNLAWTED ²⁻¹	,		BUS DENG ELEMENT	FIRE SEPARATION DISTANCE	REQU	PROVIDED (W)	DETAIL# AND SHEET#	FOR RATED	SHEET # POR RATED PENETRATION	SHEET# FOR RATED	RALEIGH, NC 27815 919-782-2710 www.ets-plic.com
1	Equip. Shelter	218	5,500	N/A	5,500		ŀ	Structural Frame, including columns, girders,	JY KERTO.	N/A	идристюно.		ASSEMBLY		JOHTA .	PREPARED FOR:
<u> </u>								trusses Bearing Walls				<u> </u>				
]		Exterior North	8	,	2	VEP				III total
1 Frontage	e area increases from Socti	nn 506 3 are com	anuted thus:			J		East. West	8	1	2	DWG 207458				
a, Per	e area increases from Sacti rimeter which fronts a public tal Building Perimeter	way or open spa	nputed trius: ace having 2 .(P)	0 feet minimum widtl	(F)			South Interior	8	1 N/A	2	SHEET 1				SILE NAME
c. Rat	tie (F/P) =(F/ = Minimum width of public v	(2)	(W)					Nonbearing Walls and Partitions		N/A						RICH MOUNT
e. Per	= Minimum width of public v reent of frontage increase ly ed area applicable under col	= 100 F/P - 0.2	51 x W/30 =	(%)			ŀ	Extrains walk	-	N/A					$\vdash\vdash\vdash$	TOWER
3 Maximu	m Building Area = total num	ber of stories in t	the building	D (maximum 3 stori	es) (506,2).			Fast West		N/A						SITE ACORESS: 759 FIRE TOWER ROAD
4 The ma: 5 Frontag	ximum area of open parking e increase is based on the o	garages must co unsprinklered are	ompry with T a value in Ta	able 405,5,4 sble 506,2,				South		N/A						BOONE, NC 28607
		ALLONS	BLE HEIGH		***			Interior walls and partitions Floor Construction	-	N/A	_	VFP DWG			\square	LATITUDEA,ONGITUDE 36,2330639*, -81,898688
				SHOVEN ON PLANS	CODE REFERENCE	100		Including supporting beam and joists	В	٥	2	207459 SHEET 1				li L
D	United in Francisco Part of	ALLOWA (TABLE	*************	347	2018	4		Floor Celling Assembly Column Supporting Floors	<u> </u>	N/A N/A						SEAL: 111111111111111111111111111111111111
	Height in Feet (Table 504.3) ² Height in Stories (Table 504.4			8.2 }	2018	-		Roof Constitution, including supporting beams and joists		NVA						10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 Provide o	ode reference if the "Show on ximum height of air traffic co	Plans" quantity is	not based on	Table 504.3 or 504.4.		_		Roof Ceiling Assembly Column Supporting Root		AUA AUA						SEAL OS1707
	xtmum height of all traffic co ximum height of open parkir							Shaft Enclosures - Exd Shaft Enclosures - Other		NUA NUA						051707
						_	Ι.	Contidor Separation		N/A		\blacksquare				1 STAGINEER'S
							-	Gccupancy/Fire Barrier Separation Party/Fire Wall Separation		N/A N/A		\vdash				A. BRIDGE
							4	Smoke Barrier Separation		N/A N/A						REV DATE DETAIL
								Smoke Partition Tenant/Dwelling Unit/ Steeping Unit Separation		N/A						0 07/14/2023 CONSTRU
								Incidental Use Separation Indicate section number pe	emilling radicel	N/A						1 8/6/2023 REV. CONSTI 2 4/2/2025 REV. CONSTI
								aloicata secaon nomber pe	I militaring reduca	ion.						3 04/15/2025 REV. CONSTI
																5
																7
																8
																10
																11 12
																13
																DRAWN BY: CP CHECKED
							•									SHEET TITLE
							I									111
							٠									NC APPENDIX

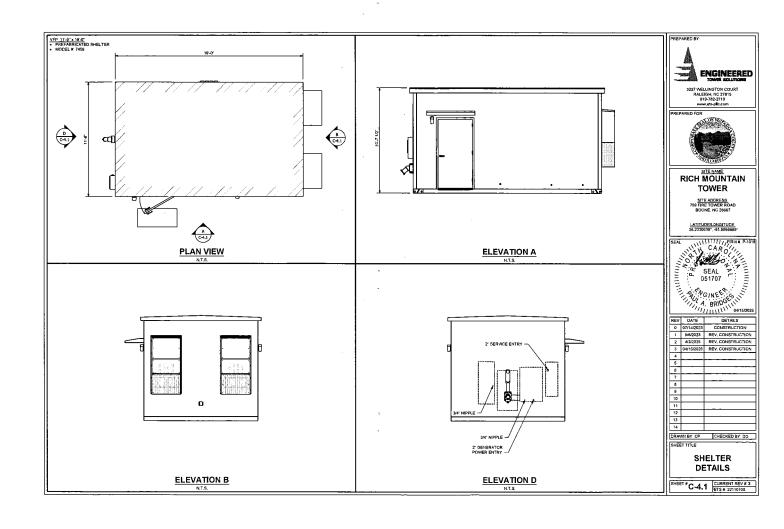

PERCENTAGE OF WALL OPENING CALCULATIONS FIRE SEPARATION DESCRIPTION OF CONTROL ALLOWING AREA ACTUAL SHOWN ON PROPERTY LINES PROPERTY LINES PROPERTY LINES	PREFABRICATED SHELTER SECTION NOT APPLICABLE ACCESSIBLE DWELLING UNITS (SECTION 1107) UNIT OTAL ACCESSIBLE ACCESSIBLE TYPE A TYPE B TYPE B TOTAL OF THE BOOK BASE ACCESSIBLE TYPE A TYPE B TYPE B TOTAL OF THE BOOK BASE ACCESSIBLE TYPE A TYPE B TYPE B TOTAL OF THE BOOK BASE ACCESSIBLE THE BOOK BA	FREPARED BY FINGINEERED SYZY WELLINGTON COURT PREPARED FOR PREPARED FOR SYLVEN COURT WANTER COMMITTEE SYLVEN COURT WANTER COMMITTEE SYLVEN COURT SYLV
LIFE SAFETY SYSTEM REQUIREMENTS	ACCESSIBLE PARKING (SECTION 1106) (SECTION 1106) LOT OR PARKING AREA TOTAL FOR WINNING SPACES SOF ACCESSIBLE PARKES PROVIDED TOTAL # ACCESSIBLE PROVIDED PROVI	RICH MOUNTAIN TOWER SITE ADDRESS 759 FIRE TOWER ROAD BOOKE NC 20007 LATITUDES ONGITUDE
Life Safety Plan Sheot #: Fire and/or smoke rated well locations (Chapler 7)	PLUMBING FIXTURE REQUIREMENTS (TABLE 2902.1) USE VATURECLOSTS URBALS LAWTONES BOOMERS BOUNDS FORTANS MAKE FORCE UNBES UNBES FORTANS MAKE FORCE UNBES FORTANS MAKE FORCE UNBES UNBES FORTANS MAKE	SEAL C A R FINAN R P-
18 NC Administrative Code and Policies Appendix B for Building	2018 NC Administrative Code and Policiae Appendix 6 for Bellding	NC APPENDIX B II

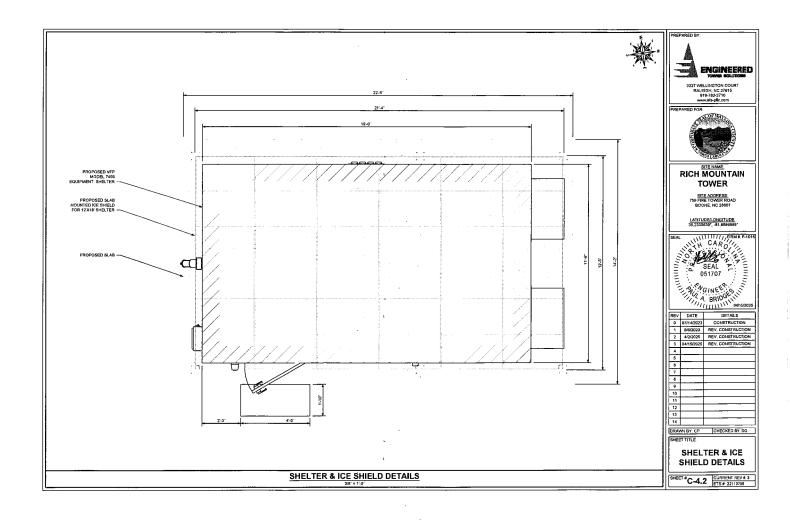

ENERGY SUMMARY The following data shall be accepted on the fine form and the food, conting facing post and the secretary of the fine form and the proposed design, to second energy on the fine food of the fine f
--

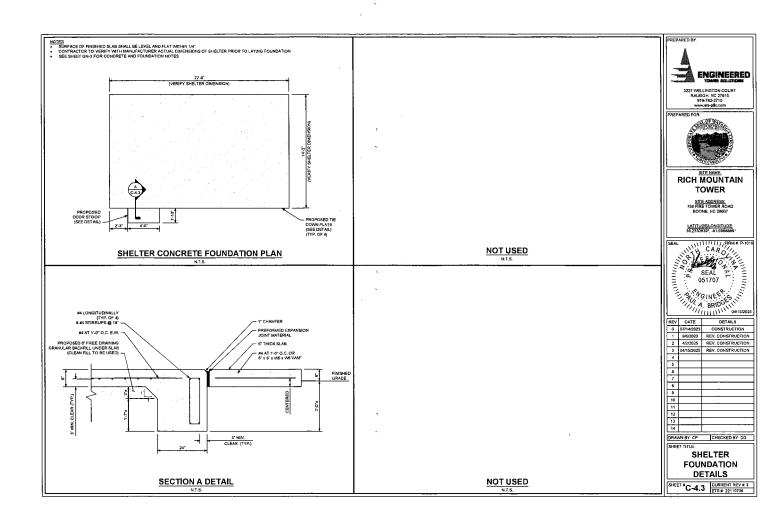


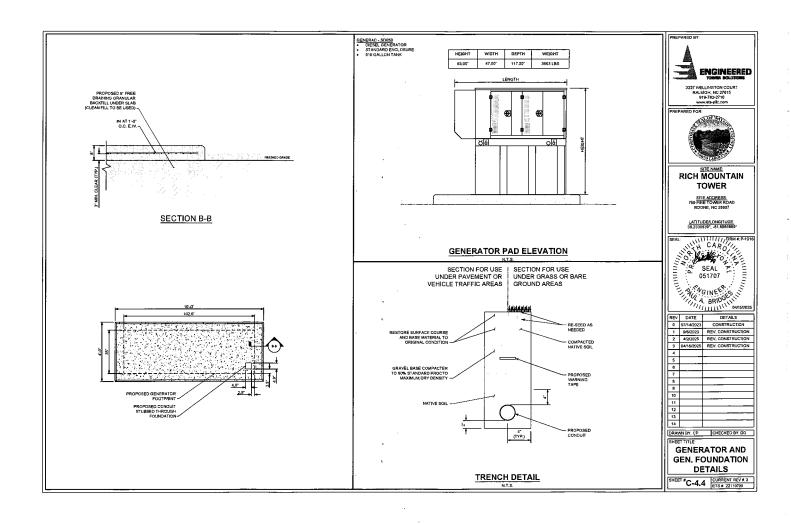


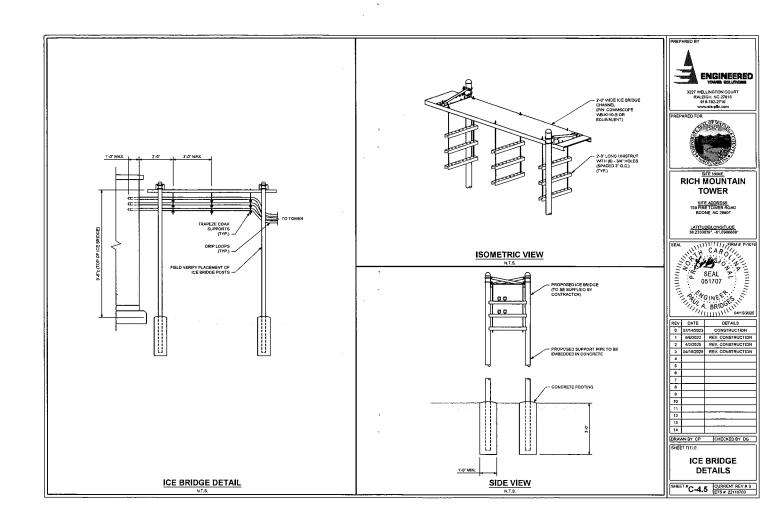


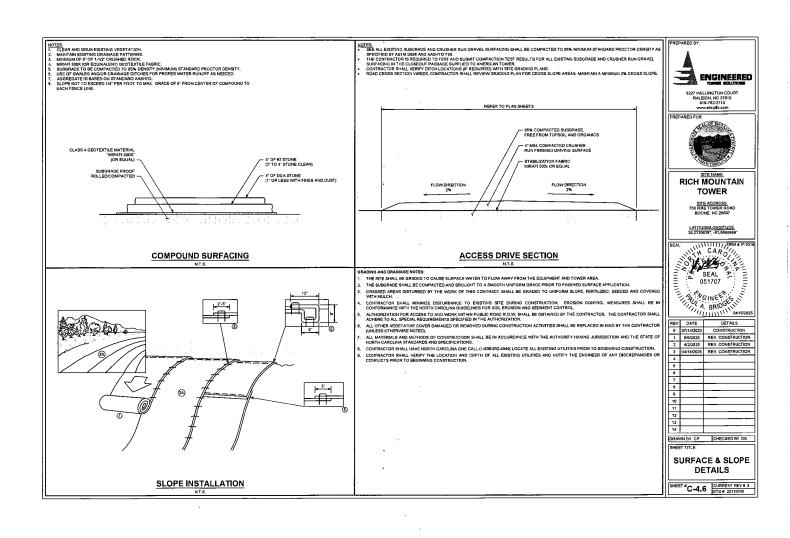


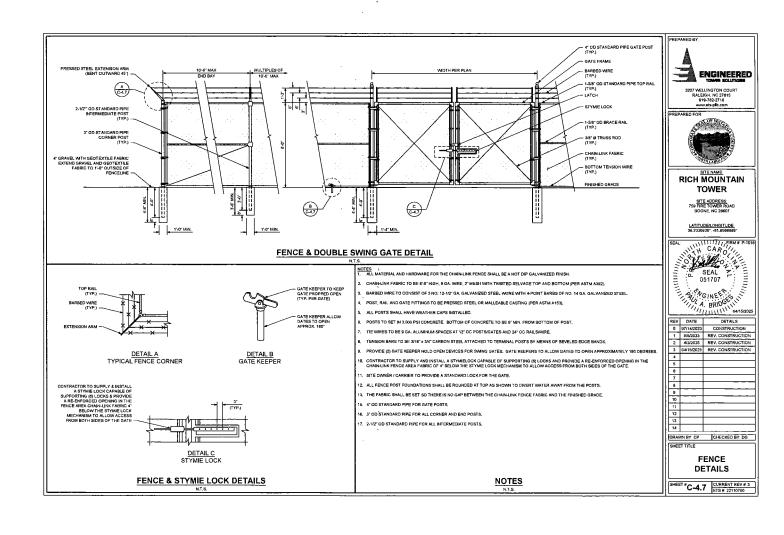

OWNER	QTY.	SIZE (FT)	TYPE	MANUFACTURER - ANTENNA MODEL NUMBER	ANTENNA AZIMUTH	MOUNT ELEVATION	LEG	CABLE (QTY.) TYPE	ENGIN
WATAUGA COUNTY	1		OMNI	RFI - CC607-11	-	176-0"	Α .	(1) 7/8" & (1) 1/2"	7774498 \$
WATAUGA COUNTY	1		OWN	RFI - CC807-11	-	176'-0"	В	(1) 7/6"	3227 WELLINGTON C RALEIGH, NC 276
WATAUGA COUNTY	1		TTA	ATY	-	175'-0"		-	919-782-2710 www.ets-pile.com
own rivial couldn't the thirty			.1 4 27); ij	69-989 \$9355-		1 ""		4.5%	PREPARED FOR
WATAUGA COUNTY	1		OMN	RFI - CC807-11	-	150'-0"	Α	(1) 1-5/8*	ACOFTE A
WATAUGA COUNTY	1		OMNI	RFI - CC807-11		150'-0"	8	(1) 1-5/8"	
Swelling and Courter of Profession	1		ZETSE.	195 979 - 293,75	-	1.50	-	1372	6
WATAUGA COUNTY	1	•	DISH TO BUCKEYE	COMMSCOPE - HX8-8W-6WH	318*	140'-0"	С	(1) Eu63	
Make An Applications of the San Co.			0498	da ha ya ya ya kadada		13.47	£ı.	1,116.71	To reason
switches as a series of protection			(44.54	Feb. 450 - 418 F. F	-	10"1.7"	٠,	. 17.1	SITE NAME.
WATAUGA COUNTY	1	•	DISH TO WATAUGA CO TRAN, STA.	COMMSCOPE - HX8-6W-6WH	104*	100-0	8	(1) EU63	RICH MOUN
WHITE OUT DIAMETERS	-	-	(198)	and the second of the second		4.7	- 1	25880	TOWER
WATAUGA COUNTY	1		DISH TO PHEONIX	COMMSCOPE - HX8-6W-8HW	36,6"	85'-0"	A	(1) EU63	1111
WATAUGA COUNTY	1	-	DISH TO HAWKS NEST	COMMSCOPE - HX6-8W-6HW	227	75'-0"	8	(1) EU63	SITE ADDRES: 759 FIRE TOWER I BOONE, NC 286
KALA SAMBAR CONSISS	-		320193	B1048L+1612.		:6 .	8:	11.12	BOONE, NC 280
							-		
Y FINAL DESIGN AND LOADING WITH Y FINAL DESIGN AND LOADING WITH SHES WILL HAVE AN ICE SHIELD ARE	STRUCTURAL AN	R TO GONSTRUC ALYSIS PRIOR TO	TRON CONSTRUCTION	1世紀 2987	.1		•	- t-a*	SEAL WITHTHIN
Y FINAL DESIGN AND LOADING WITH Y FINAL DESIGN AND LOADING WITH TEXT = FUTURE LOADING	STRUCTURAL AN	R TO CONSTRUC ALYSIS PRIOR TO	TION	1日前日 7987		<i>7.1</i>		+ k. ar'	SEAL C A R C C A R C C A R C C A R C C A R C C C A R C C C A R C C C A R C C C A R C C C C
Y FINAL DESIGN AND LOADING WITH Y FINAL DESIGN AND LOADING WITH TEXT = FUTURE LOADING	STRUCTURAL AN	R TO CONSTRUC	TION	1世紀		7.2		e Car	SEAL C A R
Y FINAL DESIGN AND LOADING WITH Y FINAL DESIGN AND LOADING WITH TEXT = FUTURE LOADING	STRUCTURAL AN	R TO CONSTRUCE	TION	1世紀 7887		7.0	-	e Cari	REV DATE DE GO

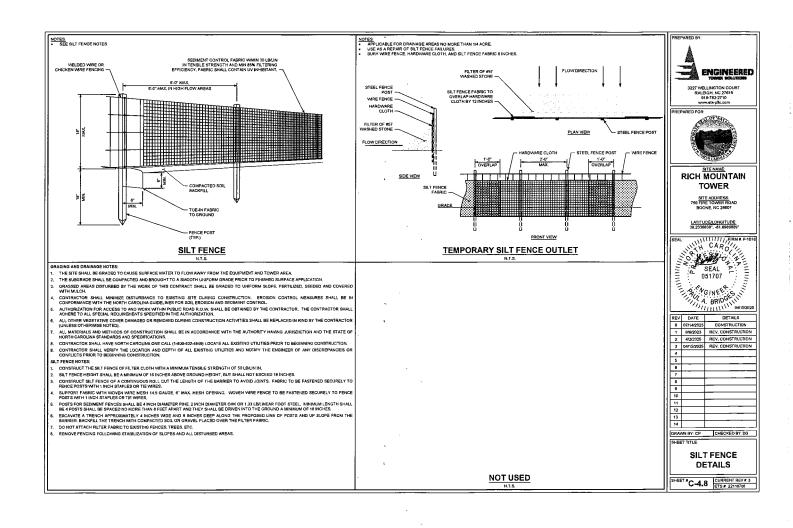


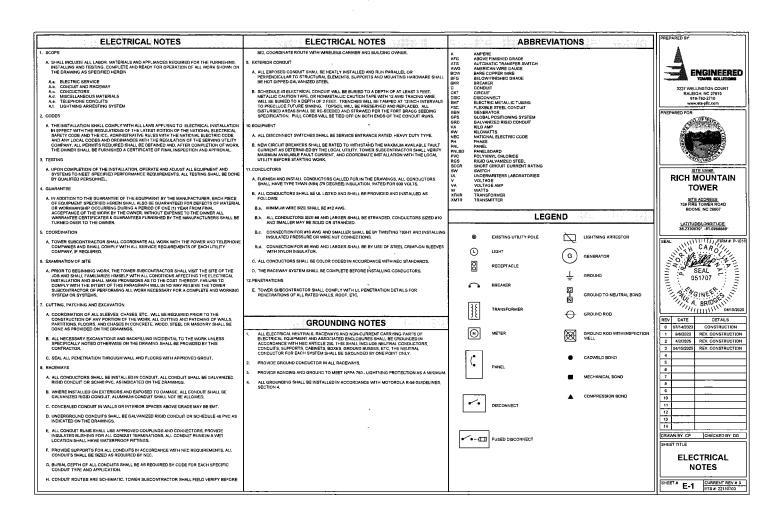


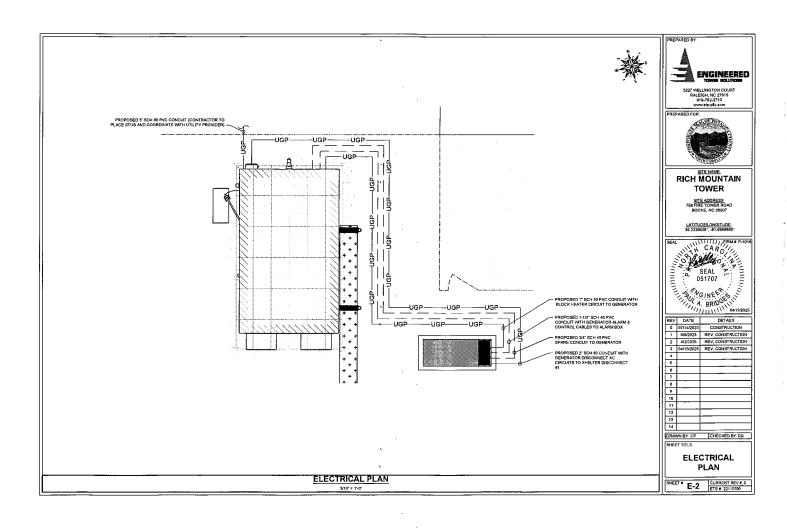


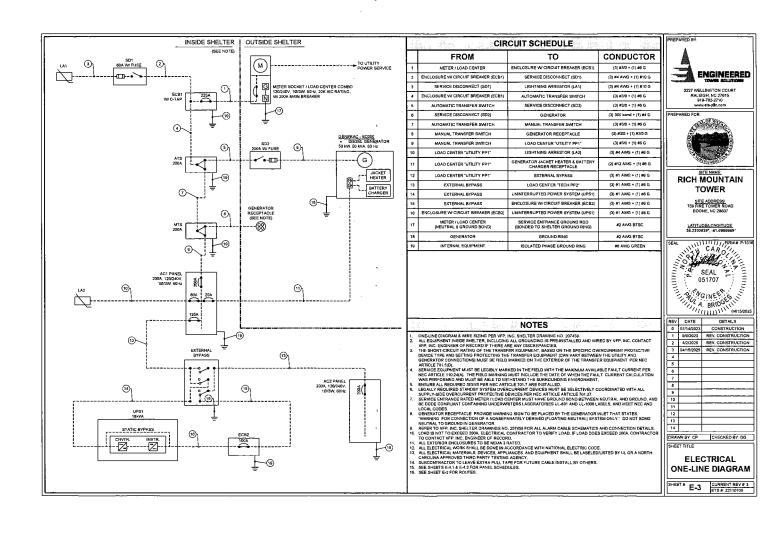


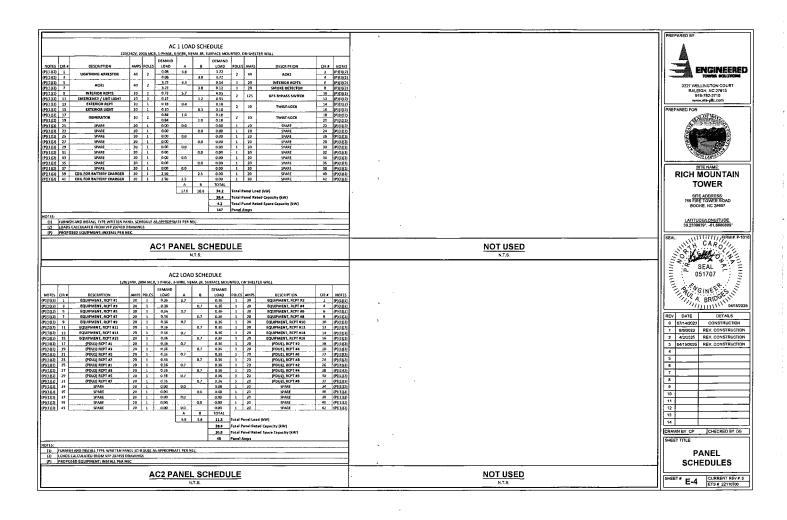


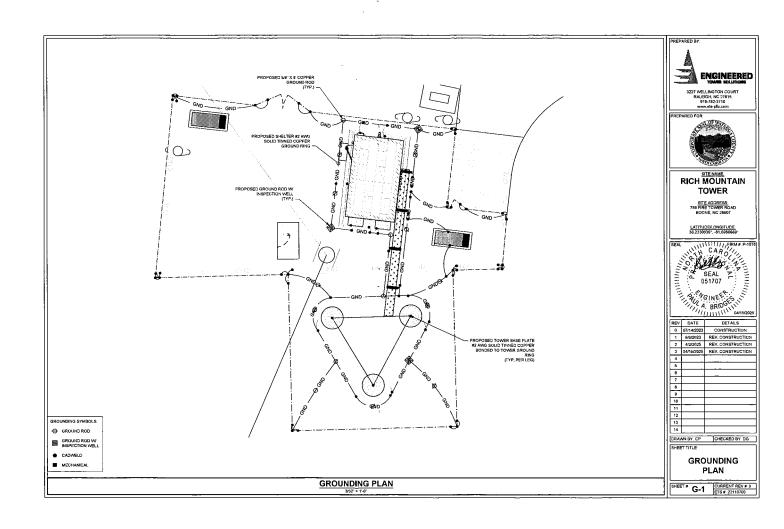


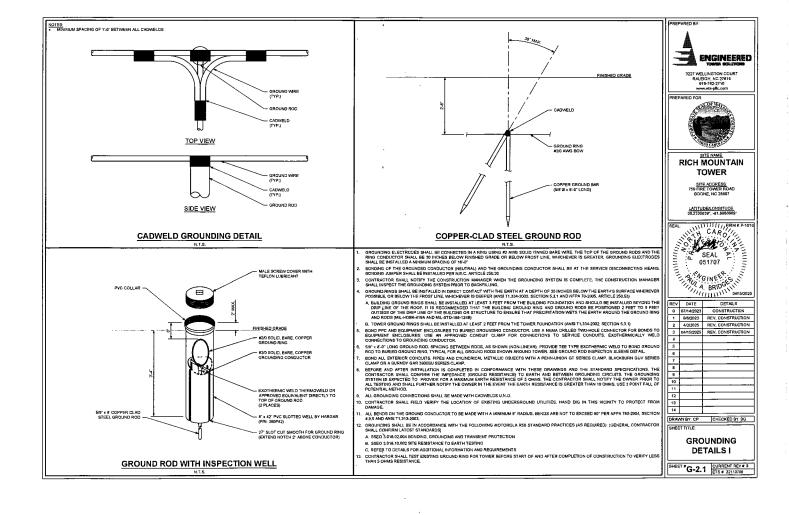


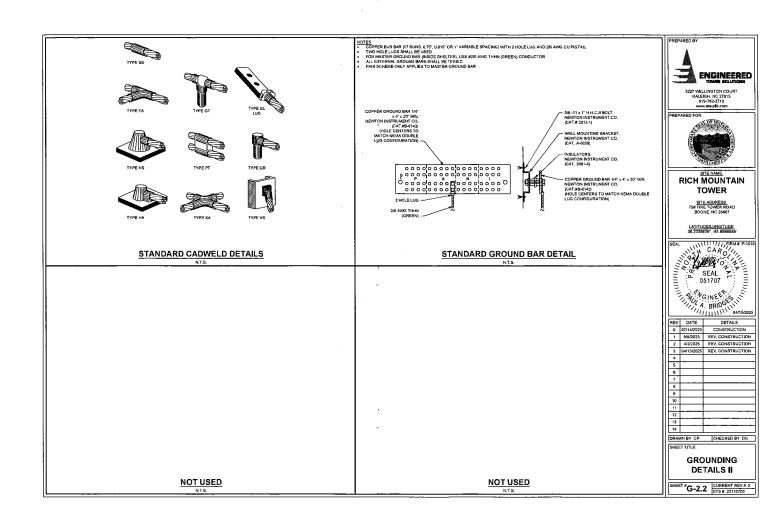








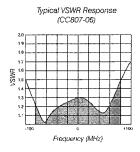


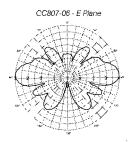


800 MHz Corporate Collinear Antennas

746-870 MHz

CC807 Series


These industry leading PIM and PIP rated collinear arrays allow site operators to combine, with complete integrity, a large number of communications services into a single, low profile collinear antenna array.


The true corporate feed of these arrays maintains total pattern integrity over a very broad operating and width, similar to that previously available only in exposed dipole configurations. This is now achieved in the preferred from factor of a fully enclosed fiberglass radome. The corporate collinears employ a unique corporate phasing system enabling precision control of the element placements ensuring phase purity resulting in exceptional bandwidth and electrical performance.

Gain is maximised and side lobes reduced dramatically. In a patented design approach the individual dipole elements are soldered to a brass support tube which is directly connected to the mounting tube and the lightning spike at the top of the antenna.

Features:

- 500W Continuous Power rating for CC807-11, CC807-08, CC807-06
- -150dBc Passive Intermodulation (PIM) rating
- 25 kW Peak Instantaneous (PIP) rating
- Extraordinary bandwidth characteristics with superior pattern control
- DC grounding on all elements for the ultimate in lightning protection and dissipation of static noise.

Electrical Specifications

Model Number	CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P
Nominal Gain <i>dBd (dBi)</i>	3 (5.1)	6 (8.1)	8 (10.1)	10.5 (12.6)
Frequency <i>MHz</i>		746	- 870	
Tuned Bandwidth MHz		Full	Band	
VSWR (Return Loss)		. <1	.5:1	
Downtilt ^{e (f)}	Not Offered	0 "Std, -3",⊧5°	0 °Std, -1	°, -2°,, -3°, -4°, -5°
Vertical Beamwidth°	28	17	9	4.5
Horizontal Beamwidth®		· Omni +	/- 0.5dB	
Input Power W	250	•	500	
Passive IM 3rd order (2x20W) dBc		-1	50	
Peak Instantaneous Power kW			25	

Mechanical

Model Number		CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P		
Construction	- 11		Sky blue fibreglass radome				
Length mm (inches)		1203 (47)	1741 (69)	2817 (111)	5219 (205)		
Radome Diameter mm (inches)		A PROPERTY AND A STATE OF THE S	·	6 (3)			
Weight kg (lbs)		4 (9)	7 (16)	12(27)	22 (49)		
Shipping Weight <i>kg (lbs)</i>		8 (18)	11 (25)	18 (40)	30 (66)		
	Н		118	5 (4.5)			
Shipping Dimensions		115 (4.5)					
mm (inches)	L	1400 (55)	1.900 (75)	3000 (118)	5600 (220)		
Termination			4,3-10 fixed female				
Suggested Clamps (not included	d)		2xl	JC-114			
Invertible Mounting			Υε	es (1)			
D 1 1 1 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	No Ice	806 (0.9)	1268 (1.4)	2320 (2.5)	4560 (4.9)		
Projected area cm² (ft²)	With Ice	1048 (1.2)	1571 (1.7)	2880 (3.1)	5760 (6.2)		
Lateral Thrust @160km/h N (100 mph lbs)		96 (22)	150 (34)	276 (62)	540 (121)		
Wind Gust Rating km/h (mph)	No Ice	. >240 (>150)					
Torque @ 160km/h Nm (100mph ft-lbs)		20 (15)	73 (54)	278 (205)	1032 (761)		

(1) To order pre-set downtilt versions available, simply add a -T2 or -T4, etc towards the end of the part number to denote the downtilt model required. For eg. CC807-11-T2-P to order a CC807-11-P with 2 deg of downtilt. Please note: Models with downtilt are NOT field invertible.

UNITED STATES OF AMERICA FEDERAL COMMUNICATIONS COMMISSION ANTENNA STRUCTURE REGISTRATION

OWNER: Engineered Tower Solutions, PLLC

FCC Registration Number (FRN): 0028400505

-CC Registration Number (FRN): 0028400505	
ATTN: Eric Dickerson	Antenna Structure Registration Number
Engineered Tower Solutions, PLLC	1327000
3227 Wellington Ct Raleigh, NC 27615	Issue Date 01/10/2024
Location of Antenna Structure	Ground Elevation (AMSL)
759 Fire Tower Road	1423.0 meters
Boone, NC 28607	Overall Height Above Ground (AGL)
County:WATAUGA	61.0 meters
Latitude Longitude	Overall Height Above Mean Sea Level (AMSL)
36- 13- 58.8 N 081- 41- 55.3 W	NAD83 1484.0 meters
Center of Array Coordinates N/A	
N/A %	Lattice Tower
Painting and Lighting Requirements:	
FAA Chapters 4, 8, 15	
Paint and Light in Accordance with FAA Circul	lar Number 70/7460-1M
Conditions:	

This registration is effective upon completion of the described antenna structure and notification to the Commission. YOU MUST NOTIFY THE COMMISSION WITHIN 5 DAYS OF COMPLETION OF CONSTRUCTION OR CANCELLATION OF YOUR PROJECT, please file FCC Form 854. To file electronically, connect to the antenna structure registration system by pointing your web browser to https://www.fcc.gov/antenna-structure-registration. Electronic filing is required. Use purpose code "NT" for notification of completion of construction; use purpose code "CA" to cancel your registration.

The Antenna Structure Registration is not an authorization to construct radio facilities or transmit radio signals. It is necessary that all radio equipment on this structure be covered by a valid FCC license or construction permit.

You must immediately provide a copy of this Registration to all tenant licensees and permittees sited on the structure described on this Registration (although not required, you may want to use Certified Mail to obtain proof of receipt), and *display* your Registration Number at the site. See reverse for important information about the Commission's Antenna Structure Registration rules.

You must comply with all applicable FCC obstruction marking and lighting requirements, as set forth in Part 17 of the Commission's Rules (47 C.F.R. Part 17). These rules include, but are not limited to:

- **Posting the Registration Number:** The Antenna Structure Registration Number must be displayed in a conspicuous place so that it is readily visible near the base of the antenna structure. Materials used to display the Registration Number must be weather-resistant and of sufficient size to be easily seen at the base of the antenna structure. Exceptions exist for certain historic structures. See 47 C.F.R. 17.4(g)-(h).
- Inspecting lights and equipment: The obstruction lighting must be observed at least every 24 hours in order to detect any outages or malfunctions. Lighting equipment, indicators, and associated devices must be inspected at least once every three months.
- Reporting outages and malfunctions: When any top steady-burning light or a flashing light (in any position) burns out or malfunctions, the outage must be reported to the nearest FAA Flight Service Station, unless corrected within 30 minutes. The FAA must again be notified when the light is restored. The owner must also maintain a log of these outages and malfunctions.
- Maintaining assigned painting: The antenna structure must be repainted as often as necessary to maintain good visibility.
- Complying with environmental rules: If you certified that grant of this registration would not have a significant environmental impact, you must nevertheless maintain all pertinent records and be ready to provide documentation supporting this certification and compliance with the rules, in the event that such information is requested by the Commission pursuant to 47 C.F.R. 1.1307(d).
- **Updating information:** The owner must notify the FCC of proposed modifications to this structure; of any change in ownership; or, within 30 days of dismantlement of the structure.

Copies of the Code of Federal Regulations (which contain the FCC's antenna structure registration rules, 47 C.F.R Part 17) are available from the Government Printing Office (GPO). To purchase CFR volumes, call (202) 512-1800. For GPO Customer Service, call (202) 512-1803. For additional FCC information, consult the Antenna Homepage on the internet at https://www.fcc.gov/antenna-structure-registration or call (877) 480-3201 (TTY 717-338-2824).

B224-A

1-port omni exposed dipole antenna, 150-160 MHz, 360° HPBW, fixed electrical tilt

- Broad response
- Two-piece mast for ease of shipping

General Specifications

Antenna Type Omni

Band Single band

Color Silver

RF connector inner conductor and body grounded to reflector and mounting bracket **Grounding Type**

Performance Note Outdoor usage

Radiator Material Aluminum **RF Connector Interface** N Male

RF Connector Location Bottom

RF Connector Quantity, low band

RF Connector Quantity, total

Dimensions

Length 6477 mm | 255 in

Net Weight, without mounting kit 15.9 kg | 35.053 lb

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 150 - 160 MHz

Polarization Vertical

Electrical Specifications

Frequency Band, MHz 150-160

Gain, dBi 8.1

Beamwidth, Horizontal, 360

degrees

Beamwidth, Vertical, degrees 16

COMMSCOPE°

DB224-A

Beam Tilt, degrees

0

VSWR | Return loss, dB

1.5 | 14.0

Input Power per Port, maximum, watts

500

Mechanical Specifications

Wind Loading @ Velocity, maximum

560.5 N @ 100 mph (126.0 lbf @ 100 mph)

Wind Speed, maximum

130 km/h (81 mph)

Regulatory Compliance/Certifications

Agency

Classification

ISO 9001:2015

Designed, manufactured and/or distributed under this quality management system

Included Products

DB365-OS

Pipe Mounting Kit that consists of two clamps for mounting antennas to round members 1.25 - 3.5 in (35 - 89 mm) OD round members.

* Footnotes

Performance Note

Severe environmental conditions may degrade optimum performance

K-Co Enterprises, Inc.

613 Hurricane Creek Rd

Piedmont, SC 29673

Bid for: Aho Tower Modification – Watauga County, NC

814 W King St.

Boone, NC 28607

Please give Ernie Rood a call at 864-947-8704 with any questions.

Fairfield, Ohio

POWER OF ATTORNEY

KNOW ALL MEN BY THESE PRESENTS: That THE CINCINNATI INSURANCE COMPANY and THE CINCINNATI CASUALTY COMPANY, corporations organized under the laws of the State of Ohio, and having their principal offices in the City of Fairfield, Ohio (herein collectively called the "Companies"), do hereby constitute and appoint

Brooks M Keys, Jr., J. DuPre Keys, John B Ross, John B Ross, Jr., James G Culwell

of Belton, SC

their true and legal Attorney(s)-in-Fact, each in their separate capacity if more than one is named above, to sign, execute, seal and deliver on behalf of the Companies as Surety, any and all bonds, policies, undertakings or other like instruments, as follows:

Five Million Dollars and 00/100 (\$5,000,000.00)

This appointment is made under and by authority of the following resolutions adopted by the Boards of Directors of The Cincinnati Insurance Company and The Cincinnati Casualty Company, which resolutions are now in full force and effect, reading as follows:

RESOLVED, that the President or any Senior Vice President be hereby authorized, and empowered to appoint Attorneys-in-Fact of the Company to execute any and all bonds, policies, undertakings, or other like instruments on behalf of the Corporation, and may authorize any officer or any such Attorney-in-Fact to affix the corporate seal; and may with or without cause modify or revoke any such appointment or authority. Any such writings so executed by such Attorneys-in-Fact shall be binding upon the Company as if they had been duly executed and acknowledged by the regularly elected officers of the Company.

RESOLVED, that the signature of the President or any Senior Vice President and the seal of the Company may be affixed by facsimile on any power of attorney granted, and the signature of the Secretary or Assistant Vice-President and the Seal of the Company may be affixed by facsimile to any certificate of any such power and any such power of certificate bearing such facsimile signature and seal shall be valid and binding on the Company. Any such power so executed and sealed and certified by certificate so executed and sealed shall, with respect to any bond or undertaking to which it is attached, continue to be valid and binding on the Company.

IN WITNESS WHEREOF, the Companies have caused these presents to be sealed with their corporate seals, duly attested by their President or any Senior Vice President this 16th day of March, 2021.

STATE OF OHIO COUNTY OF BUTLER

)SS:) THE CINCINNATI INSURANCE COMPANY
THE CINCINNATI CASUALTY COMPANY

Stephen & Ventre

On this 16th day of March, 2021 before me came the above-named President or Senior Vice President of The Cincinnati Insurance Company and The Cincinnati Casualty Company, to me personally known to be the officer described herein, and acknowledged that the seals affixed to the preceding instrument are the corporate seals of said Companies and the corporate seals and the signature of the officer were duly affixed and subscribed to said instrument by the authority and direction of said corporations.

Keith Collett, Attorney at Law Notary Public - State of Ohio

My commission has no expiration date. Section 147.03 O.R.C.

I, the undersigned Secretary or Assistant Vice-President of The Cincinnati Insurance Company and The Cincinnati Casualty Company, hereby certify that the above is the Original Power of Attorney issued by said Companies, and do hereby further certify that the said Power of Attorney is still in full force and effect.

Given under my hand and seal of said Companies at Fairfield, Ohio, this

day of

BN-1457 (3/21)

THE CINCINNATI INSURANCE COMPANY

Bid Bond

CONTRACTOR (Name, legal status and address):

SURETY (Name, legal status and principal place of business):

K-Co Enterprises, Inc.

613 Hurricane Creek Rd

Piedmont, SC 29673

THE CINCINNATI INSURANCE COMPANY 6200 S. GILMORE ROAD

FAIRFIELD, OHIO 45014-5141

OWNER (Name, legal status and address):

Watauga County

814 King Street

Boone, NC 28607

BOND AMOUNT:

5% of bid

This document has important legal consequences, Consultation with an attorney is encouraged with respect to its completion or modification

Any singular reference to Contractor, Surety, Owner or other party shall be considered plural where applicable.

PROJECT (Name, location or address, and Project number, if any):

provide steel and labor to install steel upgrade

The Contractor and Surety are bound to the Owner in the amount set forth above, for the payment of which the Contractor and Surety bind themselves, their heirs, executors, administrators, successors and assigns, jointly and severally, as provided herein. The conditions of this Bond are such that if the Owner accepts the bid of the Contractor within the time specified in the bid documents, or within such time period as may be agreed to by the Owner and Contractor, and the Contractor either (1) enters into a contract with the Owner in accordance with the terms of such bid, and gives such bond or bonds as may be specified in the bidding or Contract Documents, with a surety admitted in the jurisdiction of the Project and otherwise acceptable to the Owner, for the faithful performance of such Contract and for the prompt payment of labor and material furnished in the prosecution thereof; or (2) pays to the Owner the difference, not to exceed the amount of this Bond, between the amount specified in said bid and such larger amount for which the Owner may in good faith contract with another party to perform the work covered by said bid, then this obligation shall be null and void, otherwise to remain in full force and effect. The Surety hereby waives any notice of an agreement between the Owner and Contractor to extend the time in which the Owner may accept the bid. Waiver of notice by the Surety shall not apply to any extension exceeding sixty (60) days in the aggregate beyond the time for acceptance of bids specified in the bid documents, and the Owner and Contractor shall obtain the Surety's consent for an extension beyond the sixty (60) days.

If this Bond is issued in connection with a subcontractor's bid to a Contractor, the term Contractor in this Bond shall be deemed to be Subcontractor and the term Owner shall be deemed to be Contractor.

When this Bond has been furnished to comply with a statutory or other legal requirement in the location of the Project, any provision in this Bond conflicting with said statutory or legal requirement shall be deemed deleted herefrom and provisions conforming to such statutory or other legal requirements shall be deemed incorporated herein. When so furnished, the intent is that this Bond shall be construed as a statutory bond and not as a common law bond.

Signed and sealed this 13

day of June, 2025

K-Co Enterprises, Inc.

(Principal)

(Seal)

THE CINCINNATI INSURANCE COMPANY (Surety)

(Seal)

(Title)

The Company executing this bond vouches that this document conforms to American Institute of Architects Document A310, 2010 Edition. S-2000-AIA (11/10) PUBLIC

Page: 5

Watauga County

BIDDER: K-Co Enterprises, Inc.

TOWER MOD BREAKDOWN:

1. Total cost of tower modification materials only

1407.00

2. Total cost of tower modification labor only

3,770.00

3. Total cost of tower modification

\$ 5177.00

Page: 1 Watauga County

BIDDER: K-Co Enterprises, Inc.

WATAUGA COUNTY, NC	INVITATION FOR BIDS – Aho - Viper				
BID #	Bids will be publicly opened: June 13th, 2025 at 3:00pm				
	Questions Due by: June 2 nd , 2025				
Refer ALL Inquiries to: Marty Randall Telephone No. 828-527-2416	Commodity: Install tower modifications on an existing tower (HP-1382 Aho-Viper) located at 1388 Sampson Road, Boone, NC 28607.				
E-Mail: marty.randall@1018consulting.com	Using Agency Name: HP-1382 – Aho Viper				
(See page 2 for mailing instructions.)					

NOTICE TO BIDDERS

Sealed bids, subject to the conditions made a part hereof, will be received at 814 W King Street, Boone NC 28607 **until** 3:00 PM on the day of opening and then opened, for furnishing and delivering the commodity as described herein. Refer to page 2 for proper mailing instructions.

Bids submitted via e-mail or facsimile (FAX) machine in response to this Invitation for Bids will not be acceptable. Bids are subject to rejection unless submitted on this form.

EXECUTION

In compliance with this Invitation for Bids, and subject to all the conditions herein, the undersigned offers and agrees to furnish and deliver any or all items upon which prices are bid, at the prices set opposite each item within the time specified herein. By executing this bid, I certify that this bid is submitted competitively and without collusion (G.S. 143-54).

Failure to execute/sign bid prior to submittal shall render bid invalid.

Late bids are not acceptable.

BIDDER:		FEDERAL ID OR SOCIAL	FEDERAL ID OR SOCIAL SECURITY NO. 26-1278195		
K-Co Enterprises, Inc.	26-1278195				
STREET ADDRESS:		P.O. BOX:	ZIP:		
613 Hurricane Creek Rd.					
CITY & STATE & ZIP:	TELEPHONE NUMBER:	TOLL FREE TEL. NO			
Piedmont, SC 29673	864-947-8704	(800)			
PRINCIPAL PLACE OF BUSINESS ADDRESS IF DIFFERE	NSTRUCTIONS TO BIDDERS ITE	M #21):			
		LEAVANIBADED			
TYPE OR PRINT NAME & TITLE OF PERSON SIGNING:		FAX NUMBER:	FAX NUMBER:		
Ernest Rood - Project Manager		864-947-8204	864-947-8204		
AUTHORIZED SIGNATURES: Rood	DATE:	E-MAIL:			
Cinus Room	(rnest Rood 6-11-25		bids@kcoenterprises.com		

Offer valid for 120 days from date of bid opening unless otherwise stated here: _____ days

ACCEPTANCE OF BID

If any or all parts of this bid are accepted by Watauga County, NC, an authorized representative of Watauga County, NC shall affix their signature hereto and this document and the provisions of the Instructions to Bidders, special terms and conditions specific to this Invitation for Bids, the specifications, and the North Carolina General Contract Terms and Conditions shall then constitute the written agreement between the parties. A copy of this acceptance will be forwarded to the successful bidder(s).

FOR Watauga County, NC USE ONLY	<u>.,,,</u>	
Offer accepted and contract awarded this	day of	, 20 , as indicated on attached certification,
by		(Authorized representative of Watauga County, NC).

Page: 2	
Watauga	County

K-Co Enterprises, Inc.		
	K-Co Enterprises, Inc.	K-Co Enterprises, Inc.

In an effort to support the sustainability efforts of Watauga County, North Carolina we solicit your cooperation in this effort.

It is desirable that all responses meet the following requirements:

All copies should be printed double sided.

Understand all requirements in the Scope of Work

- All submittals and copies should be printed on recycled paper with a minimum post-consumer content of 30% and indicate this information accordingly on the response.
- Unless absolutely necessary, all bids and copies should minimize or eliminate use of non-recyclable or non reusable materials such as plastic report covers, plastic dividers, vinyl sleeves, and GBC binding. Three-ringed binders, glued materials, paper clips, and staples are acceptable.
- Materials should be submitted in a format which allows for easy removal and recycling of paper materials.

<u>MAILING INSTRUCTIONS:</u> Send two fully executed bid documents. Address envelope and insert bid name as shown below. It is the responsibility of the bidder to have the bid in this office by the specified time and date of opening.

DELIVERED BY US POSTAL SERVICE	DELIVERED BY ANY OTHER MEANS		
	SEND SUCH AS FEDX, UPS, ETC. FOR NEXT DAY		
814 W King Street Boone NC 28607	814 W King Street Boone NC 28607		

Watauga County, NC Tower Construction Project

Watauga County, North Carolina

Scope of Work – Watauga County, NC proposes to modify an existing communications tower site per the attached 3-26-25 ETS Structural Modification 24125019.STR.8180 Rev. 1. All work shall comply with applicable North Carolina Building Codes and ANSI/TIA/EIA Standards. If the following Specification calls for a condition that is greater than the TIA/EIA Standards or North Carolina Building Codes, use the specifications shown in this document. All work shall be coordinated with Watauga County, NC. The modifications and all appurtenances shall be installed and affixed with the highest quality of workmanship. The selected Contractor will advise Watauga County, NC's Contracting Officer and Marty Randall (10-18 Consulting 828-527-2416 marty.randall@1018consulting.com) two weeks in advance of the date the work will start. The contractor will provide Marty Randall weekly project progress reports and immediately report any abnormal conditions encountered during construction.

<u>COMPLETION DEADLINE</u> : Work should be <u>completed within 90 days of receipt of materials, not co</u>	<u>ounting bad</u>
weather days.	
	
If the above time is not possible, state completion time in days from contract issue.	Davs

Х

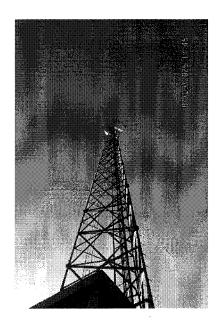
No_

Page: 3 Watauga County	BIDDER: _	(-Co Enterprises	s, Inc.		
CONTRACTING OFFICER					
This project will be under contract will Contracting Officer will be:	th Watauga County, I	NC and will be ι	inder the direct	tion of the Contr	acting Officer. The
Will Holt Watauga, NC Office:828-264-4235 Cell: 828-434-3491					
NOTE: Any questions prior to is marty.randall@1018consulting.co					
Understand the Contact information	on as listed above	Yes_X		No	
CONTRACTOR REQUIREMENTS					
The Contractor shall submit the follow	ving items with their l	oid:			
 Each bid must be accompanied the time the bid is filed with the City. Bid bonds may be submitted in a certified check or surety issued be 	No bid shall be consi ny form allowed unde	dered if the bon	d is not receive	ed simultaneous	sly with the bid.
2. Performance and payment bonds	s are required once b	id is awarded.			
Watauga County reserves the right to	accept or reject any	or all bids and	to waive minor	irregularities.	
Two complete copies of your bid listed items will forfeit your bid.	response must be :	submitted with	your packag	e. Failure to s	ubmit the above
Understand Contractor Requireme	nts Process	/es_X_	No		
BIDDING INSTRUCTIONS Contractors bidding on this project me Invitation for Bid, and conditions at the to fully understand any potential obstance any portion of the work or interpretation.	e Designated Construction et a cles that would prevoce that would prevoce the construction in the construc	uction Site (DCS ent speedy com	6). The contract pletion of this p	ctor is encourag project. Any qu	ed to visit the DCS estions concerning
Understand Bidding Instructions	YesX	No			
COORDINATION OF THE WORK The Tower Contractor shall notify Ma two weeks prior to the desired const Failure to give advanced notice may	ruction time. Failure	to give advanc	e notice may r	esult in delay o	f the starting date.
Understand the Coordination Requ	ıirement	Yes_X	_	No	
MICROWAVE REALIGNMENT		•			
The Tower Contractor shall notify Mabe moved during construction. The original RSL.					
Understand the Microwave Realign	nment Requirement	Yes <u>X</u>	_	No	
PERMITS					
The contractor is responsible for obta exempt from permits.	iining permits and scl	neduling inspec	tions with the p	ermitting office.	The County is not
Understand the Permit Process	•	Yes_X	_	No	

EXPEDITE CONSTRUCTION

Page: 4 Watauga County	BIDDER:	K-Co Enterpris	es, Inc.		
It is expected that the contractor will exp favorable working conditions.	edite comple	tion of the projec	ct, taking fo	ull advantage of the v	weather and other
Understand Expedite Construction Pro	cess	Yes	<u> </u>	No	
POST CONSTRUCTION INSPECTION (F	<u> PCI)</u>	,			
Upon completion of the tower modification Solutions ("ETS") to conduct the Post C the findings of the Inspection. (Watauga Watauga County, NC for all initial in documents are at the contractor's exp deviation from the Tower Modification Dr. Contractor shall provide to the Contraction documents each deviation along with Eng	construction In County, NO aspections. A county of the County NO aspections. A county of the County	nspection ("PCI" C has a contrac Additional insp Cheduling, emai Specifications is t red-lined copy	"), and to go t to providections do il: modificationd during of each Dr	enerate a complete re de this service. Fee ue to non-conforma ations@ets-pllc.com g, or as a result of the rawing and/or Specifi	eport documenting s will be paid by ity with contract In the event any ne PCI, the Towel
Understand Final Inspection Process		Yes_	<u> </u>	No	
CONTRACTOR LICENSES The Tower Contractor, and/or the subconto be licensed to operate a contracting busin NC General Contractors License Numbor The Contractor installing the tower modific Climbing rules that were adopted in February Understand Requirements for Contractor Construction & MATERIALS Tower Contractor must ensure that the contractor must ensure the contractor must ensure that the contractor must ensure the contr	ess in the State 66585 cations must carry 2005 and cor Licenses wer and comp	comply with the Nany following re Yes X Dound always ren	lina as requivisions.	uired under NCGS 87 ina Department of Lal	<u>.</u>
Tower Contractor is responsible for restro All components of the tower modification minimum, be hot-dipped galvanized.	•	,	s, mounting	brackets, torque arn	ns, etc. shall, at a
Understand Construction and Materials	s Yes_	X No			
EROSION CONTROL The Contractor will be responsible for Ero Understand Erosion Control Methods a	•	•		ed if not practiced.	
TOWER MODIFICATION DRAWNING					

TOWER MODIFICATION DRAWINGS (SOW)


3-26-25 ETS Structural Modification 24125019.STR.8180 Rev. 1

Pre Modification Inspection Report
AHO - VIPER (HP-1382)
199-ft± Self-Support Tower
ETS # 24125019.Ins.8182
April 30, 2025
Page 1 of 5

PRE MODIFICATION INSPECTION REPORT

SITE NAME: AHO - VIPER

Performed By:

Alex Meister
Tower Engineer - Inspections

Charlie Kluth
Tower Engineer - Inspections

Pre Modification Inspection Report
AHO - VIPER (HP-1382)
199-ft± Self-Support Tower
ETS # 24125019.Ins.8182
April 30, 2025
Page 2 of 5

1.0 ASSIGNMENT

Subject – Pre-modification inspection of a 199-ft± self-support tower.

Location – 1388 Sampson Rd, Boone, NC 28607

Structure – 199-ft± Self-Support Tower

Purpose – The objective of the inspection was to determine the existing section dimensions from 180' to 184', and to perform a visual inspection of existing conditions and potential issues that may take place during the tower modification.

2.0 SCOPE OF SERVICES

1) Perform a pre-modification inspection

2) Prepare a report of observations and recommendations

3.0 PARTICIPATING PERSONNEL

Representatives: Mr. Marty Randall

10-18 Consulting (828) 527-2416

Consulting Engineers: Mr. Alex Meister

Mr. Charlie Kluth

Engineered Tower Solutions, PLLC (ETS)

3227 Wellington Ct. Raleigh, NC 27615 (919) 782-2710

Pre Modification Inspection Report
AHO - VIPER (HP-1382)
199-ft± Self-Support Tower
ETS # 24125019.Ins.8182
April 30, 2025
Page 3 of 5

4.0 BACKGROUND INFORMATION

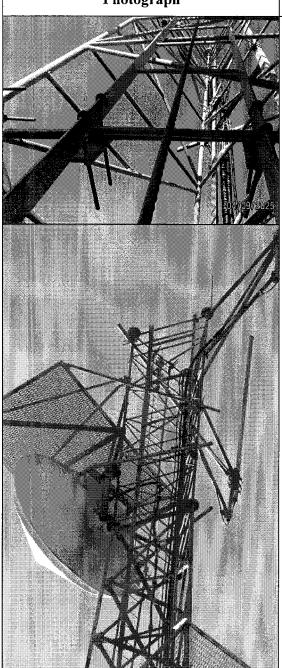
Watauga County requested that ETS conduct a pre modification inspection of the tower. The objective of the inspection was to determine the existing section dimensions from 180' to 184', and to perform a visual inspection of existing conditions and potential issues that may take place during the tower modification.

5.0 INVESTIGATION

Pre Modification Inspection – Alex Meister and Charlie Kluth performed the inspection on April 9, 2025. For the purpose of this inspection, the tower legs were named by letter according to the magnetic azimuth defined by a line from the center of tower to the leg. "A" leg is the leg closest to magnetic north, followed clockwise by "B" and "C."

6.0 RESULTS

- 1. Tower Section Details
- 2. Miscellaneous Obstructions



Pre Modification Inspection Report
AHO - VIPER (HP-1382)
199-ft± Self-Support Tower

199-ft± Self-Support Tower ETS # 24125019.Ins.8182 April 30, 2025 Page 4 of 5

EXECUTIVE SUMMARY

Photograph

Observations and Recommendations

Item 1 – Tower Section Details

Section 10 180'0"±-199'0"± (K bracing right) Bay 1 180'0"±-184'0"±

• Leg: SR1.5" Ø

Bay Height: 3.65'

Diagonals: SR1" Ø weldedHorizontal: SR1" Ø welded

• Face width: 4'-0"

Pre Modification Inspection Report
AHO - VIPER (HP-1382)

199-ft± Self-Support Tower ETS # 24125019.Ins.8182 April 30, 2025 Page 5 of 5

EXECUTIVE SUMMARY

Photograph

Observations and Recommendations

Item 3 – Miscellaneous Obstructions

Climbing Pegs

• C leg: spacing 2'-6"

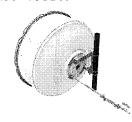
Climbing Ladder

- CA face: width: 1'-3/4", step: 1'-0", J-hooks to horizontal
- A-B face has climbing horizontal

Waveguide

- BC face near B leg
- J-hooks and J-plates to diagonals

Coax


- (1) 1 5/8 FH, (1) 7/8 FH, (1) 1/2 FH, and (1) EU63 attached to waveguide on BC face
- EU63 transitions to Dish at 183'. Secured to diagonal on A B face

Dish Mount at 183'-0"

- Location: C leg
- Pipe mount SO: 8"
 - o MP (1) P4.5"Øx5'-0"
 - Stabilizer (2) P2.4"Ø connected to A and B leg
- Equipment: (1) RFS PAD8-65AC1S1R
- Leg connections: (2) L 5"x3"x3/8"x7 3/4" welded w/ (2) 5/8" Ø U-bolts 1 1/2" C-C

HX6-6W

Base Product

1.8m | 6ft ValuLine® High Performance, High XPD Antenna, dual-polarized, 5.925 – 7.125 GHz

Product Classification

Product Type Microwave antenna

Product Brand ValuLine®

General Specifications

Antenna Type HX - ValuLine® High Performance, High XPD

Antenna, dual-polarized

33 dB

Polarization Dual

Side Struts, Included

Side Struts, Optional

Dimensions

Diameter, nominal 1.8 m | 6 ft

Electrical Specifications

Boresite Cross Polarization Discrimination (XPD)

Operating Frequency Band 5.925 - 7.125 GHz

Gain, Low Band38.3 dBiGain, Mid Band39.1 dBi

Gain, Top Band 39.9 dBi

Front-to-Back Ratio 70 dB

Beamwidth, Horizontal 1.8 °

Beamwidth, Vertical 1.8 °

Return Loss 26 dB

VSWR 1.1

Radiation Pattern Envelope Reference (RPE) 7376

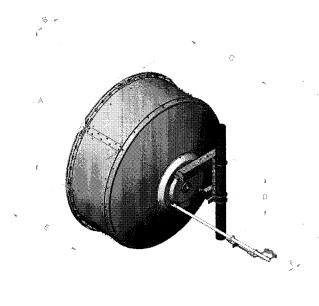
Electrical Compliance ACMA FX03_6b, 6p7b | ETSI 302 217 Class

3 | IC 3059A | IC 3064A | US FCC Part 101A

Page 1 of 7

200 km/h | 124.274 mph

HX6-6W


Wind Speed, survival

Cross Polarization Discrimination (XPD) Electrical Compliance	ETSI EN 302217 XPD Category 2
Electrical Specifications, Band 2	
Operating Frequency Band	5.725 – 5.850 GHz
Gain, Mid Band	38.4 dBi
Beamwidth, Horizontal	2°
Beamwidth, Vertical	2 °
Mechanical Specifications	
Compatible Mounting Pipe Diameter	115 mm-120 mm 4.5 in-4.7 in
Fine Azimuth Adjustment Range	±15°
Fine Elevation Adjustment Range	±5°
Wind Speed, operational	200 km/h 124.274 mph

HX6-6W

Antenna Dimensions and Mounting Information

	Dimensio	ins in inch	nes (mm)				
Antenna size, ft (m)	А	В	С	D	E	F	
6 (1.8)	74.8 (1899)	13.4 (340)	47.5 (1206)	20.9 (530)	39.4 (1001)	8.4 (214)	

Wind Forces at Wind Velocity Survival Rating

Axial Force (FA)

Angle α for MT Max

Side Force (FS)

Twisting Moment (MT)

Force on Inboard Strut Side

Zcg without Ice

Zcg with 1/2 in (12 mm) Radial Ice

Weight with 1/2 in (12 mm) Radial Ice

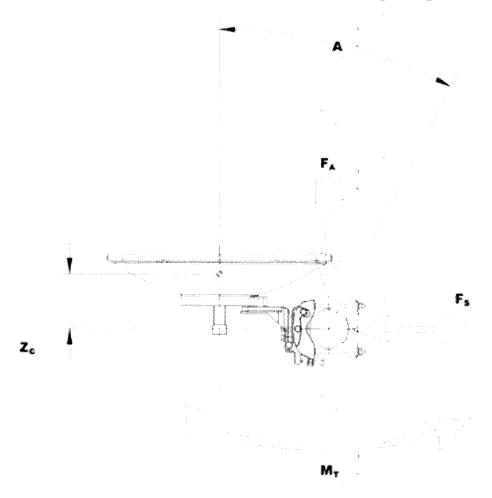
6960 N | 1,564.671 lbf

-130°

1566 N | 352.051 lbf

3923 N-m | 34,721.477 in lb

4075 N | 916.097 lbf


363 mm | 14.291 in

541 mm | 21.299 in

237 kg | 522.495 lb

Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Weight, net 85 kg | 187.393 lb

Regulatory Compliance/Certifications

Agency

Classification

ISO 9001:2015

Designed, manufactured and/or distributed under this quality management system

* Footnotes

Operating Frequency Band

Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

Page 5 of 7

HX6-6W

Gain, Mid Band For a given frequency band, gain is primarily a function of antenna size. The gain of Andrew antennas is determined by either gain by comparison or by computer integration of the measured antenna patterns. **Boresite Cross Polarization Discrimination (XPD)** The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam. Front-to-Back Ratio Denotes highest radiation relative to the main beam, at 180° ±40°, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise. **Return Loss** The figure that indicates the proportion of radio waves incident upon the antenna that are rejected as a ratio of those that are accepted. **VSWR** Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band. Radiation Pattern Envelope Reference (RPE) Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of +/-1° throughout Cross Polarization Discrimination (XPD) Electrical Compliance The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam. Wind Speed, operational For VHLP(X), SHP(X), HX and USX antennas, the wind speed where the maximum antenna deflection is 0.3 x the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than 0.1 degrees. Wind Speed, survival The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without permanent deformation. Realignment may be required. This

Axial Force (FA)Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this

parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Side Force (FS)

Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this

wind speed is applicable to antenna with the specified

amount of radial ice.

HX6-6W

Twisting Moment (MT)

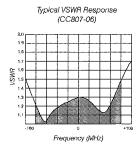
parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

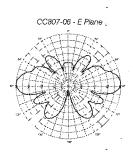
Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

800 MHz Corporate Collinear Antennas

746-870 MHz

CC807 Series


These industry leading PIM and PIP rated collinear arrays allow site operators to combine, with complete integrity, a large number of communications services into a single, low profile collinear antenna array.


The true corporate feed of these arrays maintains total pattern integrity over a very broad operating and width, similar to that previously available only in exposed dipole configurations. This is now achieved in the preferred from factor of a fully enclosed fiberglass radome. The corporate collinears employ a unique corporate phasing system enabling precision control of the element placements ensuring phase purity resulting in exceptional bandwidth and electrical performance.

Gain is maximised and side lobes reduced dramatically. In a patented design approach the individual dipole elements are soldered to a brass support tube which is directly connected to the mounting tube and the lightning spike at the top of the antenna.

Features:

- 500W Continuous Power rating for CC807-11, CC807-08, CC807-06
- -150dBc Passive Intermodulation (PfM) rating
- 25 kW Peak Instantaneous (PIP) rating
- Extraordinary bandwidth characteristics with superior pattern control
- DC grounding on all elements for the ultimate in lightning protection and dissipation of static noise.

Electrical Specifications

Model Number	CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P
Nominal Gain dBd (dBi)	3 (5.1)	6 (8.1)	8 (10.1)	10.5 (12.6)
Frequency <i>MHz</i>		746 -	870	
Tuned Bandwidth MHz		Full B	and	
VSWR (Return Loss)		<1.5	5:1	
Downtilt ^{e (t)}	Not Offered	0 °Std, -3°,-5°	0 °Std, -1°	°, -2°, -3°, -4°, -5°
Vertical Beamwidth°	28	. 17	9	4.5
Horizontal Beamwidth®		Secologia Omni ⊬/-	0.5dB	
Input Power W	250		500	
Passive IM 3rd order (2x20W) dBc		-15	0	
Peak Instantaneous Power kW		25		

Mechanical

Model Number	k. y	CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P			
Construction			Sky blue fil	oreglass radome				
Length mm (inches)		1203 (47)	1741 (69)	2817 (111)	5219 (205)			
Radome Diameter mm (inches,				76 (3)				
Weight kg (lbs)		4 (9)	7 (16)	12(27)	22 (49)			
Shipping Weight kg (lbs)		8 (18)	11 (25)	18 (40)	30 (66)			
	Н		1	15 (4.5)				
Shipping Dimensions mm (inches)	W	115 (4.5)						
mun (mones)	L	1400 (55)	1900 (75)	3000 (118)	5600 (220)			
Termination			4,3-10	fixed female				
Suggested Clamps (not include	d)		2 x	UC-114				
Invertible Mounting				(es (1)				
D. C. L. J. L.	No Ice	806 (0.9)	1268 (1.4)	2320 (2.5)	4560 (4.9)			
Projected area cm² (ft²)	With Ice	1048 (1.2)	1571 (1.7)	2880 (3.1)	5760 (6.2)			
Lateral Thrust @160km/h N (100 mph lbs)		96 (22)	- 150 (34)	276 (62)	540 (121)			
Wind Gust Rating km/h (mph)	No Ice	>240 (>150)						
Torque @ 160km/h Nm (100mph ft-lbs)		20 (15)	73 (54)	278 (205)	1032 (761)			

⁽¹⁾ To order pre-set downtilt versions available, simply add a -T2 or -T4, etc towards the end of the part number to denote the downtilt model required. For eg. CC807-11-T2-P to order a CC807-11-P with 2 deg of downtilt. Please note: Models with downtilt are NOT field invertible.

ENGINEERED TOWER SOLUTIONS

Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

Marty Randall

Date: March 26, 2025

10-18 Consulting Cell: 828-527-2416

martv.randall@1018consulting.com

Subject:

Structural Modification Analysis Report

Carrier Designation:

Watauga County Reconfiguration

Carrier Site Name:

Aho - Viper

Tower Owner Designation:

NCSHP Site Number:

HP-1382

NCSHP Site Name:

Aho - Viper

Engineering Firm Designation:

ETS. PLLC Job Number:

24125019.STR.8180 Rev. 1

Site Data:

1388 Sampson Road, Boone, Watauga County, NC 28607 Latitude *N* 36° 09' 15.91", Longitude *W* 81° 36' 10.08"

199.0 Foot - Self Support Tower

Dear Marty Randall,

Engineered Tower Solutions, PLLC is pleased to submit this "Structural Modification Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

Modified Structure w/ Final Equipment Configuration:

Tower:

90.9% Sufficient Capacity

Foundation:

80.1% Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 140 mph (converted to an equivalent 108 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222 G) as required by the 2018 North Carolina State Building Code (2015 IBC). Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by:

Hicham Anssar Structural Engineer I

Respectfully submitted by:

J. Scott Hilgoe, PE Structural Engineering Manager NC License #P-1016 SEAL 2041389

OS/26/2025

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity

- 4.1) Recommendations
- 4.2) Dish Antenna Deflection Results

APPENDIX A

tnxTower Output

APPENDIX B

Base Level Drawing

APPENDIX C

Additional Calculations

APPENDIX D

Modification Design Drawings

1) INTRODUCTION

This tower is a 199-ft self-supporting tower designed by World Tower Company in August of 2021. This tower was originally designed for an ultimate 3-second gust wind speed of 120 mph per TIA-222-H.

2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-G

Structure Class:

Nominal Wind Speed:

108 mph (As required by Watauga County)

Exposure Category:

Topographic Category:

1 (Topographic effects do not need to be considered with the required

special wind speeds as required by Watauga County)

Ice Thickness:

1.0 in

Wind Speed with Ice: Service Wind Speed:

30 mph 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
	206.0	2	RFI ,	CC807-11		
198.0 (Watauga	200.0	2	Tower mounts	Horizontal Mount Pipe/Stabilizer	. 2 7/8" F	
County)	198.0	2	Tower mounts	6-ft Side Arm Mount	1	1/2" FH
,,	196.0	1	Unknown	TMA (9" x 6" x 5")		1/2 111
175.0	7,	1	Commscope	HX6-6W-6WH		EU63
(Watauga County)	175.0	1	Tower mount	4" ø x 5-ft Pipe Mount	1	
160.0	168.0	2	RFI	CC807-11		
(Watauga	160.0	2	Tower mounts	Horizontal Mount Pipe/Stabilizer	2	1-5/8" FH
County)	ounty) 160.0		Tower mounts	6-ft Side Arm Mount	***************************************	
130.0*	Watauga 140.6		Commscope	DB224		
(Watauga County)			0.6 1 Tower mount Side Arm Mount		1	7/8" Coax
100.0*		1	Commscope	DB224		C December of the Control of the Con
(Watauga County)	- 1		1 Tower mount Side Arm Mount		1	7/8" Coax
80.0*		1	Ubiquiri Networks	AM-V5G-Ti		
(Watauga 80.0 County)		1	Tower Mount Pipe Mount		1	CAT5E

^{*}Reserved Loading.

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	188.0	1	Unknown	10-ft Ice Shield	-	-	
183.0 (NCSHP)	400.0	1	RFS	PAD8-65AC1S1R	1	EU 63	
(NCSHE)	183.0	1	Tower Mount	5-ft Dish Pipe Mount			
	155.0	1	Unknown	10-ft Ice Shield			
150.0	450.0	1	RFS	PAD8-65AC1S1R	1	EU 63	
(NCSHP)	150.0	1	Tower Mount	5-ft Dish Pipe Mount			
		1	RFS	PAD6-65B			
130.0*	., 130.0 1		RFS	PAD8-65B	2	EW63	
(NCSHP)	(NCSHP)	HP) 2		Tower Mount Pipe Mount			

^{*}Reserved Loading.

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source	
Tower Modification Drawings	ETS, PLLC (Job No. 24125019.STR.8180)	03/25/2025	Appendix D	
Previous Structural Analysis Report	ETS, PLLC (Job No. 24125019.STR.1181)	02/19/2025	On File	
L&A Mapping Report	ETS, PLLC (Job No. 24125019.EI.1182)	03/28/2024	On File	
Tower & Foundation Design Package	World Tower (Drawing No. C2107-019 R2)	08/23/2021	On File	
Tower & Foundation Design Calculations	World Tower (Job No. C2107-019 R2)	08/09/2021	On File	
Final A&E Construction Drawings	ETS, PLLC (Job No. 204655.AE.02, Rev. 4)	04/16/2021	On File	
Geotechnical Investigation Report	S&ME (Job No. 21108)	04/21/2021	On File	

3.1) Analysis Method

tnxTower (version 8.3.1.2), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the reinforced leg sections. These calculations are presented in Appendix C.

3.2) Assumptions

- 1) Tower and structures were built and have been maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) The anchor rod projection from supporting surface to bottom of leveling nut has been assumed to be lar= 1.25".

This analysis may be affected if any assumptions are not valid or have been made in error. Engineered Tower Solutions, PLLC should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	199 - 184.025	Leg	1 1/2	2	-9.03	29.26	30.9	Pass
T2	184.025 - 180	Leg	1 1/2	33	-14.74	29.26	50.4	Pass
T3	180 - 160	Leg	2 1/4	46	-51.01	77.75	65.6	Pass
T4	160 - 140	Leg	2 3/4	76	-97.87	152.99	64.0	Pass
T5	140 - 120	Leg	3	103	-150.19	199.04	75.5	Pass
T6	120 - 100	Leg	3 1/4	130	-198.18	250.37	79.2	Pass
T 7	100 - 80	Leg	-3 1/2	163	- 251.02	306.80	81.8	Pass
T8	80 - 60	Leg	3 3/4	196	-302.05	368.18	82.0	Pass
T9	60 - 40	Leg	4	229	-351.91	434.40	81.0	Pass
T10	40 - 20	Leg	4 1/4	262	-401.10	505.39	79.4 80.6 (b)	Pass
T11	20 - 0	Leg	4 1/4	295	-441.40	505.22	87.4	Pass
T1	199 - 184.025	Diagonal	1	8	-3.20	5.71	56.0	Pass
T2	184.025 - 180	Diagonal	SR 1" Ø + SR 1" Ø (Aho - Viper)	41	-6.29	11.24	55.9	Pass
Т3	180 - 160	Diagonal	L2x2x1/4	64	-7.04	17.05	41.3 57.0 (b)	Pass
T4	160 - 140	Diagonal	L2x2x1/4	79	-7.51	13.45	55.8 64.0 (b)	Pass
T5	140 - 120	Diagonal	L2 1/2x2 1/2x1/4	106	-9.25	19.09	48.5 63.6 (b)	Pass
Т6	120 - 100	Diagonal	L3x3x1/4	134	-11.77	18.46	63.7 67.3 (b)	Pass
T7	100 - 80	Diagonal	L3x3x1/4	167	-11.75	15.73	74.7	Pass
T8	80 - 60	Diagonal	L3x3x1/4	200	-12.23	13.46	90.9	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T9	60 - 40	Diagonal	L3 1/2 x 3 1/2 x 1/4	233	-12.97	18.62	69.7	Pass
T10	T10 40 - 20 Diagonal		L3 1/2 x 3 1/2 x 1/4	266	-13.84	16.11	85.9	Pass
T11	20 - 0	Diagonal	L3 1/2 x 3 1/2 x 1/4	298	-10.80	13.37	80.8	Pass
T1	199 - 184.025	Horizontal	1	26	-0.38	10.42	3.6	Pass
T2	184.025 - 180	Horizontal	1	35	-2.47	10.42	23.7	Pass
Т6	120 - 100	Horizontal	L2 1/2x2 1/2x3/16	132	-3.97	17.98	22.1 39.0 (b)	Pass
Т7	100 - 80	Horizontal	L2 1/2x2 1/2x3/16	165	-4.77	16.94	28.1 46.9 (b)	Pass
Т8	80 - 60	Horizontal	L2 1/2x2 1/2x3/16	198	-5.47	15.91	34.4 53.8 (b)	Pass
Т9	60 - 40	Horizontal	L3x3x3/16	231	-6.10	19.67	31.0 45.6 (b)	Pass
T10	40 - 20	Horizontal	L3x3x3/16 ,	264	-6.95	18.69	37.2 52.0 (b)	Pass
T11	20 - 0	Horizontal	L3 1/2 x 3 1/2 x 1/4	297	-7.65	29.88	25.6 42.9 (b)	Pass
T1	199 - 184.025	Secondary Horizontal	1	24	-0.00	17.56	0.1	Pass
T2	184.025 - 180	Secondary Horizontal	1	44	-0.00	17.56	0.1	Pass
T1	199 - 184.025	Top Girt	1 1/8	5	-0.72	15.91	4.5	Pass
Т3	180 - 160	Top Girt	L2x2x3/16 -	48	-1.06	11.74	9.0 9.9 (b)	Pass
T2	184.025 - 180	Bottom Girt	1 '	40	-2.21	10.42	21.2	Pass
							Summary	
						Leg (T11)	87.4	Pass
						Diagonal (T8)	90.9	Pass
						Horizontal (T8)	53.8	Pass
		***************************************				Secondary Horizontal (T1)	0.1	Pass
						Top Girt (T3)	9.9	Pass
***************************************						Bottom Girt (T2)	21.2	Pass
						Bolt Checks	80.6	Pass
						Rating =	90.9	Pass

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	, 0	90.6	Pass
1	Base Foundation (Structural)	- 0	71.9	Pass
1	Base Foundation (Soil Interaction)	0	80.1	Pass

Structure Rating (max from all components) =	90.9%

Notes:

4.1) Recommendations

The tower and its foundations have sufficient capacity to carry the final load configuration once the proposed modifications are installed (see Appendix D).

The loading modification, as follows, must be completed for the results of this analysis to be valid:

Loading Changes:

1- Existing 1-5/8" Coax at 198-ft to be removed.

4.2) Dish Antenna Deflection Results

The results of the tilt and twist values for a 60 mph 3-second gust service wind speed per the TIA-222-G standard are given below:

Critical Deflections and Radius of Curvature - Service Wind	
	_

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	•	ft
183.00	PAD8-65AC1S1R	43	4.134	0.21	0.10	166152
175.00	HX6-6W-6WH	43	3.770	0.20	0.07	30392
150.00	PAD8-65AC1S1R	43	2.759	0.18	0.06	53897
130.00	PAD6-65B	43	2.053	0.15	0.05	43304

¹⁾ See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

199.0 Ft Self Support Tower Modification Structural Analysis ETS, PLLC Job Number: 24125019.STR.8180_Rev. 1

APPENDIX A TNXTOWER OUTPUT

3ottom Girts

op Girts

Weight (K)

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
5/8-in x 8-ft Lightning Rod	199	10' x 2,375" Horizontal Mount	160	
Side Arm Mount [SO 303-1]	198	Pipe/Stabilizer		
Side Arm Mount [SO 303-1]	198	CC807-11	160	
Pipe/Stabilizer Si		CC807-11	160	
		Side Arm Mount [SO 303-1]	160	
10' x 2.375" Horizontal Mount	198	Ice Shield 10'x7"	155	
Pipe/Stabilizer		PAD8-65AC1S1R	150	
CC807-11	198	4.5" x 5-ft Dish Pipe Mount	150	
CC807-11	198	DB224	130	
Junction Box (9" x 6" x 5")	196	Pipe Mount [PM 601-1]	130	
ice Shield 10'x7"	188	Pipe Mount [PM 602-1]	130	
4.5" x 5-ft Dish Pipe Mount	183	Side Arm Mount [SO 303-1]	130	
PAD8-65AC1S1R	183	PAD6-65B	130	
Pipe Mount [PM 602-1]	175	PAD8-65B	130	
HX6-6W-6WH	175	DB224	100	
Side Arm Mount [SO 303-1]	160	Side Arm Mount [SO 303-1]	100	
10' x 2.375" Horizontal Mount	160	AM-V5G-Ti	80	
Pipe/Stabilizer		Pipe Mount [PM 601-1]	80	

SYMBOL LIST

MA	RK	SIZE	MARK	SIZE
Α	١ ١	SR 1" Ø + SR 1" Ø (Aho - Viper)	В	SR 1

MATERIAL STRENGTH

G	RADE	Fy	Fu	GRADE	Fy	Fu
A572	2-50		65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

- Tower designed for Exposure C to the TIA-222-G Standard.
 Tower designed for a 108 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 30 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height,
- 4. Deflections are based upon a 60 mph wind.5. Tower Structure Class III.
- 6. Topographic Category 1 with Crest Height of 0.00 ft 7. TOWER RATING: 90.9%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 449 K SHEAR: 39 K

UPLIFT: -390 K SHEAR: 34 K

AXIAL 172 K

SHEAR MOMENT 786 kip-ft

TORQUE 6 kip-ft 30 mph WIND - 1.0000 in ICE

> AXIAL 45 K

SHEAR MOMENT 63 K 6776 kip-ft

TORQUE 62 kip-ft REACTIONS - 108 mph WIND

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

\boldsymbol{C}	Aho - Viper					
	Project: ETS, PLLC Job No. 24125019.STR.8180					
	Client: Watauga County	Drawn by: hicham.anssar	App'd:			
	Code: TIA-222-G	Date: 03/25/25	Scale: NTS			
	Path:	MICELLA THE MICHAEL OF EIGHT. Tone With the Demonstration in order ones.	Dwg No. E-1			

Page Job *tnxTower* 1 of 44 Aho - Viper **Project** Date Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Client Designed by Phone: (919) 782-2710 Watauga County hicham.anssar

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 199.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 4.00 ft at the top and 18.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

FAX: 919-782-2710

Basic wind speed of 108 mph.

Structure Class III.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 30 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

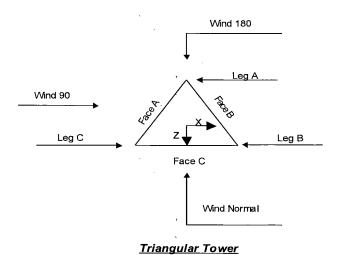
Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- ✓ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys
 Escalate Ice
 Always Use Max Kz
 Kz In Exposure D Hurricane Region
- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends
 SR Members Are Concentric
 Distribute Leg Loads As Uniform
 Use Special Wind Profile

- Assume Legs Pinned
- √ Assume Rigid Index Plate
 √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurtenances Alternative Appurt. EPA Calculation Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules


- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside And Inside Corner Radii Are Known

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025 00 05 DGC Mastina
Job		Page
	Aho - Viper	2 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database	~	Width	of	Length
					Sections	_
	ft			ft		ft
TI	199.00-184.03			4.00	1	14.98
T2	184.03-180.00			4.00	1	4.03
T3	180.00-160.00			4.00	1	20.00
T4	160.00-140.00			5.50	1	20.00
T5	140.00-120.00			7.00	1	20.00
T6	120.00-100.00			8.50	1	20.00
T7	100.00-80.00			10.00	1	20.00
Т8	80.00-60.00			11.50	1	20.00
Т9	60.00-40.00			13.00	1	20.00
T10	40.00-20.00			14.50	1	20.00
T11	20.00-0.00			16.00	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
***************************************	ft	ft		Panels		in	in
T1	199.00-184.03	3.65	K Brace Right	No	Yes+Steps	4.5000	0.0000
T2	184.03-180.00	3.65	K Brace Left	No	Yes+Steps	0.0000	4.5000
T3	180.00-160.00	5.00	X Brace	No	No	0.0000	0.0000
T4	160.00-140.00	5.00	X Brace	No	No	0.0000	0.0000

tnxTower	Job	Aho - Viper	Page 3 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 EAV. 010 782 2710	Client	Watauga County	Designed by hicham.anssar

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T5	140.00-120.00	5.00	X Brace	No	Yes	0.0000	0.0000
Т6	120.00-100.00	5.00	Double K	No	Yes	0.0000	0.0000
T7	100.00-80.00	5.00	Double K	No	Yes	0.0000	0.0000
T8	80.00-60.00	5.00	Double K	No	Yes	0.0000	0.0000
T9	60.00-40.00	5.00	Double K	No	Yes	0.0000	0.0000
T10	40.00-20.00	5.00	Double K	No	Yes	0.0000	0.0000
T11	20.00-0.00	5.00	Double K	No	Yes	0.0000	0.0000

		Tower	Section G	eometry	(cont'd)	
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 199.00-184.03	Solid Round	1 1/2	A572-50	Solid Round	1	A36
			(50 ksi)			(36 ksi)
T2 184.03-180.00	Solid Round	1 1/2	A572-50	Arbitrary	SR 1" Ø + SR 1" Ø (Aho -	A36
			(50 ksi)	Shape	Viper)	(36 ksi)
T3 180.00-160.00	Solid Round	2 1/4	A572-50	Equal Angle	L2x2x1/4	A36
			(50 ksi)			(36 ksi)
T4 160.00-140.00	Solid Round	2 3/4	A572-50°	Equal Angle	L2x2x1/4	A36
			(50 ksi)			(36 ksi)
T5 140.00-120.00	Solid Round	3	A572-50	Equal Angle	L2 1/2x2 1/2x1/4	A36
			(50 ksi)			(36 ksi)
T6 120.00-100.00	Solid Round	3 1/4	A572-50	Equal Angle	L3x3x1/4	A36
			(50 ksi)	•		(36 ksi)
T7 100.00-80.00	Solid Round	3 1/2	A572-50	Equal Angle	L3x3x1/4	A36
			(50 ksi)			(36 ksi)
T8 80.00-60.00	Solid Round	3 3/4	A572-50	Equal Angle	L3x3x1/4	A36
			(50 ksi)			(36 ksi)
T9 60.00-40.00	Solid Round	4	A572-50	Equal Angle	L3 1/2 x 3 1/2 x 1/4	A36
			(50 ksi)			(36 ksi)
T10 40.00-20.00	Solid Round	4 1/4	A572-50°	Equal Angle	L3 1/2 x 3 1/2 x 1/4	A36
			(50 ksi)			(36 ksi)
T11 20.00-0.00	Solid Round	4 1/4	A572-50	Equal Angle	L3 1/2 x 3 1/2 x 1/4	A36
			(50 ksi)			(36 ksi)

	Tower Section Geometry (cont'd)											
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt, Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade						
1 199.00-184.03	Solid Round	1 1/8	A36 (36 ksi)	Solid Round		A36 (36 ksi)						
2 184.03-180.00	Equal Angle		`A36 (36 ksi)	Solid Round	1	A36 (36 ksi)						
3 180.00-160.00	Equal Angle	L2x2x3/16	A36 (36 ksi)	Solid Round		A36 (36 ksi)						

Page Job tnxTower Aho - Viper 4 of 44 Project Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County

			Tower Se	ection Ge	eometry (cont'd)	
Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Туре	Size	Grade
ft	Mid Girts			•			
1 199.00-184.03		Flat Bar		A36	Solid Round	1	A36
				(36 ksi)			(36 ksi)
2 184.03-180.00	None	Flat Bar		A36	Solid Round	1	A36
				(36 ksi)			(36 ksi)
6 120.00-100.00	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
				(36 ksi)			(36 ksi)
7 100.00-80.00	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
				(36 ksi)			(36 ksi)
T8 80.00-60.00	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
				(36 ksi)			(36 ksi)
T9 60.00-40.00	None	Flat Bar		A36	Equal Angle	L3x3x3/16	A36
				(36 ksi)			(36 ksi)
Γ10 40.00-20.00	None	Flat Bar		A36	Equal Angle	L3x3x3/16	A36
				(36 ksi)			(36 ksi)
T11 20.00-0.00	None	Flat Bar		A36	Equal Angle	L3 1/2 x 3 1/2 x 1/4	A36
***************************************				(36 ksi)			(36 ksi)

		Tower	Section	Geometi	y (cont'd)	
Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
199.00-184.03	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
2 184.03-180.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)

			Tower	Section	Geom	etry (cor	ıt'd)		
Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in					in	in	in
T1 199.00-184.03	0.00	0.3750	A36 (36 ksi)	1	1	I	36.0000	36.0000	36.0000
T2 184.03-180.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T3 180.00-160.00	0.00	0.3750	A36 (36 ksi)	1	I	1	36.0000	36.0000	36.0000
T4 160.00-140.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T5 140.00-120.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T6 120.00-100.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
Т7	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000

hicham.anssar

Page Job tnxTower 5 of 44 Aho - Viper Date Project Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Client Designed by Phone: (919) 782-2710 FAX: 919-782-2710 Watauga County hicham.anssar

Tower Elevation ft	Gusset Area (per face) ti²	Gusset Thickness in	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
100.00-80.00	<u>Jt</u>	in	(36 ksi)						
T8 80.00-60.00	0.00	0.3750	A36	1	1	f	36.0000	36.0000	36.0000
18 80.00-00.00	0.00	0.5750	(36 ksi)	1	•	•	30.0000	30.0000	30.000
T9 60.00-40.00	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T10	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
40.00-20.00			(36 ksi)						
T11 20.00-0.00	0.00	0.3750	A36	1	. 1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			····
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
a	Angles	Rounds		Х У	Х · У .	X Y	X Y	<i>X</i> <i>Y</i>	Х У	X Y
<i>Ji</i> T1	Yes	Yes	1	1	<u>1</u> i	1	1	1	1	<u>1</u>
199.00-184.03	1 68	1 68	1	1	. 1	1	1	1	1	1
T2	Yes	Yes	1	1	0.7	1	1	1	1	î
184.03-180.00	1 65	1 68	1	1	0.7	i	î	1	i	1
T3	Yes	Yes	1	1	1	1	i	í	1	1
180.00-160.00	1 03	1 03	•	í	1	1	1	i	i	1
T4	Yes	Yes	1	1	1	i	i	i	i	î
160.00-140.00	105	1 03		i	1	i	i	î	i	1
T5	Yes	Yes	1	1	1	i	î	1	i	1
140.00-120.00	1 05	7 00	•	Î	ī	· 1	1	1	1	1
T6	Yes	Yes	1	ī	1 ~	1	ī	0.5	1	1
120.00-100.00			-	1	1 .	1	1	0.5	1	1
T7	Yes	Yes	1	1	1	1	1	0.5	1	1
100.00-80.00			_	1	. 1	1	1	0.5	1	1
T8	Yes	Yes	1	1	1	1	1	0.5	1	1
80.00-60.00	. 70			1	1	. 1	1	0.5	1	1
T9	Yes	Yes	1	1	1	1	1	0.5	1	1
60.00-40.00				1	1	i	1	0.5	1	1
T10	Yes	Yes	1	1	1	1	1	0.5	1	1
40.00-20.00				1	1	1	1	0.5	1	1
T11	Yes	Yes	1	1	1	1	1	0.5	1	1
20.00-0.00				1	1	· 1	1	0.5	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Aho - Viper	6 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Elevation ft	0		Diago	nal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 199.00-184.03	0.0000	1	0.0000	1	0.0000	1	0.0000	. 1	0.0000	0.75	0.0000	1	0.0000	1
T2 184.03-180.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
T3 180.00-160.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 160.00-140.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 140.00-120.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 120.00-100.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 100.00-80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 60.00-40.00	0.0000	I	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 40.00-20.00	0.0000	I	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation ft	Redun Horize		Reduna Diago		Reduna Sub-Diag		Redui Sub-Ho		Redundan	t Vertical	Reduna	lant Hip		lant Hip gonal
,	Net Width Deduct in	ı U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	· U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 199.00-184.03		0.75 (1) 0.75 (2)		0.75 (1) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1) 0.75 (2)	0.0000	0.75 (1)
		0.75 (3)		(2) 0.75 (3)	***************************************	-				***************************************	0.0000	0.75 (3)	0.0000	0.75 (2)
		0.75 (4)		0.75	***************************************						0.0000	0.75 (4)	0.0000	0.75 (4)
T2 184.03-180.00		0.75 (1)		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
		0.75 (2) 0.75 (3)		0.75 (2) 0.75	***************************************						0.0000	0.75 (2) 0.75 (3)	0.0000	0.75 (2) 0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75	***************************************						0.0000	0.75 (4)	0.0000	0.75 (4)
T3 180.00-160.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
		0.75 (2)		0.75 (2)	***************************************						0.0000	0.75 (2)	0.0000	0.75 (2)
		0.75 (3) 0.75 (4)		0.75 (3) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
T4		0.75 (1)		(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
160.00-140.00	0.0000	0.75 (2)	0.0000	(1) 0.75 (2)							0.0000	0.75 (2)	0.0000	0.75 (2)

Engineered Tower Solutions,

neereu Tower Soluli PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2023 00 03 BCC Meeting
Job		Page
	Aho - Viper	7 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Elevation	Redur Horiz		Reduna Diago		Redund Sub-Dia		Redur Sub-Hor		Redundani	t Vertical	Reduna	lant Hip		lant Hip zonal
ft	***************************************			*****										
	Net Widti Deduct in	h U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct	U	Net Width Deduct	U	Net Width Deduct	U	Net Width Deduct	U
	0.0000	0.55 (3)	0.0000	0.75		******	in	****	in		in	0.75 (3)	in	0.75 (3)
	0.0000	0.75 (3)	0.0000	0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T5 140.00-120.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75 (3)	annananan cara cara		-				0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75	Wildred States						0.0000	0.75 (4)	0.0000	0.75 (4)
T6 120.00-100.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
120.00-100.00	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75	***************************************			-	***************************************		0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T7	0.0000	0.75(1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
100.00-80.00	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75(2)
	0.0000	0.75 (3)		(2) 0.75					***************************************		0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75	anne american				***************************************		0.0000	0.75 (4)	0.0000	0.75 (4)
T8 80.00-60.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75 (2)	0.0000	0.75			`				0.0000	0.75 (2)	0.0000	0.75(2)
	0.0000	0.75 (3)	0.0000	(2) 0.75 (3)					***************************************		0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T9 60.00-40.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75(2)
	0.0000	0.75 (3)	0.0000	(2) 0.75					***************************************		0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75 (4)			٠		***************************************		0.0000	0.75 (4)	0.0000	0.75 (4)
T10	0.0000	0.75(1)	0.0000	0.75	0.0000	0.75	. 0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
40.00-20.00	0.0000	0.75 (2)	0.0000	(1) 0.75					***************************************		0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75					*******************************		0.0000	0.75 (4)	0.0000	0.75 (4)
T11 20.00-0.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		-2025 08 05 DCC Meeting
	Aho - Viper	8 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

0.0000	0.75 (2) 0.0000	0.75 (2)		0.0000	0.75 (2) 0.0000	0.75 (2)
0.0000	0.75 (3) 0.0000	0.75		0.0000	0.75 (3) 0.0000	0.75 (3)
0.0000	0.75 (4) 0.0000	0.75 (4)		0.0000	0.75 (4) 0.0000	0.75 (4)

Tower Section Geometry (cont'd)

Tower	Leg	Leg	••••••	Diago	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hor	izontal
Elevation	Connection														
ft	Туре						~~~~								
		Bolt Size	No.	Bolt Size	No.	Bolt Size	Ñо.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
Tl	Flange	0.7500	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
199.00-184.03		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T2	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
184.03-180.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T3	Flange	1.0000	4	0.6250	1	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
180.00-160.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T4	Flange	1.0000	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T 5	Flange	1.0000	4	0.6250	I	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T6	Flange	1.0000	6	0.7500	1	0.6250	.0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
120.00-100.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T7	Flange	1.0000	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
100.00-80.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T8 80.00-60.00	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T9 60.00-40.00	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T10	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
40.00-20.00	_	A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	-
T11 20.00-0.00	Flange	1.2500	0	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
		A325X>1"		A325X		A325X		A325N		A325N	-	A325X	-	A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
***				***************************************		••••••••••••		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					***************************************
Step Pegs (5/8" SR) 7-in. w/ 30" Step	Α	No	No	Ar (CaAa)	40.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49
Step Pegs (5/8" SR) 7-in. w/ 30" Step	В	No	No	Ar (CaAa)	40.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49

	Job		Page
tnxTower		Aho - Viper	9 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg	57774	Torque Calculation	-77	ft	in	(Frac FW)		Row	in	in	in	plf
Step Pegs (5/8" SR) 7-in. w/ 30" Step	С	No	No	Ar (CaAa)	199.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49
Ladder Rail: PL2x1/4	Α	No	No	Af (CaAa)	199.00 - 1.00	0.0000	-0.25	2	2	12.7500 3.0000	2.0000		3.83
Climbing Rung: SR 5/8" (12" Step)	Α	No	No	Ar (CaAa)	199.00 - 1.00	0.0000	-0.25	1	1	0.6250	0.6250		1.04
Safety Line 3/8 ***	Α	No	No	Ar (CaAa)	199.00 - 1.00	0.0000	-0.25	1	1	0.3750	0.3750		0.22
L2x2x1/8 Feedline Rail	С	No	No	Af (CaAa)	199.00 - 0.00	0.0000	-0.25	2	2	21.7500 2.8404	2.8404		4.52
L1 3/4x1 3/4x1/8	C	No	No	Af (CaAa)	199.00 - 0.00	0.0000	-0.25	1	1	1.7500	1.7500		4.52
Feedline Rung 7/8	C	No	No	Ar (CaAa)	198.00 -	0.0000	-0.31	2	2	1.1100	1.1100		0.54
1/2	С	No	No	Ar (CaAa)	8.00 198.00 - 8.00	0.0000	-0.28	1	1	0.5800	0.5800		0.25
EU 63	C	No	No	Ar (CaAa)	150.00 - 8.00	0.0000	-0.26	2	2	0.5000	2.0300		0.56
EU 63	С	No	No	Ar (CaAa)	183.00 - 150.00	0.0000	-0.26	1	1	2.0300	2.0300		0.56

1 5/8	С	No	No	Ar (CaAa)	160.00 - 8.00	0.0000	-0.2	2	2	0.5000	1.9800		1.04
EU 63	С	No	No	Ar (CaAa)	175.00 - 8.00	0.0000	-0.23	1	1	2.0300	2.0300		0.56

EW63	С	No	No	Ar (CaAa)	130.00 - 8.00	0.0000	-0.15	2	2	0.5000	1.5742		0.51
7/8	С	No	No	Ar (CaAa)	100.00 - 8.00	0.0000	-0.18	2	2	0.5000	1.1100		0.54
7/8	C	No	No	Ar (CaAa)	130.00 - 100.00	0.0000	-0.18	1	1	0.5000	1.1100		0.54
CAT5E(1/4) ***	С	No	No	Ar (CaAa)	80.00 - 8.00	0.0000	-0.13	1	1	0.2600	0.2600		0.04

		Fee	d Line	/Linear	Appurte	nances	- Entered A	s Area	
Description		Allow Shield	Exclude From	Component Type	Placement	Total Number	$C_A A_A$	Weight	
	or Leg	Snieia	Torque	Туре	ft	Number	ft²/ft	plf	
***		·····	Calculation						

Feed Line/Linear Appurtenances Section Areas

tnxTower Job Aho - Viper Page 10 of 44 Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 ETS, PLLC Job No. 24125019.STR.8180 Date 15:46:29 03/25/25 Watauga County Designed by hicham.anssar

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft²	ft²	ft²	ft²	K
T1	199.00-184.03	Α	0.000	0.000	11.481	0.000	0.13
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	23.507	0.000	0.24
T2	184.03-180.00	Α	0.000	0.000	3.086	0.000	0.04
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	7.003	0.000	0.07
T3	180.00-160.00	Α	0.000	0.000	15,333	0.000	0.18
		В	0.000	0.000	Q.000	0.000	0.00
		C	0.000	0.000	38.874	0.000	0.34
T4	160.00-140.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	49.839	0.000	0.39
T5	140.00-120.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	56.128	0.000	0.41
T6	120.00-100.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	60.386	0.000	0.42
T7	100.00-80.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	62.606	0.000	0.43
T8	80.00-60.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	63.126	0.000	0.44
T9	60.00-40.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	63.126	0.000	0.44
T10	40.00-20.00	Α	0.000	0.000	16.733	0.000	0.20
		В	0.000	0.000	1.400	0.000	0.02
		C	0.000	0.000	63.126	0.000	0.44
T11	20.00-0.00	Α	0.000	0.000	15.967	0.000	0.19
		В	0.000	0.000	1.400	0.000	0.02
		С	0.000	0.000	48.343	0.000	0.38

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	C_AA_A	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft²	ft²	ft^2	ft^2	K
T1	199.00-184.03	Α	2.981	0.000	0.000	47.189	0.000	1.06
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	92.523	0.000	1.96
T2	184.03-180.00	Α	2.966	0.000	0.000	12.635	0.000	0.28
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	27.733	0.000	0.59
T3	180.00-160.00	Α	2.945	0.000	0.000	62.459	0.000	1.39
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	153.054	0.000	3.27
T4	160.00-140.00	Α	2.909	0.000	0.000	61.872	0.000	1.36
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	196.287	0.000	3.89
T5	140.00-120.00	Α	2.867	0.000	0.000	61.211	0.000	1.34
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	224.428	0.000	4.24
T6	120.00-100.00	Α	2.820	0.000	0.000	60.451	0.000	1.30
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	243.333	0.000	4.50
T7	100.00-80.00	Α	2.764	0.000	0.000	59.555	0.000	1.26

	Job		Page
tnxTower		Aho - Viper	11 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710	Client	Watauga County	Designed by hicham.anssar

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft^2	ft²	ft²	ft^2	K
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	253.215	0.000	4.46
T8	80.00-60.00	Α	2.695	0.000	0.000	58.457	0.000	1.22
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	260.257	0.000	4.51
T9	60.00-40.00	Α	2.606	0.000	0.000	57.030	0.000	1.16
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	254.363	0.000	4.30
T10	40.00-20.00	Α	2.476	0.000	0.000	74.977	0.000	1.29
		В		0.000	0.000	20.023	0.000	0.22
		C		0.000	0.000	245.789	0.000	4.01
T11	20.00-0.00	Α	2.219	0.000	0.000	66.495	0.000	1.06
		В		0.000	0.000	18.205	0.000	0.18
		C		0.000	0.000	165.106	0.000	2.62

		Fe	ed Line	Center of	f Pressure
Section	Elevation	CP_X	CP_Z	CP_X Ice	CP _Z Ice
	ft	in	in	· in	in
T1	199.00-184.03	1.2553	4.2816	-0.4120	4.1526
T2	184.03-180.00	1.6213	4.3232	0.0719	3.1475
T3	180.00-160.00	1.8981	4.5010	0.6468	5.5289
T4	160.00-140.00	3.4366	6.3640	2.1899	8.8351
T5	140.00-120.00	4.1972	7.2338	3.3737	11.2061
T6	120.00-100.00	4.9386	8.4230	4.6387	14.2759
T7	100.00-80.00	5.6227	9.2579	5.4793	16.0132
Т8	80.00-60.00	6.0977	10.0101	6.3259	18.0549
Т9	60.00-40.00	6.0437	9.8214	6.7092	18.9387
T10	40.00-20.00	6.7676	9.7356	9.0858	17.2542
T11	20.00-0.00	4.8553	7.4113	6.0132	13.7339

			Shieldi	ng Fac	tor Ka
Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	4	Step Pegs (5/8" SR) 7-in. w/	184.03 -	- 0.6000	0.4246
		30" Step	199.00		
T1	5	Ladder Rail: PL2x1/4	184.03 -	0.6000	0.4246
			199.00		1
Т1	6	Climbing Rung: SR 5/8" (12"	184.03 -	0.6000	0.4246
		Step)	199.00		
T1	7	Safety Line 3/8	184.03 -	0.6000	0.4246
	· ·		199.00	•	
T1	9	L2x2x1/8 Feedline Rail	184.03 -	0.6000	0.4246
		22/12/17/03/17/27/17/27	199.00		
TI	10	L1 3/4x1 3/4x1/8 Feedline	184.03 -	0.6000	0.4246
1 ''		Rung	l		
Ti	12	7/8	184.03 -	0.6000	0.4246
1 ''	12	,,,,	198.00	0.5000	3210
Т1	13	1/2		0.6000	0.4246

Job Page tnxTower 12 of 44 Aho - Viper Project Date Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 Client Designed by Watauga County

Section Peach Pe	Tower	Feed Line	Description	Feed Line	Ka	K_a
198.00			Description		No Ice	
T2			<u> </u>		1,010	100
T2	T2	4		180.00 -	0.6000	0.3046
T2	та	<u></u>			0.000	0.3046
T2	12	5	Ladder Rail: PL2x1/4		0.6000	0.3046
T2 7 Safety Line 3/8 180.00 - 10.6000 0.3046 T2 9 L2x2x1/8 Feedline Rail 184.03 184.03 T2 10 L1 3/4x1 3/4x1/8 Feedline Rung 180.00 - 0.6000 0.3046 T2 12 7/8 180.00 - 0.6000 0.3046 T2 13 1/2 180.00 - 0.6000 0.3046 T2 15 EU 63 180.00 - 0.6000 0.3046 T3 4 Step Pegs (5/8" SR) 7-in. w/ 160.00 - 0.6000 0.4055 T3 5 Ladder Rail: PL2x1/4 160.00 - 0.6000 0.4055 T3 6 Climbing Rung: SR 5/8" (12" 160.00 - 0.6000 0.4055 T3 7 Safety Line 3/8 160.00 - 0.6000 0.4055 T3 10 L1 3/4x1 3/4x1/8 Feedline Rail 160.00 - 0.6000 0.4055 T3 10 L1 3/4x1 3/4x1/8 Feedline Rail 160.00 - 0.6000 0.4055 T3 12 Feedline Rail 160.00 - 0.6000 0.4055 T3 13 L1 3/4x1 3/4x1/8 Feedline Rail 160.00 - 0.6000 0.6000 0.4055 <t< td=""><td>T2</td><td>6</td><td>Climbing Rung: SR 5/8" (12"</td><td></td><td>0.6000</td><td>0.3046</td></t<>	T2	6	Climbing Rung: SR 5/8" (12"		0.6000	0.3046
T2 9						
T2 9	T2	7	Safety Line 3/8		0.6000	0.3046
T2	T2	9	L2x2x1/8 Feedline Rail		0.6000	0.3046
T2		_	Danami o i comino i can		0.0000	0.5040
T2	T2	10			0.6000	0.3046
T2	ТЭ	12		· ·	0.6000	0.2046
T2	12	12	776		0.0000	0.3040
T2	T2	13	1/2		0.6000	0.3046
T3	Too	1.5	DI CO		0.5000	
T3	12	15	EU 63		0.6000	0.3046
T3	Т3	4	Step Pegs (5/8" SR) 7-in. w/		, 0.6000	0.4055
T3 6 Climbing Rung: SR 5/8" (12" Step) 180.00					,	
T3	T3	5	Ladder Rail: PL2x1/4		0.6000	0.4055
T3 7 Safety Line 3/8 160.00 - 0.6000 0.4055 180.00 T3 9 L2x2x1/8 Feedline Rail 160.00 - 0.6000 0.4055 180.00 T3 10 L1 3/4x1 3/4x1/8 Feedline Rail 180.00 T3 12 Rung 180.00 - 0.6000 0.4055 180.00 T3 13 15 EU 63 160.00 - 0.6000 0.4055 180.00 T3 15 EU 63 160.00 - 0.6000 0.4055 180.00 T3 19 EU 63 160.00 - 0.6000 0.4055 180.00 T4 4 4 Step Pegs (5/8" SR) 7-in. w/ 30" Step 160.00 - 0.6000 0.5061 160.00 T4 5 Climbing Rung: SR 5/8" (12" 140.00 - 0.6000 0.5061 160.00 T4 7	T3	6	Climbing Rung: SR 5/8" (12"	II .	0.6000	0.4055
T3 9 L2x2x1/8 Feedline Rail 180.00 160.00 - 0.6000 0.4055 180.00 T3 10 L1 3/4x1 3/4x1/8 Feedline Rung 180.00 T3 12 7/8 160.00 - 0.6000 0.4055 180.00 T3 13 13 1/2 160.00 - 0.6000 0.4055 180.00 T3 15 EU 63 160.00 - 0.6000 0.4055 180.00 T4 4 5 Step Pegs (5/8" SR) 7-in. w/ 30" Step 160.00 T4 5 Climbing Rung: SR 5/8" (12" 140.00 - 0.6000 0.5061 160.00 T4 7 7 Safety Line 3/8 140.00 - 0.6000 0.5061 160.00 T4 10 L1 3/4x1 3/4x1/8 Feedline Rail 140.00 - 0.6000 0.5061 160.00 T4 11 12 7/8 140.00 - 0.6000 0.5061 160.00 T4 12 7/8 140.00 - 0.6000 0.5061 160.00 T4 15 EU 63 160.00 - 0.6000 0.5061 160.00 T4 16 17 17 15/8 140.00 - 0.6000 0.5061 160.00 T4 17 17 15/8 140.00 - 0.6000 0.5061 160.00		ŭ			0.0000	0.4055
T3	T3	7	Safety Line 3/8		0.6000	0.4055
T3	Т3	Q	I 2v2v1/9 Foodling Poil		0.6000	0.4055
T3	13	9	LZXZXI/8 FEEUIME Kaii		0.6000	0.4033
T3	T3	10	L1 3/4x1 3/4x1/8 Feedline		0.6000	0.4055
T3	тэ	12		i i	0.6000	0.4055
T3	13	12	//8		* 0.6000	0.4055
T3	T3	13	1/2		0.6000	0.4055
T3						
T3	13	15	EU 63		0.6000	0.4055
T4	Т3	19	EU 63		0.6000	0.4055
T4 5 Ladder Rail: PL2x1/4 140.00 - 0.6000 0.5061 T4 6 Climbing Rung: SR 5/8" (12" 140.00 - 160.00 T4 7 Safety Line 3/8 140.00 - 160.00 T4 9 L2x2x1/8 Feedline Rail 140.00 - 160.00 T4 10 L1 3/4x1 3/4x1/8 Feedline Rung 160.00 T4 12 7/8 140.00 - 0.6000 0.5061 T4 13 1/2 140.00 - 0.6000 0.5061 T4 14 EU 63 140.00 - 0.6000 0.5061 T5 EU 63 150.00 - 0.6000 0.5061 T6 15 EU 63 140.00 - 0.6000 0.5061 T6 15 EU 63 150.00 - 0.6000 0.5061 T6 17 15 EU 63 140.00 - 0.6000 0.5061						
T4 5 Ladder Rail: PL2x1/4 140.00 - 160.00 0.5061 T4 6 Climbing Rung: SR 5/8" (12" Step) 160.00 1.5061 T4 7 Safety Line 3/8 140.00 - 160.00 0.5061 T4 9 L2x2x1/8 Feedline Rail 140.00 - 160.00 T4 10 L1 3/4x1 3/4x1/8 Feedline Rail 160.00 T4 12 7/8 140.00 - 0.6000 0.5061 T4 13 1/2 140.00 - 0.6000 0.5061 T4 14 EU 63 140.00 - 0.6000 0.5061 T4 15 EU 63 150.00 - 0.6000 0.5061 T4 17 1 5/8 140.00 - 0.6000 0.5061	T4	4			0.6000	0.5061
T4 6 Climbing Rung: SR 5/8" (12" Step) 160.00 140.00 - 0.6000 0.5061 160.00	T4	5	- 1		0 6000	0.5061
T4 7 Safety Line 3/8	· '				5.0000	0.5001
T4 7 Safety Line 3/8 140.00 - 160.00 0.5061 T4 9 L2x2x1/8 Feedline Rail 140.00 - 160.00 0.5061 T4 10 L1 3/4x1 3/4x1/8 Feedline Rung 160.00 160.00 T4 12 7/8 140.00 - 160.00 T4 13 1/2 140.00 - 160.00 T4 14 EU 63 140.00 - 0.6000 0.5061 T5 EU 63 150.00 - 0.6000 0.5061 T6 15 EU 63 150.00 - 160.00 T6 17 15 EU 63 140.00 - 160.00 T6 17 15/8 140.00 - 0.6000 0.5061	T4	6	,		0.6000	0.5061
T4 9 L2x2x1/8 Feedline Rail 160.00 140.00 - 0.6000 0.5061 160.00 T4 10 L1 3/4x1 3/4x1/8 Feedline Rung 160.00 160.00 T4 12 7/8 140.00 - 160.00 160.00 T4 13 1/2 140.00 - 160.00 160.00 T4 14 EU 63 140.00 - 0.6000 0.5061 150.00 T4 15 EU 63 150.00 - 0.6000 0.5061 T4 17 1 5/8 140.00 - 0.6000 0.5061	TA	7			0.6000	0.5061
T4 9 L2x2x1/8 Feedline Rail 160.00 174 14 EU 63 140.00 - 160.00 150.00 160.00	14	<u>'</u>	Salety Line 3/8		0.0000	0.3061
T4 10 L1 3/4x1 3/4x1/8 Feedline Rung 140.00 - 160.00 0.6000 0.5061 T4 12 7/8 140.00 - 160.00 0.6000 0.5061 T4 13 1/2 140.00 - 160.00 0.6000 0.5061 T4 14 EU 63 140.00 - 150.00 0.6000 0.5061 T4 15 EU 63 150.00 - 160.00 0.6000 0.5061 T4 17 1 5/8 140.00 - 160.00 0.6000 0.5061	T4	9	L2x2x1/8 Feedline Rail	140.00 -	0.6000	0.5061
T4 12 Rung 160.00 0.6000 0.5061 T4 13 1/2 140.00 - 160.00 0.6000 0.5061 T4 14 EU 63 140.00 - 150.00 0.6000 0.5061 T4 15 EU 63 150.00 - 160.00 0.6000 0.5061 T4 17 1 5/8 140.00 - 160.00 0.6000 0.5061	Τ.4	10	I 1 2/4 v 1 2/4 - 1/0 P 11'		0.6000	0.5061
T4 12 7/8 140.00 - 160.00 160.00 160.00 0.5061 T4 13 1/2 140.00 - 160.00 160.00 0.5061 T4 14 EU 63 140.00 - 150.00 150.00 0.5061 T4 15 EU 63 150.00 - 160.00 0.5061 T4 17 1 5/8 140.00 - 160.00 0.5061	14	10			0.6000	0.5061
T4 13 1/2 140.00 - 0.6000 0.5061 T4 14 EU 63 140.00 - 0.6000 0.5061 T4 15 EU 63 150.00 - 0.6000 0.5061 T4 17 1 5/8 140.00 - 0.6000 0.5061 T4 17 1 5/8 140.00 - 0.6000 0.5061	T4	12			0.6000	0.5061
T4 14 EU 63 140.00 - 0.6000 0.5061 150.00 T4 15 EU 63 150.00 - 0.6000 0.5061 160.00 T4 17 1 5/8 140.00 - 0.6000 0.5061 160.00						
T4 14 EU 63 140.00 - 0.6000 0.5061 150.00	14	13	1/2		0.6000	0.5061
T4 15 EU 63 150.00 0.5061 160.00 T4 17 1 5/8 140.00 - 0.6000 0.5061 160.00	T4	14	EU 63		0.6000	0.5061
T4 17 1 5/8 160.00 1.5061 160.00 0.5061		-		150.00		
T4 17 1 5/8 140.00 - 0.6000 0.5061	T4	15	EU 63		0.6000	0.5061
160.00	T4	17	1 5/8	1	0 6000	0.5061
T4 19 EU 63 140.00 - 0.6000 0.5061				160.00		- 1
	T4	19	EU 63	140.00 -	0.6000	0.5061

hicham.anssar

tnxTower	Job	Aho - Viper	Page 13 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
Т5	4	Step Pegs (5/8" SR) 7-in. w/ 30" Step	160.00 120.00 - 140.00	0.6000	0.5391
Т5	5	Ladder Rail: PL2x1/4	120.00 - 140.00	0.6000	0.5391
Т5	6	Climbing Rung: SR 5/8" (12" Step)	120.00 - 140.00	0.6000	0.5391
Т5	7	Safety Line 3/8	120.00 - 140.00	0.6000	0.5391
Т5	9	L2x2x1/8 Feedline Rail	120.00 - 140.00	0.6000	0.5391
Т5	10	L1 3/4x1 3/4x1/8 Feedline Rung	120.00 - 140.00	0.6000	0.5391
Т5	12	7/8	120.00 - 140.00	0.6000	0.5391
T5	13	1/2	120.00 - 140.00	0.6000	0.5391
T5 T5	14 17	EU 63 1 5/8	120.00 - 140.00 120.00 -	0.6000	0.5391
T5	19	EU 63	140.00 120.00 -	0.6000	0.5391
T5	21	EW63	140.00 120.00 -	0.6000	0.5391
Т5	23	7/8	130.00 120.00 -	0.6000	0.5391
Т6	4	Step Pegs (5/8" SR) 7-in. w/	130.00 100.00 -	0.6000	0.5999
Т6	5	30" Step Ladder Rail: PL2x1/4	120.00 100.00 -	0.6000	0.5999
Т6	6	Climbing Rung: SR 5/8" (12" Step)	120.00 100.00 - 120.00	0.6000	0.5999
Т6	7	Safety Line 3/8	100.00 - 120.00	0.6000	0.5999
Т6	9	L2x2x1/8 Feedline Rail	100.00 - 120.00	0.6000	0.5999
Т6	10	L1 3/4x1 3/4x1/8 Feedline Rung	100.00 - 120.00	0.6000	0.5999
Т6	12	7/8	100.00 - 120.00	0.6000	0.5999
Т6	13	1/2	100.00 - 120.00	0.6000	0.5999
T6	14	EU 63	100.00 - 120.00	0.6000	0.5999
T6	17 19	1 5/8 EU 63	100.00 - 120.00 100.00 -	0.6000	0.5999 0.5999
T6 T6	21	EU 63	120.00 - 120.00 -	0.6000	0.5999
T6	23	7/8	120.00 100.00 -	0.6000	0.5999
T7	4	Step Pegs (5/8" SR) 7-in. w/	120.00	0.6000	0.6000
Т7	5	30" Step Ladder Rail: PL2x1/4		0.6000	0.6000
T7	6	Climbing Rung: SR 5/8" (12" Step)	80.00 - 100.00	0.6000	0.6000
T7 T7	7 9	Safety Line 3/8 L2x2x1/8 Feedline Rail		0.6000	0.6000 0.6000
T7	10	L1 3/4x1 3/4x1/8 Feedline	80.00 - 100.00	0.6000	0.6000
		Rung			l

tnxTower	Job	Aho - Viper	2025 08, 05 BCC Meeting Page 14 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

	B 11:				
Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	7.10	Segment Elev.	No Ice	Ice
T7 T7	12 13		80.00 - 100.00	0.6000	0.6000
17 T7	13	1/2 EU 63	80.00 - 100.00 80.00 - 100.00	0.6000 0.6000	0.6000
T7	17	1 5/8		0.6000	0.6000
T7	19	EU 63		0.6000	0.6000 0.6000
T7	21	EW63	80.00 - 100.00	0.6000	0.6000
T7	22	7/8	80.00 - 100.00	0.6000	0.6000
T8	4	Step Pegs (5/8" SR) 7-in, w/	60.00 - 80.00	, 0.6000	0.6000
	•	30" Step	00.00 - 00.00	0.0000	0.0000
Т8	5	Ladder Rail: PL2x 1/4	60.00 - 80.00	0.6000	0.6000
Т8	6	Climbing Rung: SR 5/8" (12"	60.00 - 80.00	0.6000	0.6000
		Step)		5,555	0.0000
Т8	7	Safety Line 3/8	60.00 - 80.00	0.6000	0.6000
Т8	9	L2x2x1/8 Feedline Rail	60.00 - 80.00	0.6000	0.6000
Т8	10	L1 3/4x1 3/4x1/8 Feedline	60.00 - 80.00	0.6000	0.6000
		Rung	·		
Т8	12	7/8	60.00 - 80.00	0.6000	0.6000
Т8	13	1/2	60.00 - 80.00	0.6000	0.6000
Т8	14	EU 63	60.00 - 80.00	0.6000	0.6000
Т8	17	1 5/8	60.00 - 80.00	0.6000	0.6000
Т8	19	EU 63	60.00 - 80.00	. 0.6000	0.6000
T8	21	EW63	60.00 - 80.00	0.6000	0.6000
T8	22	7/8	60.00 - 80.00	0.6000	0.6000
T8	24	CAT5E(1/4)	60.00 - 80.00	0.6000	0.6000
T9	4	Step Pegs (5/8" SR) 7-in. w/	40.00 - 60.00	0.6000	0.6000
	_	30" Step			
T9	5	Ladder Rail: PL2x1/4	40.00 - 60.00	0.6000	0.6000
Т9	6	Climbing Rung: SR 5/8" (12"	40.00 - 60.00	0.6000	0.6000
	-	Step)	10.00 (0.00	0.4000	0.4000
T9	7	Safety Line 3/8	40.00 - 60.00	0.6000	0.6000
T9	9	L2x2x1/8 Feedline Rail	40.00 - 60.00	0.6000	0.6000
T9	10	LI 3/4x1 3/4x1/8 Feedline	40.00 - 60.00	, 0.6000	0.6000
Т9	12	Rung 7/8	40.00 - 60.00	0.6000	0.6000
T9	13	1/2	40.00 - 60.00	0.6000 0.6000	0.6000 0.6000
T9	14	EU 63	40.00 - 60.00	0.6000	0.6000
T9	17	1 5/8	40.00 - 60.00	0.6000	0.6000
T9	19	EU 63	40.00 - 60.00	0.6000	0.6000
Т9	21	EW63	40.00 - 60.00	0.6000	0.6000
Т9	22	7/8	40.00 - 60.00	0.6000	0.6000
Т9	24	CAT5E(1/4)	40.00 - 60.00	0.6000	0.6000
T10	2	Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
]		30" Step			
T10	3	Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
i !		30" Step			
T10	4	Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
<u> </u>		30" Step			
T10	5	Ladder Rail: PL2x1/4	20.00 - 40.00	0.6000	0.6000
T10	6	Climbing Rung: SR 5/8" (12"	20.00 - 40.00	0.6000	0.6000
	_	Step)			
T10	7	Safety Line 3/8	20.00 - 40.00	0.6000	0.6000
T10	9	L2x2x1/8 Feedline Rail	20.00 - 40.00	0.6000	0.6000
T10	10	L1 3/4x1 3/4x1/8 Feedline	20.00 - 40.00	0.6000	0.6000
T10	10	Rung	20.00 40.00	0.000	0.6000
T10 T10	12 13	7/8	20.00 - 40.00	0.6000	0.6000
T10	13	1/2 ELL 63	20.00 - 40.00	0.6000	0.6000
T10	17	EU 63 1 5/8:	20.00 - 40.00 20.00 - 40.00	0.6000 0.6000	0.6000
T10	17	EU 63	20.00 - 40.00	0.6000	0.6000 0.6000
T10	21	EW63	20.00 - 40.00	0.6000	0.6000
T10	22	7/8	20.00 - 40.00	0.6000	0.6000
T10	24	CAT5E(1/4)			0.6000
	271	CA13E(1/4)	~0.00 - 70.00	0.0000	0.0000

			2025-08-05 BCC Meeting
tnxTower	Job	Aho - Viper	Page 15 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T11	2	Step Pegs (5/8" SR) 7-in. w/	0.00 - 20.00	0.6000	0.6000
		30" Step			
T11	3	Step Pegs (5/8" SR) 7-in. w/	0.00 - 20.00	0.6000	0.6000
1		30" Step			
T11	4	Step Pegs (5/8" SR) 7-in. w/	0.00 - 20.00	0.6000	0.6000
		30" Step			
T11	5	Ladder Rail: PL2x1/4	1.00 - 20.00	0.6000	0.6000
T11	6	Climbing Rung: SR 5/8" (12"	1.00 - 20.00	0.6000	0.6000
		Step)			
1 T11	7	Safety Line 3/8	1.00 - 20.00	0.6000	0.6000
T11	9	L2x2x1/8 Feedline Rail	0.00 - 20.00	0.6000	0.6000
T11	10	L1 3/4x1 3/4x1/8 Feedline	0.00 - 20.00	0.6000	0.6000
		Rung		4	
T11	12	7/8		0.6000	0.6000
T11	13	1/2	8.00 - 20.00	0.6000	0.6000
T11	14	EU 63	8.00 - 20.00	0.6000	0.6000
T11	17	1 5/8	8.00 - 20.00	0.6000	0.6000
T11	19	EU 63	8.00 - 20.00	0.6000	0.6000
T11	21	EW63	8.00 - 20.00	0.6000	0.6000
T11	22	7/8	8.00 - 20.00	0.6000	0.6000
T11	24	CAT5E(1/4)	8.00 - 20.00	0.6000	0.6000

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0 .	ft		ft²	ft²	K
***	***************************************		~~~~						
5/8-in x 8-ft Lightning Rod	C	From Leg	0.00	0.00	199.00	No Ice	0.44	0.44	0.01
			0.00			1/2" Ice	1.15	1.15	0.01
			4.00		•	I" Ice	1.88	1.88	0.02
***		_							0.10
Side Arm Mount [SO 303-1]	Α	From Leg	3.00	0.00	198.00	No Ice	1.08	5.31	0.12
			0.00			1/2" Ice	1.63	7.57	0.16
	_		0.00	0.00	100.00	1" Ice	2.21	9.93	0.22
Side Arm Mount [SO 303-1]	В	From Leg	3.00	0.00	198.00	No Ice	1.08	5.31	0.12
			0.00			1/2" Ice	1.63	7.57	0.16 0.22
101 0 0 0 0 0 0 1 1 1		г т	0.00	0.00 5	198.00	1" Ice No Ice	2.21 2.38	9.93 0.06	0.22
10' x 2.375" Horizontal	Α	From Leg	0.00 0.00	0.00	198.00	1/2" Ice	2.38 3.40	0.00	0.04
Mount Pipe/Stabilizer			0.00			1" Ice	4.45	0.12	0.08
101 2 27511111	В	From Leg	0.00	0.00	198.00	No Ice	2.38	0.21	0.04
10' x 2.375" Horizontal	Б	From Leg	0.00	0.00	196.00	1/2" Ice	3.40	0.12	0.06
Mount Pipe/Stabilizer			0.00			1" Ice	4.45	0.12	0.08
CC807-11	Α	From Leg	6.00	0.00	198.00	No Ice	4.71	4.71	0.05
CC607-11	А	1 tom Leg	0.00	0.00	1 70.00	1/2" Ice	7.63	7.63	0.09
			8.00			1" Ice	9.40	9.40	0.14
CC807-11	В	From Leg	6.00	0.00	198.00	No Ice	4.71	4.71	0.05
CC60/-11	D	1 Ioiii Leg	0.00	0.00	. 170.00	1/2" Ice	7.63	7.63	0.09
			8.00	•		1" Ice	9.40	9.40	0.14
Junction Box (9" x 6" x 5")	В	From Face	0.50	0.00 '	196.00	No Ice	0.83	0.50	0.03

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	2025-0 அத் BCC Meetir									
	Aho - Viper	16 of 44								
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25								
Client	Watauga County	Designed by hicham.anssar								

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement	•	C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	· •	ft		ft²	ft²	K
			0.00 0.00			1/2" Ice 1" Ice	0.95	0.59 0.69	0.03
***			0.00	•		1 100	1.07	0.09	0.04
Ice Shield 10'x7"	C	From Leg	3.00	0.00	188.00	No Ice	7.00	4.90	0.05
		_	0.00			1/2" Ice	7.71	5.41	0.43
			0.00			1" Ice	8.43	5.93	0.82
4.5" x 5-ft Dish Pipe Mount	C	From Leg	0.67	0.00	183.00	No Ice	1.44	1.44	0.05
			0.00			1/2" Ice	2.08	2.08	0.07
also also also			0.00			1" Ice	2.40	2.40	0.09
***	ъ	ъ т	2.00	0.00	155.00				
Ice Shield 10'x7"	В	From Leg	3.00	0.00	155.00	No Ice	7.00	4.90	0.05
			0.00 0.00			1/2" Ice 1" Ice	7.71	5.41	0.43
4.5" x 5-ft Dish Pipe Mount	В	From Leg	0.67	0.00	150.00	No Ice	8.43 1.44	5.93 1.44	0.82 0.05
v.s x s it bish i ipe would		r rom Leg	0.00	0.00	130.00	1/2" Ice	2.08	2.08	0.03
			0.00	3		l" Ice	2.40	2.40	0.09
***									0.03
Side Arm Mount [SO 303-1]	Α	From Leg	3.00	0.00	160.00	No Ice	1.08	5.31	0.12
			0.00			1/2" Ice	1.63	7.57	0.16
			0.00			1" Ice	2.21	9.93	0.22
Side Arm Mount [SO 303-1]	В	From Leg	3.00	0.00	160.00	No Ice	1.08	5.31	0.12
			0.00			1/2" Ice	1.63	7.57	0.16
101 - 2 2758 111		T	0.00		160.00	l" Ice	2.21	9.93	0.22
10' x 2.375" Horizontal	Α	From Leg	0.00	0.00	160.00	No Ice	2.38	0.06	0.04
Mount Pipe/Stabilizer			0.00 0.00			1/2" Ice	3.40	0.12	0.06
10' x 2.375" Horizontal	В	From Leg	0.00	0.00	160.00	1" Ice No Ice	4.45 2.38	0.21 0.06	0.08
Mount Pipe/Stabilizer	Ь	1 Ioni Leg	0.00	0.00	100.00	1/2" Ice	3.40	0.08	0.04 0.06
Would Tipe, Stabilizer			0.00			1" Ice	4.45	0.12	0.08
CC807-11	Α	From Leg	6.00	0.00	160.00	No Ice	4.82	4.82	0.05
		Ü	0.00			1/2" Ice	7.63	7.63	0.09
			8.00			1" Ice	9.40	9.40	0.14
CC807-11	В	From Leg	6.00	0.00	160.00	No Ice	4.82	4.82	0.05
			0.00			1/2" Ice	7.63	7.63	0.09
			8.00			I" Ice	9.40	9.40	0.14

Pipe Mount [PM 602-1]	C	From Leg	0.67	0.00	175.00	No Ice	2.78	2.78	0.09
			0.00			1/2" Ice	3.21	3.21	0.11
***			0.00			1" Ice	3.64	3.64	0.14
Pipe Mount [PM 601-1]	С	From Leg	0.50	0.00	130.00	No Ice	1.32	1.32	0.07
Tipe mount [1 m oot 1]		1 Tolli Ecg	0.00	0.00	130.00	1/2" Ice	1.58	1.58	0.07
			0.00			1" Ice	1.84	1.84	0.09
Pipe Mount [PM 602-1]	В	From Leg	0.50	0.00	130.00	No Ice	2.78	2.78	0.09
•		J	0.00			1/2" Ice	3.21	3.21	0.11
			0.00			l" Ice	3.64	3.64	0.14

Side Arm Mount [SO 303-1]	Α	From Leg	3.00	0.00	130.00	No Ice	1.08	5.31	0.12
			0.00			1/2" Ice	1.63	7.57	0.16
Side Arm Mount [SO 303-1]	۸	From I	0.00	0.00	100.00	1" Ice	2.21	9.93	0.22
Side Affil Mount [SO 303-1]	Α	From Leg	3.00 0.00	0.00	100.00	No Ice	1.08	5.31	0.12
			0.00			1/2" Ice 1" Ice	1.63 2.21	7.57	0.16
DB224	Α	From Leg	6.00	0.00	130.00	No Ice	4.50	9.93 4.50	0.22 0.04
		- 10 DOP	0.00	0.00	150.00	1/2" Ice			0.04
			0.00					D. / A	
			10.60			1" Ice	6.78 9.07	6.78 9.07	0.07

tnxTower	Job	Aho - Viper	17 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C_AA_A Side	Weight
			Vert ft ft	o	ft		ft²	ft²	K
		······································	0.00			1/2" Ice	6.78	6.78	0.07
			10.60			1" Ice	9.07	9.07	0.12

Pipe Mount [PM 601-1]	В	From Leg	0.50	0.00	80.00	No Ice	1.32	1.32	0.07
		-	0.00			1/2" Ice	1.58	1.58	0.08
			0.00			1" Ice	1.84	1.84	0.09
AM-V5G-Ti	В	From Leg	1.00	0.00	80.00	No Ice	0.74	0.41	0.01
AM-V3G-11			0.00			1/2" Ice	0.86	0.51	0.01
			0.00	•		1" Ice	0.99	0.62	0.02
***			00						

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
	*************************			ft	0	0	ft	ft		ft²	K
***											0.00
PAD8-65AC1S1R	С	Paraboloid	From	1.50	60.00		183.00	8.62	No Ice	58.31	0.29
		w/Radome	Leg	0.00					1/2" Ice	59.45	0.59
***				0.00					1" Ice	60.58	0.90
PAD8-65AC1S1R	В	Paraboloid	From	1.50	0.00		150.00	8.62	No Ice	58.31	0.29
PAD6-03AC ISIK	D	w/Radome		0.00	0.00	•	130.00	0.02	1/2" Ice	59.45	0.59
		w/Radonie	Leg	0.00					1" Ice	60.58	0.90
***				0.00	*				1 100	00.50	0.70
HX6-6W-6WH	С	Paraboloid	From	1.50	74.50		175.00	6.23	No Ice	30.48	0.19
11710 011 01111	_	w/Shroud (HP)	Leg	0.00					1/2" Ice	31.30	0.35
				0.00					1" Ice	32.13	0.51
***						•					
PAD6-65B	C	Paraboloid w/o	From	1.50	0.00	•	130.00	6.58	No Ice	34.04	0.19
		Radome	Leg	0.00					1/2" Ice	34.90	0.36
				0.00					1" Ice	35.77	0.54

PAD8-65B	В	Paraboloid	From	1.50	0.00		130.00	8.00	No Ice	50.27	0.29
		w/Radome	Leg	0.00	-				1/2" Ice	51.32	0.55
				0.00					1" Ice	52.37	0.81
***						***************************************					

Tower Pressures - No Ice

 $G_H = 0.850$

tnxTower Job Aho - Viper 18 of 44 Engineered Tower Solutions, PLLC Project Date 2327 Wellington Ct ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

	·	
Client	Watauga County	Designed by hicham.anssar

Section	z	Kz	q_z	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	C_AA_A
Elevation					а				%	In	Out
				,	С	_		_		Face	Face
ft	ft	_	psf	ft ²	е	ft²	ft^2	ft²		ft ²	ft²
T1	191.51	1.451	42	61.772	Α	0.000	6.824	3.744	54.86	11.481	0.000
199.00-184.03					В	0.000	6.824		54.86	0.000	0.000
					С	0.000	7.470		50.12	23.507	0.000
T2	182.01	1.436	42	16.603	Α	0.000	2.526	1.006	39.83	3.086	0.000
184.03-180.00					В	0.000	2.526		39.83	0.000	0.000
					C	0.000	2.688		37.44	7.003	0.000
T3	170.00	1.415	41	98.753	Α	9.476	7.507	7.507	44.20	15.333	0.000
180.00-160.00					В	9.476	7.507		44.20	0.000	0.000
			:		C	9.476	7.507		44.20	38.874	0.000
T4	150.00	1.378	40	129.587	Α	10.286	9.175	9.175	47.15	15.333	0.000
160.00-140.00					В	10.286	9.175		47.15	0.000	0.000
1					C	10.286	9.175		47.15	49.839	0.000
T5	130.00	1.337	39	160.004	Α	14.881	10.009	10.009	40.21	15.333	0.000
140.00-120.00					В	14.881	10.009		40.21	0.000	0.000
					С	14.881	10.009		40.21	56.128	0.000
Т6	110.00	1.291	38	190.420	Α	16.971	10.843	10.843	38.98	15.333	0.000
120.00-100.00					В	16.971	10.843		38.98	0.000	0.000
					C	16.971	10.843		38.98	60.386	0.000
T7	90.00	1.238	36	220.837	Α	18.647	11.678	11.678	38.51	15.333	0.000
100.00-80.00					В	18.647	11.678		38.51	0.000	0.000
					C	18.647	11.678		38.51	62.606	0.000
T8 80.00-60.00	70.00	1.174	34	251.254	Α	20.389	12.512	12.512	38.03	15.333	0.000
					В	20.389	12.512		38.03	0.000	0.000
					C	20.389	12.512		38.03	63.126	0.000
T9 60.00-40.00	50.00	1.094	32	281.671	Α	26.068	13.346	13.346	33.86	15.333	0.000
1					В	26.068	13.346		33.86	0.000	0.000
					C	26.068	13.346		33.86	63.126	0.000
T10	30.00	0.982	29	312.088	Α	28.233	14.180	14.180	33.43	16.733	0.000
40.00-20.00					В	28.233	14.180		33.43	1.400	0.000
					C	28.233	14.180		33.43	63.126	0.000
T11 20.00-0.00	10.00	0.850	25	347.092	Α	32.247	14.190	14.190	30.56	15.967	0.000
					В	32.247	14.190		30.56	1.400	0.000
					С	32.247	14.190		30.56	48.343	0.000

Tower Pressure - With Ice

 $G_H = 0.850$

Section	z	Kz	q_z	t_Z	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft²	ft²
T1	191.51	1.451	3	2.9806	69.211	Α	0.000	39.827	18.622	46.76	47.189	0.000
199.00-184.03				İ		В	0.000	39.827		46.76	0.000	0.000
						С	0.000	44.323	i	42.01	92.523	0.000
T2	182.01	1.436	3	2.9655	18.592	Α	0.000	12.928	4.985	38.56	12.635	0.000
184.03-180.00						В	0.000	12.928		38.56	0.000	0.000
						C	0.000	14.047		35.49	27.733	0.000
T3	170.00	1.415	3	2.9453	108.577	Α	9.476	55.071	27.161	42.08	62.459	0.000
180.00-160.00						В	9.476	55.071		42.08	0.000	0.000
						C	9.476	55.071		42.08	153.054	0.000
T4	150.00	1.378	3	2.9087	139.289	Α	10.286	58.505	28.585	41.55	61.872	0.000
160.00-140.00				ľ		В	10.286	58.505		41.55	0.000	0.000
		i	i			С	10.286	58.505		41.55	196.287	0.000
T5	130.00	1.337	3	2.8674	169.568	Α	14.881	63.278	29.143	37.29	61.211	0.000
140.00-120.00	ı					В	14.881	63.278	1	37.29	0.000	0.000

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Aho - Viper	19 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg %	$C_A A_A$	C_AA_A Out
Elevation						a c				70	In Face	Face
ft	ft		psf	in	ft ²	e	ft^2	ft²	ft ²		ft ²	ft^2
						С	14.881	63.278		37.29	224.428	0.000
Т6	110.00	1.291	3	2.8199	199.827	Α	16.971	62.971	29.660	37.10	60.451	0.000
120.00-100.00						В	16.971	62.971		37.10	0.000	0.000
						C	16.971	62.971		37.10	243.333	
T7 100.00-80.00	90.00	1.238	2	2.7638	230.057	Α	18.647	66.084		35.55	59.555	0.000
					1	В	18.647	66.084		35.55	0.000	
						C	18.647	66.084		35.55	253.215	
T8 80.00-60.00	70.00	1.174	2	2.6952	260.245	Α	20.389		I i	34.15	58.457	0.000
						В	20.389		1 1	34.15	0.000	
						C	20.389			34.15	260.257	0.000
Т9 60.00-40.00	50.00	1.094	2	2.6061	290.364	A	. 26.068	71.220		31.59	57.030	
						В	26.068	71.220		31.59	0.000	
						Ċ	26.068	71.220		31.59	254.363	0.000
T10 40.00-20.00	30.00	0.982	2	2.4763	320.348	A	28.233	72.411	l	30.51	74.977	0.000
					i i	В	28.233	72.411	1 1	30.51	20.023	0.000
T11 20 00 0 00	10.00	0.050		2 2106	254 407	C	28.233	72.411	1	30.51	245.789	0.000
T11 20.00-0.00	10.00	0.850	2	2.2186	354.497	A	32.247	69.889	1 1	28.40	66.495	0.000
						В	32.247	69.889		28.40	18.205	0.000
						C	32.247	69.889		28.40	165.106	0.000

Tower Pressure - Service

 $G_H = 0.850$

Section	z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					c	į				Face	Face
ft	ft		psf .	ft^2	е	ft ²	ft^2	ft²		ft²	ft ²
T1	191.51	1.451	11	61.772	Α	0.000	6.824	3.744	54.86	11.481	0.000
199.00-184.03					В	0.000	6.824		54.86	0.000	0.000
					С	0.000	· 7.470		50.12	23.507	0.000
T2	182.01	1.436	11	16.603	Α	0.000	2.526	1.006	39.83	3.086	0.000
184.03-180.00					В	0.000	2.526		39.83	0.000	0.000
					С	0.000	2.688		37.44	7.003	0.000
T3	170.00	1.415	11	98.753	A	9.476	7.507	7.507	44.20	15.333	0.000
180.00-160.00					В	9.476	7.507		44.20	0.000	0.000
					C	9.476	7.507		44.20	38.874	0.000
T4	150.00	1.378	11	129.587	Α	10.286	9.175	9.175	47.15	15.333	0.000
160.00-140.00					В	10.286	9.175		47.15	0.000	0.000
					С	10.286	9.175		47.15	49.839	0.000
T5	130.00	1.337	10	160.004	Α	14.881	10.009	10.009	40.21	15.333	0.000
140.00-120.00					В	14.881	10.009		40.21	0.000	0.000
					C	14.881	10.009		40.21	56.128	0.000
Т6	110.00	1.291	10	190.420	Α	16.971	10.843	10.843	38.98	15.333	0.000
120.00-100.00					В	16.971	10.843		38.98	0.000	0.000
					С	16.971	10.843		38.98	60.386	0.000
T7	90.00	1.238	10	220.837	Α	18.647	11.678	11.678	38.51	15.333	0.000
100.00-80.00					В	18.647	11.678		38.51	0.000	0.000
					C	18.647	11.678		38.51	62.606	0.000
T8 80.00-60.00	70.00	1.174	9	251.254	Α	20.389	12.512	12.512	38.03	15.333	0.000
					В	20.389	12.512		38.03	0.000	0.000
					С	20.389	12.512		38.03	63.126	0.000
T9 60.00-40.00	50.00	1.094	9	281.671	Α	26.068	13.346	13.346	33.86	15.333	0.000
					В	26.068	13.346	-	33.86	0.000	0.000
					C	26.068	13.346		33.86	63.126	0.000

tnxTower Job Aho - Viper Page 2025 Pee Meeting 20 of 44 Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 ETS, PLLC Job No. 24125019.STR.8180 Date 15:46:29 03/25/25 Watauga County Designed by hicham.anssar

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	C_AA_A	$C_A A_A$
Elevation					a				%	In	Out
					c		·			Face	Face
ft	ft		psf	ft^2	e	ft^2	ft^2	ft²		ft²	ft²
T10	30.00	0.982	8	312.088	Α	28.233	14.180	14.180	33.43	16.733	0.000
40.00-20.00					В	28.233	14.180	=	33.43	1.400	0.000
					С	28.233	14.180		33.43	63.126	0.000
T11 20.00-0.00	10.00	0.850	7	347.092	Α	32.247	14.190	14.190	30.56	15.967	0.000
					В	32.247	14.190		30.56	1.400	0.000
					С	32.247	14.190		30.56	48.343	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c		l	psf				l		
ft	K	K	е						ft²	K	plf	
T1	0.37	0.60	Α	0.11	2.922	42	1	1	3.854	1.13	75.56	С
199.00-184.03			В	0.11	2.922		' 1	1	3.854			
1			С	0.121	2.881		. 1	1 ,	4.222			
T2	0.10	0.19	Α	0.152	2.764	42	1	1	1.434	0.35	86.36	C
184.03-180.00			В	0.152	2.764		1	1	1.434			
			C	0.162	2.728		1	1	1.529	İ		
T3	0.52	1.37	Α	0.172	2.692	41	1	1	13.756	2.36	118.06	C
180.00-160.00			В	0.172	2.692		1	1	13.756			
			C	0.172	2.692		1	1	13.756			
T4	0.57	1.83	Α	0.15	2.771	40	1	1	15.494	2.73	136.32	С
160.00-140.00			В	0.15	2.771		1	1	15.494			
			C	0.15	2.771		1	1	15.494			
T5	0.59	2.34	Α	0.156	2.751	39	1	1	20.499	3.22	160.87	C
140.00-120.00	j		В	0.156	2.751		' 1	1	20.499			
			С	0.156	2.751		. 1	1	20.499			
Т6	0.60	2.67	Α	0.146	2.786	38	1	1	22.935	3.43	171.42	C
120.00-100.00			В	0.146	2.786		1	1	22.935			
			С	0.146	2.786		1	1	22.935			
T7	0.61	3.03	Α	0.137	2.819	36	1	1	24.947	3.52	176.23	C
100.00-80.00			В	0.137	2.819		1	1	24.947			
			C	0.137	2.819		1	1	24.947			
T8	0.61	3.41	Α	0.131	2.843	34	1	1	27.027	3.54	177.09	С
80.00-60.00			В	0.131	2.843		1	1	27.027			
			C	0.131	2.843		1	1	27.027			
Т9	0.61	4.05	Α	0.14	2.809	32	1	1	33.095	3.74	186.87	C
60.00-40.00			В	0.14	2.809		1	1	33.095			
			C	0.14	2.809		1	1	33.095			
T10	0.65	4.50	Α	0.136	2.824	29	1	1	35.670	3.58	179.20	C
40.00-20.00			В	0.136	2.824		1	1	35.670			
			C	0.136	2.824		1	1	35.670			
T11	0.59	4.85	Α	0.134	2.832	25	1	1	39.879	3.16	158.18	C
20.00-0.00			В	0.134	2.832		1	1	39.879			
			C	0.134	2.832		1	1	39.879			
Sum Weight:	5.82	28.82						OTM	2776.87	30.76		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

4	/7	7		
tny	r I	0	W	er

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2023 00 03 Bee Meeting
Job		Page 24 of 44
	Aho - Viper	21 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			psf						
ft	K	K	e						ft²	K	plf	
T1	0.37	0.60	Α	0.11	2.922	42	0.8	1	3.854	1.10	73.38	A
199.00-184.03			В	0.11	2.922		0.8	1	3.854			
			C	0.121	2.881		0.8	1	4.222			
T2	0.10	0.19	Α	0.152	2.764	42	0.8	. 1	1.434	0.34	84.53	Α
184.03-180.00			В	0.152	2.764		0.8	1	1.434			
			C	0.162	2.728		0.8	1	1.529			
T3	0.52	1.37	Α	0.172	2.692	41	0.8	1	11.861	2.18	109.10	Α
180.00-160.00			В	0.172	2.692		0.8	1	11.861			
			С	0.172	2.692		0.8	1	11.861			
T4	0.57	1.83	Α	0.15	2.771	40	0.8	1	13.437	2.53	126.57	Α
160.00-140.00			В	0.15	2.771		. 0.8	1	13.437			
			С	0.15	2.771		0.8	1	13.437			
T5	0.59	2.34	Α	0.156	2.751	39	0.8	1	17.523	2.95	147.29	Α
140.00-120.00			В	0.156	2.751		0.8	1	17.523			
			C	0.156	2.751		0.8	1	17.523			
Т6	0.60	2.67	A	0.146	2.786	38	0.8	. 1	19.541	3.13	156.27	Α
120.00-100.00			В	0.146	2.786		0.8	1	19.541			
			C	0.146	2.786		0.8	1	19.541	2.00	1.60.00	
T7	0.61	3.03	A	0.137	2.819	36	0.8	1	21.218	3.20	160.09	Α
100.00-80.00			В	0.137	2.819		0.8	1	21.218			
			C	0.137	2.819		0.8	1	21.218	2.00	160.01	
T8	0.61	3.41	A	0.131	2.843	34	0.8	1	22.949	3.20	160.21	Α
80.00-60.00			В	0.131	2.843		, 0.8	1	22.949			
		4.05	C	0.131	2.843		0.8	1	22.949	2.24	167.00	
T9	0.61	4.05	A	0.14	2.809	32	0.8	1	27.881	3.34	167.00	Α
60.00-40.00			В	0.14	2.809		0.8	1	27.881			
	0.65	4.50	C	0.14	2.809	20	0.8	1	27.881	2.20	159.77	
T10	0.65	4.50	A	0.136	2.824	29	0.8	1	30.024	3.20	139.77	A
40.00-20.00			В	0.136	2.824		0.8	1	30.024			
	0.50	4.05	C	0.136	2.824	2.5	0.8	1	30.024	2.70	138.92	,
T11	0.59	4.85	A	0.134	2.832	25	0.8	1	33.429	2.78	138.92	Α
20.00-0.00			В	0.134	2.832		0.8		33.429			
	5.00	20.02	С	0.134	2.832		0.8	1	33.429	27.04		
Sum Weight:	5.82	28.82					`	OTM	2552.88	27.94		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				•					Face
			с			psf	`					
ft	K	K	е				٠		ft ²	K	plf	
T1	0.37	0.60	Α	0.11	2.922	.42	0.85	1	3.854	1.12	74.96	В
199.00-184.03			В	0.11	2.922		0.85	1	3.854			
			С	0.121	2.881		0.85	1	4.222			
T2	0.10	0.19	Α	0.152	2.764	42	0.85	1	1.434	0.35	86.09	В
184.03-180.00			В	0.152	2.764		0.85	. 1	1.434			
			С	0.162	2.728		0.85	1	1.529			
T3	0.52	1.37	Α	0.172	2.692	41	0.85	1	12.335	2.26	112.87	В
180.00-160.00			В	0.172	2.692		0.85	1	12.335			
			C	0.172	2.692		0.85	1	12.335			
T4	0.57	1.83	Α	0.15	2.771	40	0.85	1	13.951	2.61	130.50	В
160.00-140.00			В	0.15	2.771		0.85	1	13.951			
			C	0.15	2.771		0.85 ،	1	13.951			

tnxTower Job Aho - Viper 2025 Page Page Page 205 DEC Meeting Page Engineered Tower Solutions, PLLC Project 22 of 44 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 ETS, PLLC Job No. 24125019.STR.8180 Designed by hicham.anssar

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
			с			psf						
ft	K	K	e						ft ²	K	plf	
T5	0.59	2.34	Α	0.156	2.751	39	0.85	1	18.267	3.04	152.14	В
140.00-120.00			В	0.156	2.751	·	0.85	1	18.267			
			С	0.156	2.751		0.85	1	18.267			
T6	0.60	2.67	Α	0.146	2.786	38	0.85	1	20.390	3.23	161.46	В
120.00-100.00			В	0.146	2.786		0.85	1	20.390			
			С	0.146	2.786		0.85	1	20.390			
T7	0.61	3.03	Α	0.137	2.819	36	0.85	1	22.150	3.31	165.47	В
100.00-80.00			В	0.137	2.819	-	0.85	1	22.150			
			C	0.137	2.819		0.85	1	22.150			
T8	0.61	3.41	Α	0.131	2.843	34	0.85	1	23.968	3.31	165.71	В
80.00-60.00			В	0.131	2.843		0.85	1	23.968			
			C	0.131	2.843		0.85	1	23.968			
Т9	0.61	4.05	Α	0.14	2.809	32	0.85	1	29.185	3.46	173.15	В
60.00-40.00			В	0.14	2.809		0.85	1	29.185			
			C	0.14	2.809		0.85	1	29.185			
T10	0.65	4.50	Α	0.136	2.824	29	0.85	1	31.435	3.31	165.44	В
40.00-20.00			В	0.136	2.824		0.85	1	31.435			
			C	0.136	2.824		0.85	1	31.435			
TII	0.59	4.85	Α	0.134	2.832	25	0.85	1	35.042	2.89	144.36	В
20.00-0.00			В	0.134	2.832		0.85	1	35.042			
			C	0.134	2.832		0.85	1	35.042			
Sum Weight:	5.82	28.82						OTM	2635.21	28.89		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				·		_			Face
			c			psf						
ft	K	K	е	<u>.</u> .		- '			ft ²	K	plf	
T1	3.02	3.09	A	0.575	1.821	. 3	1	1	29.013	0.27	18.22	С
199.00-184.03			В	0.575	1.821		1	1	29.013			
			С	0.64	1.785		1	1	34.129			
T2	0.87	0.87	Α	0.695	1.776	3	1	1	10.443	0.08	19.17	С
184.03-180.00			В	0.695	1.776		I	1	10.443			
			С	0.756	1.79		, 1	1	11.963			
T3	4.66	6.19	Α	0.594	1.808	3	1	1	50.244	0.40	19.89	C
180.00-160.00			В	0.594	1.808		1	1	50.244			
			С	0.594	1.808		1	1	50.244			
T4	5.25	6.95	Α	0.494	1.908	3	1	1	50.170	0.48	24.07	С
160.00-140.00			В	0.494	1.908		1	1	50.170			
			C	0.494	1.908		1	1	50.170			
T5	5.58	8.54	Α	0.461	1.956	3	1	1	56.941	0.54	27.22	С
140.00-120.00			В	0.461	1.956		1	1	56.941			
			C	0.461	1.956		1	1	56.941			
T6	5.80	9.12	Α	0.4	2.064	3	I	1	57.037	0.59	29.58	С
120.00-100.00			В	0.4	2.064		1	1	57.037			
			C	0.4	2.064		1	1	57.037			
T7	5.72	9.84	Α	0.368	2.13	2	1	1	59.824	0.59	29.60	C
100.00-80.00			В	0.368	2.13		1	1	59.824			
-			C	0.368	2.13		1	1	59.824			
T8	5.72	10.53	Α	0.343	2.188	2	1	1	62.673	0.59	29.43	С
80.00-60.00			В	0.343	2.188		1	1	62.673			
i			C	0.343	2.188		1	1	62.673			

4 75	Job		Page
tnxTower		Aho - Viper	23 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	_ K	е						ft^2	K	plf	
T9	5.46	12.02	Α	0.335	2.207	2	1	1	69.555	0.57	28.58	C
60.00-40.00			В	0.335	2.207		1	1	69.555			
			C	0.335	2.207		1	1	69.555			
T10	5.52	12.49	Α	0.314	2.259	2	1	1	71.931	0.55	27.32	С
40.00-20.00			В	0.314	2.259		1	1	71.931			
			C	0.314	2.259		1	1	71.931			
T11	3.86	12.48	Α	0.288	2.328	2	1	1	73.852	0.42	21.09	C
20.00-0.00			В	0.288	2.328		1	1	73.852			
			C	0.288	2.328		· 1	1	73.852			
Sum Weight:	51.48	92.13						OTM	485.66	5.09		
							,		kip-ft			

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf	,		- 2			
ft	K	K	ϵ				4		ft ²	K	plf	
TI	3.02	3.09	Α	0.575	1.821	. 3	0.8	1	29.013	0.26	17.61	С
199.00-184.03			В	0.575	1.821		0.8	1	29.013			
			С	0.64	1.785		0.8	1	34.129			
T2	0.87	0.87	Α	0.695	1.776	3	0.8	1	10.443	0.08	18.73	С
184.03-180.00			В	0.695	1.776		0.8	. 1	10.443			
			C	0.756	1.79		0.8	1	11.963			
T3	4.66	6.19	Α	0.594	1.808	3	0.8	1	48.349	0.39	19.48	A
180.00-160.00			В	0.594	1.808		0.8	1	48.349			
			С	0.594	1.808		0.8	1	48.349			
T4	5.25	6.95	Α	0.494	1.908	3	0.8	1	48.112	0.47	23.62	A
160.00-140.00			В	0.494	1.908		0.8	1	48.112			
			С	0.494	1.908		. 0.8	1	48.112			
T5	5.58	8.54	Α	0.461	1.956	. 3	0.8	1	53.964	0.53	26.57	A
140.00-120.00			В	0.461	1.956		0.8	1	53.964			
			С	0.461	1.956		0.8	1	53.964			
T6	5.80	9.12	Α	0.4	2.064	3	0.8	1	53.643	0.58	28.83	Α
120.00-100.00			В	0.4	2.064		0.8	. 1	53.643			
			С	0.4	2.064		0.8	1	53.643			
T7	5.72	9.84	Α	0.368	2.13	2	0.8	1	56.095	0.58	28.78	Α
100.00-80.00		}	В	0.368	2.13		0.8	1	56.095			
			С	0.368	2.13		0.8	1	56.095			
T8	5.72	10.53	Α	0.343	2.188	2	0.8	1	58.595	0.57	28.56	Α
80.00-60.00			В	0.343	2.188		0.8	1	58.595			
			С	0.343	2.188		, 0.8	1	58.595			
Т9	5.46	12.02	Α	0.335	2.207	2	0.8	1	64.342	0.55	27.54	A
60.00-40.00			В	0.335	2.207	·	0.8	1	64.342			
			C	0.335	2.207		0.8	1	64.342			
T10	5.52	12.49	Α	0.314	2.259	2	0.8	1	66.284	0.53	26.28	A
40.00-20.00	i		В	0.314	2.259		0.8	1	66.284			
			C	0.314	2.259		0.8	1	66.284			
T11	3.86	12.48	Ā	0.288	2.328	2	0.8	1	67.403	0.40	20.03	Α
20.00-0.00			В	0.288	2.328		0.8	1	67,403			
			Ċ	0.288	2.328		0.8	1	67.403			
Sum Weight:	51.48	92.13						ОТМ	472.95	4.93		
	21.10	,							kip-ft			
										L		

Job Page *tnxTower* 24 of 44 Aho - Viper Project Date Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 Client Designed by Watauga County

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	$\overline{D_R}$	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				·					Face
			c			psf	,					
ft	K	K	е						ft²	K	plf	
T1	3.02	3.09	Α	0.575	1.821	.3	0.85	1	29.013	0.26	17.41	В
199.00-184.03			В	0.575	1.821		0.85	1	29.013			
			C	0.64	1.785		0.85	1	34.129			
T2	0.87	0.87	Α	0.695	1.776	3	0.85	1	10.443	0.07	18.48	C
184.03-180.00			В	0.695	1.776		0.85	1	10.443			
			C	0.756	1.79		0.85	1	11.963			
T3	4.66	6.19	Α	0.594	1.808	. 3	0.85	1	48.823	0.40	20.03	В
180.00-160.00			В	0.594	1.808		0.85	1	48.823			
			С	0.594	1.808		0.85	1	48.823			
T4	5.25	6.95	Α	0.494	1.908	3	0.85	1	48.627	0.48	24.14	В
160.00-140.00			В	0.494	1.908		0.85	1	48.627			
			С	0.494	1.908		. 0.85	1	48.627			
T5	5.58	8.54	Α	0.461	1.956	.3	0.85	1	54.708	0.54	27.06	В
140.00-120.00			В	0.461	1.956		0.85	1	54.708			
			C	0.461	1.956		0.85	1	54.708			
T6	5.80	9.12	Α	0.4	2.064	3	0.85	1	54.492	0.59	29.32	В
120.00-100.00			В	0.4	2.064		0.85	1	54.492			
			C	0.4	2.064		0.85	1	54.492			
T7	5.72	9.84	Α	0.368	2.13	. 2	0.85	1	57.027	0.58	29.20	В
100.00-80.00			В	0.368	2.13		0.85	1	57.027			
			C	0.368	2.13		0.85	1	57.027			
T8	5.72	10.53	Α	0.343	2.188	2	0.85	1	59.615	0.58	28.97	В
80.00-60.00			В	0.343	2.188		' 0.85	1	59.615			
			C	0.343	2.188		0.85	1	59.615			1
T9	5.46	12.02	Α	0.335	2.207	.2	0.85	1	65.645	0.56	27.96	В
60.00-40.00			В	0.335	2.207		0.85	1	65.645			
			С	0.335	2.207		0.85	1	65.645			1
T10	5.52	12.49	Α	0.314	2.259	2	0.85	1	67.696	0.53	26.69	В
40.00-20.00			В	0.314	2.259		0.85	1	67.696			
			С	0.314	2.259		0.85	1	67.696			
T11	3.86	12.48	Α	0.288	2.328	. 2	0.85	1	69.015	0.41	20.48	В
20.00-0.00			В	0.288	2.328		0.85	1	69.015			
			C	0.288	2.328		0.85	1	69.015			
Sum Weight:	51.48	92.13						OTM	480.02	5.01		
							•		kip-ft			

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft ²	K	plf	
TI	0.37	0.60	Α	0.11	2.922	11	1	1	3.854	0.30	20.28	С
199.00-184.03			В	0.11	2.922		1	1	3.854			
			C	0.121	2.881	i	1	1	4.222			
T2	0.10	0.19	A	0.152	2.764	11	1	1	1.434	0.09	23.18	C
184.03-180.00			В	0.152	2.764		1	1	1.434			
			C	0.162	2.728		1	1	1.529			

hicham.anssar

4 T	Job	·	Page
tnxTower		Aho - Viper	25 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 F4Y: 919-782-7710	Client	Watauga County	Designed by hicham.anssar

Section	Add	Self'	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf.			_			
ft	K	K	e						ft²	K	plf	
T3	0.52	1.37	Α	0.172	2.692	11	1	1	13.756	0.63	31.68	C
180.00-160.00			В	0.172	2.692		1	1	13.756			
1			C	0.172	2.692		1	1	13.756			
T4	0.57	1.83	Α	0.15	2.771	I 1	1	1	15.494	0.73	36.59	C
160.00-140.00			В	0.15	2.771		1	1	15.494			
		İ	C	0.15	2.771		1	1	15.494			
T5	0.59	2.34	Α	0.156	2.751	10	1	1	20.567	0.87	43.26	C
140.00-120.00		'	В	0.156	2.751		1	1	20.567			
			C	0.156	2.751		- 1	1	20.567			1
T6	0.60	2.67	Α	0.146	2.786	10	- 1	1	23.121	0.92	46.23	C
120.00-100.00			В	0.146	2.786		. 1	1	23.121			
			C	0.146	2.786		1	1	23.121			
T7	0.61	3.03	Α	0.137	2.819	10	1	1	25.261	0.95	47.66	С
100.00-80.00			В	0.137	2.819		1	1	25.261			
			C	0.137	2.819		1	1	25.261			
T8	0.61	3.41	Α	0.131	2.843	9	1	1	27.469	0.96	48.02	C
80.00-60.00			В	0.131	2.843		1	1	27.469			
			С	0.131	2.843		1	1	27.469			
Т9	0.61	4.05	Α	0.14	2.809	9	1	1	33.629	1.01	50.70	C
60.00-40.00			В	0.14	2.809		1	1	33.629			
			С	0.14	2.809		. 1	1	33.629			
T10	0.65	4.50	Α	0.136	2.824	8	. 1	1	36.263	0.97	48.64	С
40.00-20.00			В	0.136	2.824		1	1	36.263			
			С	0.136	2.824		' 1	1	36.263			
T11	0.59	4.85	Α	0.134	2.832	. 7	1	1	40.280	0.86	42.78	С
20.00-0.00			В	0.134	2.832		1	1	40.280			
			C	0.134	2.832		1	1	40.280			
Sum Weight:	5.82	28.82						OTM	748.26	8.31		
I									kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft ²	K	plf	
T1	0.37	0.60	A	0.11	2.922	11	0.8	1	3.854	0.29	19.69	Α
199.00-184.03			В	0.11	2.922		0.8	1	3.854			
			C	0.121	2.881		0.8	1	4.222			
T2	0.10	0.19	Α	0.152	2.764	11	0.8	1	1.434	0.09	22.69	Α
184.03-180.00			В	0.152	2.764		0.8	1	1.434			
			C	0.162	2.728		0.8	1	1.529			
T3	0.52	1.37	Α	0.172	2.692	.11	0.8	1	11.861	0.59	29.28	Α
180.00-160.00			В	0.172	2.692		0.8	1	11.861			
			C	0.172	2.692		0.8	1	11.861			
T4	0.57	1.83	Α	0.15	2.771	11	0.8	1	13.437	0.68	33.97	Α
160.00-140.00			В	0.15	2.771		0.8	1	13.437			
			C :	0.15	2.771		0.8	1	13.437			
T5	0.59	2.34	Α	0.156	2.751	10	0.8	1	17.591	0.79	39.61	Α
140.00-120.00			В	0.156	2.751		0.8	1	17.591			
			C	0.156	2.751		0.8	1	17.591			
Т6	0.60	2.67	Α	0.146	2.786	10	0.8	1	19.727	0.84	42.16	Α
120.00-100.00			В	0.146	2.786		- 0.8	1	19.727			
			С	0.146	2.786		0.8	1	19.727			

Page Job tnxTower 26 of 44 Aho - Viper Project Date Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 Client Designed by Watauga County

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			с			psf						
ft	K	K	е						ft^2	K	plf	
T7	0.61	3.03	Α	0.137	2.819	10	0.8	1	21.531	0.87	43.33	A
100.00-80.00			В	0.137	2.819		0.8	1	21.531			
			C	0.137	2.819		0.8	1	21.531			
Т8	0.61	3.41	Α	0.131	2.843	9	0.8	1	23.391	0.87	43.49	A
80.00-60.00			В	0.131	2.843		, 0.8	1	23.391			l
			C	0.131	2.843		0.8	1	23.391			
Т9	0.61	4.05	Α	0.14	2.809	9	0.8	1	28.416	0.91	45.37	A
60.00-40.00			В	0.14	2.809	•	0.8	1	28.416			l
			C	0.14	2.809		0.8	1	28.416			•
T10	0.65	4.50	Α	0.136	2.824	8	0.8	1	30.616	0.87	43.43	A
40.00-20.00			В	0.136	2.824		0.8	1	30.616			
			С	0.136	2.824		0.8	1	30.616			
TII	0.59	4.85	Α	0.134	2.832	. 7	0.8	1	33.831	0.75	37.61	A
20.00-0.00			В	0.134	2.832		0.8	1	33.831			
			C	0.134	2.832		0.8	1	33.831			
Sum Weight:	5.82	28.82						OTM	688.14	7.55		
									kip-ft			

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
	Ì		c			psf						
ft	K	K	е				,		ft²	K	plf	
T1	0.37	0.60	Α	0.11	2.922	11	0.85	1	3.854	0.30	20.12	В
199.00-184.03			В	0.11	2.922		0.85	1	3.854			
			С	0.121	2.881		0.85	1	4.222			
T2	0.10	0.19	Α	0.152	2.764	11	0.85	1	1.434	0.09	23.10	В
184.03-180.00			В	0.152	2.764		0.85	1	1.434			
			С	0.162	2.728		0.85	1	1.529			
T3	0.52	1.37	Α	0.172	2.692	11	0.85	1	12.335	0.61	30.29	В
180.00-160.00			В	0.172	2.692		0.85	1	12.335			
			С	0.172	2.692		0.85	1	12.335			
T4	0.57	1.83	Α	0.15	2.771	11	0.85	1	13.951	0.70	35.02	В
160.00-140.00			В	0.15	2.771		0.85	1	13.951			
			С	0.15	2.771		0.85	1	13.951			
T5	0.59	2.34	Α	0.156	2.751	10	0.85	1	18.335	0.82	40.91	В
140.00-120.00			В	0.156	2.751		0.85	1	18.335			
			C	0.156	2.751		0.85	1	18.335			
T6	0.60	2.67	Α	0.146	2.786	10	0.85	1	20.575	0.87	43.56	В
120.00-100.00	ļ		В	0.146	2.786		0.85	1	20.575			
			C	0.146	2.786		0.85	1	20.575			
Т7	0.61	3.03	Α	0.137	2.819	10	0.85	1	22.464	0.90	44.77	В
100.00-80.00			В	0.137	2.819		0.85	1	22.464			
			C	0.137	2.819		0.85	1	22.464			
T8	0.61	3.41	Α	0.131	2.843	9	0.85	1	24.410	0.90	44.96	В
80.00-60.00			В	0.131	2.843		0.85	1	24.410			
			C	0.131	2.843		0.85	1	24.410			
Т9	0.61	4.05	Α	0.14	2.809	9	0.85	1	29.719	0.94	47.02	В
60.00-40.00			В	0.14	2.809		0.85	1	29.719			
			C	0.14	2.809		0.85	1	29.719			
T10	0.65	4.50	Α	0.136	2.824	8	0.85	1	32.028	0.90	44.95	В
40.00-20.00			В	0.136	2.824		0.85	1	32.028			
ļ i			C	0.136	2.824		0.85	1	32.028			

hicham.anssar

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		0
Job		Page
	Aho - Viper	27 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	е	C_F	q _z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft ²	K	plf	
T11	0.59	4.85	Α	0.134	2.832	7	0.85	1	35.443	0.78	39.07	В
20.00-0.00			В	0.134	2.832		0.85	1	35.443			
			С	0.134	2.832		0.85	1	35.443			
Sum Weight:	5.82	28.82						OTM	710.24	7.81		
									kip-ft			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M _z	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	18.10					
Bracing Weight	10.72					
Total Member Self-Weight	28.82			13.72	-4.88	
Total Weight	37.58	0.55		13.72	-4.88	15.00
Wind 0 deg - No Ice		0.65	-38.32	-3938.43	-67.45	15.98
Wind 30 deg - No Ice		17.21	-29.00	-2990.84	-1795.31	38.70
Wind 60 deg - No Ice		30.38	-16.99	-1755.48	-3247.79	38.60
Wind 90 deg - No Ice		34.10	-0.15	26.52	-3695.34	26.73
Wind 120 deg - No Ice		34.86	18.66	1981.73	-3727.17	23.59
Wind 150 deg - No Ice		18.78	31.85	3402.99	-2028.15	6.08
Wind 180 deg - No Ice		0.56	34.81	3678.84	-117.90	-14.97
Wind 210 deg - No Ice		-16.50	28.71	2988.05	1675.09	-33.29
Wind 240 deg - No Ice		-32.73	18.15	1862.28	3395.46	-32.16
Wind 270 deg - No Ice		-33.78	-0.56	-84.10	3613.90	-22.84
Wind 300 deg - No Ice		-31.43	-18.09	-1938.39	3376.38	-24.00
Wind 330 deg - No Ice	(0.01	-18.83	-32:00	-3368.32	2005.93	-8.19
Member Ice	63.31			100 50	50.56	
Total Weight Ice	164.77	0.05		129.59	-52.56	2.03
Wind 0 deg - Ice		0.05	-5.96	-496.01	-57.26	2.93
Wind 30 deg - Ice		2.87	-4.91	-389.57	-356.46	5.96
Wind 60 deg - Ice		4.94	-2.81	-168.67	-582.55	5.79
Wind 90 deg - Ice		5.70	-0.01	130.59	-668.87	4.30
Wind 120 deg - Ice		5.24	2.91	438.81	-611.59	3.43
Wind 150 deg - Ice		2.99	5.12	672.20	-370.81	1.01
Wind 180 deg - Ice		0.04	5.74	734.92	-61.07	-2.85
Wind 210 deg - Ice		-2.80	4.87	642.69	240.80	-5.56
Wind 240 deg - Ice		-5.03	2.85	428.81	480.52	-5.31
Wind 270 deg - Ice		-5.65	-0:04	122.24	553.88	-4.02
Wind 300 deg - Ice		-5.04	-2.90	-181.18	485.68	-3.46
Wind 330 deg - Ice		-2.99	, -5.13	-412.41	264.70	-1.16
Total Weight	37.58	0.40		13.72	-4.88	
Wind 0 deg - Service		0.18	-10.38	-1070.57	-19.51	4.44
Wind 30 deg - Service		4.66	-7.86	-814.88	-488.38	10.47
Wind 60 deg - Service		8.23	-4.60	-479.56	-881.96	10.36
Wind 90 deg - Service		9.24	-0.04	3.84	-1003.46	7.09
Wind 120 deg - Service		9.43	5.05	533.72	-1010.62	6.19
Wind 150 deg - Service		5.09	8.63	918.93	-550.87	1.46
Wind 180 deg - Service		0.15	9.43	994.34	-33.05	-4.16
Wind 210 deg - Service		-4.47	7.78	807.57	453.30	-9.02
Wind 240 deg - Service		-8.86	4.92	501.66	918.78	-8.63
Wind 270 deg - Service		-9.16	-0.15	-25.85	978.78	-6.05
Wind 300 deg - Service		-8.51	, -4.90	-528.65	913.66	-6.30

Job Page tnxTower Aho - Viper 28 of 44 Project Date Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 Client Designed by Watauga County

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M.	
	K	K	. K	kip-ft	kip-ft	kip-ft
Wind 330 deg - Service		-5.10	-8.67	-916.18	542.09	-2.03

Load	Com	bina	atio	ns

Comb.	Description
No.	·
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
• •	

hicham.anssar

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		e
Job		Page
	Aho - Viper	29 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Comb.	Description
	<i>-</i>
No.	
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section Elevati No. ft	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	./•	2,770		Comb.	K	kip-ft	kip-ft
Tl	199 - 184.025	Leg	Max Tension	7	8.16	0.04	-0.00
	177 1011020	278	Max. Compression	. 10	-9.03	-0.54	0.19
			Max. Mx	8	-7.42	-0.57	0.33
			Max. My	13	0.04	-0.33	-0.58
			Max. Vy	22	0.57	-0.00	0.00
			Max. Vx	14	-0.58	-0.00	-0.00
		Diagonal	Max Tension	14	3.03	0.00	0.00
		&	Max. Compression	2 .	-3.20	0.00	0.00
			Max. Mx	32	0.44	0.05	0.00
			Max. My	10	-0.78	0.00	-0.00
			Max. Vy	32	-0.04	0.00	0.00
			Max. Vx	10	0.00	0.00	0.00
		Horizontal	Max Tension	22	0.38	0.00	0.00
		110110011111	Max. Compression	10	-0.38	0.00	0.00
			Max. Mx	33	-0.02	0.04	0.00
			Max. My	. 8	0.05	0.00	0.00
			Max. Vy	33	-0.04	0.00	0.00
			Max. Vx	8	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	8	0.00	-0.00	-0.00
		Horizonta	Max. Compression	20	-0.00	-0.00	-0.00
			Max. Mx	31	0.00	-0.01	0.00
			Max. My	8	0.00	-0.00	-0.00
			Max. Vy	31	0.00	-0.01	0.00
			Max. Vx	8	0.02	-0.00	-0.00
		Tom Cint	Max. vx Max Tension	14	0.00	0.00	0.00
		Top Girt		2	-0.72	0.00	0.00
			Max. Compression	· 27		0.04	0.00
			Max. Mx		-0.02		0.00
			Max. My	8	-0.09	0.00	
			Max. Vy	27	-0.04	0.00	0.00
ma	101000 100	-	Max. Vx	8	-0.00	0.00	0.00
T2	184.025 - 180	Leg	Max Tension	,	14.62	0.04	-0.05
			Max. Compression	10	-15.99	-1.18	0.15
			Max. Mx	8	11.59	-1.28	-0.50
			Max. My	12	-0.96	-0.73	-1.09
			Max. Vy	8	3.28	-1.28	-0.50
			Max. Vx	14	2.46	-0.27	-1.07
		Diagonal	Max Tension	8	7.39	0.00	0.00
			Max. Compression	22	-6.29	0.00	0.00
			Max. Mx	٠ 34	0.53	0.03	0.00
			Max. My	10	2.71	0.00	-0.00
			Max. Vy	34	-0.02	0.00	0.00
			Max. Vx	10	0.00	0.00	0.00
		Horizontal	Max Tension	22 ·	2.05	0.00	0.00
			Max. Compression	10	-2.47	0.00	0.00
			Max. Mx	33	-0.08	0.04	0.00
			Max. My	8	-2.20	0.00	0.00
			Max. Vy	33	0.04	0.00	0.00
			Max. Vx	8	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	8	0.00	-0.00	-0.00
			Max. Compression	٠ 20	-0.00	-0.00	-0.00

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		-2025 00 05 DCC Masting
Job	· · · · · · · · · · · · · · · · · · ·	Page
	Aho - Viper	30 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi. Moment
	•••••	······································		Comb.	K	kip-ft	kip-ft
			Max. Mx	31	0.00	-0.01	-0.00
			Max. My	8	0.00	-0.00	-0.00
			Max. Vy	31	0.02	-0.01	-0.00
			Max. Vx	8	0.00	-0.00	-0.00
		Bottom Girt	Max Tension	2 ·	2.19	0.00	0.00
			Max. Compression	, 12	-2.21	0.00	0.00
			Max. Mx	26	-0.01	0.04	0.00
			Max. My	8	-2.12	0.00	0.00
			Max. Vy	26	0.04	0.00	0.00
			Max. Vx	8	-0.00	0.00	0.00
T3	180 - 160	Leg	Max Tension	23	44.09	-0.02	0.01
			Max. Compression	10	-51.01	0.11	-0.02
			Max. Mx	10	-20.05	0.95	-0.72
			Max. My	10	8.52	-0.57	-1.38
			Max. Vy	11	0.75	-0.21	0.18
			Max. Vx	12	-1.90	0.02	0.27
		Diagonal	Max Tension	10 -	6.76	0.00	0.00
			Max. Compression	, 10	-7.04	0.00	0.00
			Max. Mx	35	0.24	0.04	-0.00
			Max. My	10	-6.73	-0.02	-0.03
			Max, Vy	34	0.04	0.03	0.00
			Max. Vx	10	0.01	0.00	0.00
		Top Girt	Max Tension	11	0.85	0.00	0.00
		•	Max. Compression	12	-1.06	0.00	0.00
			Max. Mx	26	-0.09	-0.05	0.00
			Max. My	34	-0.10	0.00	0.00
			Max. Vy	26	0.05	0.00	0.00
		Leg	Max. Vx	34	-0.00	0.00	0.00
T4	160 - 140		Max Tension	23	84.45	-0.05	0.02
		8	Max. Compression	. 10	-97.87	0.20	0.04
			Max. Mx	10	-97.87	0.20	0.04
			Max. My	22	-39.45	-0.00	0.27
			Max. Vy	22	-1.03	-0.13	0.02
			Max. Vx	16	1.52	0.01	-0.04
		Diagonal	Max Tension	8	7.59	0.00	0.00
		Diagonar	Max. Compression	8	-7.69	0.00	0.00
			Max. Mx	31	0.31	0.05	-0.00
			Max. My	8	-7.65	-0.01	-0.03
			Max. Vy	32			
			Max. Vx	8	0.05	0.05	-0.00
T5	140 - 120	ľ og			0.01	0.00	0.00
13	140 - 120	Leg	Max Tension	23	131.45	-0.15	0.03
			Max. Compression	, 10	-150.19	-0.05	0.06
			Max. Mx	10	-109.72	0.20	0.04
			Max. My	6	-73.69	0.03	-0.37
			Max. Vy	8	-1.63	-0.14	-0.07
		n	Max. Vx	4	-2.06	0.04	0.11
		Diagonal	Max Tension	8	9.27	0.00	0.00
			Max. Compression	8	-9.25	0.00	0.00
			Max. Mx	31	0.50	0.08	0.01
			Max. My	6	-8.24	0.00	-0.03
		Leg	Max. Vy	33	0.07	0.07	0.01
	120 - 100		Max. Vx	6	0.01	0.00	0.00
T6			Max Tension	23	174.67	0.51	0.03
			Max. Compression	10	-198.18	-0.54	-0.03
			Max. Mx	10	-197.99	0.99	0.00
			Max. My	12	-1.33	-0.06	-0.81
			Max. Vy	10	-0.38	0.99	0.00
			Max. Vx	4	-0.26	-0.08	-0.73
		Diagonal	Max Tension	8	12.01	0.00	0.00
		J	Max. Compression	8	-12.17	0.00	0.00

tnxTower	Job	Aho - Viper	Page 31 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis Moment
	ft	Туре		Load Comb.	K	Moment kip-ft	мотепі kip-ft
			Max. My	31	-0.06	0.00	0.00
			Max. Vy	32	-0.08	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
		Horizontal	Max Tension	22	0.38	0.03	0.01
			Max. Compression	23	-0.56	0.00	-0.00
			Max. Mx	33	0.11	0.08	0.03
			Max. My	8	-0.29	0.01	0.04
			Max. Vy	33	0.08	0.08	0.03
			Max. Vx	8	-0.01	0.00	0.00
T7	100 - 80	Leg	Max Tension	23	221.71	0.64	0.03
		8	Max. Compression	. 10	-251.02	-0.69	-0.03
			Max. Mx	10	-250.79	1.23	0.01
			Max. My	12	-1.96	-0.10	-0.93
			Max. Vy	10	-0.46	1.23	0.01
			Max. Vx	8	0.57	0.04	0.25
		Diagonal	Max Tension	8	11.41	0.00	0.00
		6	Max. Compression	10	-11.75	0.00	0.00
			Max. Mx	32	0.75	-0.16	0.00
			Max. My	31	-0.07	0.00	0.00
			Max. Vy	32	0.08	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
		Horizontal	Max Tension	22	0.47	0.03	0.01
			Max. Compression	, 23	-0.66	0.01	0.00
			Max. Mx	29	0.11	0.09	0.03
			Max. My	٠ 6	-0.56	0.02	0.04
			Max. Vy	29	0.09	0.09	0.03
			Max. Vx	31	-0.01	0.00	0.00
T8	80 - 60	Leg	Max Tension	23	266.25	0.74	0.04
		8	Max. Compression	10	-302.05	-0.75	-0.05
			Max. Mx	10	-301.80	1.43	0.02
			Max. My	22	-133.05	-0.57	1.07
			Max. Vy	10	-0.54	1.43	0.02
			Max. Vx	22	-0.33	-0.57	1.07
		Diagonal	Max Tension	7	11.60	0.00	0.00
			Max. Compression	10	-12.23	0.00	0.00
			Max. Mx	32	0.77	-0.19	0.00
			Max. My	٠ 31	-0.03	0.00	0.01
			Max. Vy	32	0.09	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
		Horizontal	Max Tension	22	0.55	0.03	0.01
			Max. Compression	23	-0.72	0.01	0.00
			Max. Mx	33	0.16	0.12	0.04
			Max. My	31	0.03	0.11	0.04
			Max. Vy	33	0.09	0.12	0.04
			Max, Vx	31	-0.01	0.00	0.00
T9	60 - 40	Leg	Max Tension	23	309.13	0.88	0.04
• /	00 .0	8	Max. Compression	10	-351.91	-0.89	-0.03
			Max. Mx	10	-351.63	1.67	0.02
			Max. My	12	-4.39	-0.18	-1.30
			Max. Vy	10	-0.63	1.67	0.02
			Max. Vx	22	-0.38	-0.70	1.29
		Diagonal	Max Tension	7	12.21	0.00	0.00
		2.0501101	Max. Compression	10	-12.97	0.00	0.00
			Max. Mx	32	0.86	-0.25	0.00
			Max. My	31	0.07	0.00	0.01
			Max. Vy	32	-0.11	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
		Horizontal	Max Tension	22	0.65	0.00	0.00
		HUHZUHA	Max. Compression	13	-0.82	0.02	0.00
			Max. Mx	31	0.01	0.16	0.02
							0.05
			Max. My	٠ 31	-0.00	0.16	0.0

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

	•	2025 09 05 PCC Mosting
Job		Page
	Aho - Viper	32 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vy	33	0.11	0.15	0.05
		_	Max. Vx	31	-0.01	0.00	0.00
T10	40 - 20	Leg	Max Tension	23	350.85	1.04	0.03
			Max. Compression	10	-401.10	-0.55	-0.02
			Max. Mx	10	-377.19	1.93	0.03
			Max. My	12	-6.07	-0.22	-1.70
			Max. Vy	10	0.73	1.93	0.03
			Max. Vx	12	0.47	-0.22	-1.70
		Diagonal	Max Tension	7	12.83	0.00	0.00
			Max. Compression	10	-13.84	0.00	0.00
			Max. Mx	32	1.04	-0.28	0.00
			Max. My	31	0.28	0.00	0.01
			Max. Vy	32	0.12	0.00	0.00
			Max. Vx	31	0.00	0.00	0.00
		Horizontal Programme 1	Max Tension	22	0.76	0.00	0.00
			Max. Compression	13	-0.94	0.03	0.02
			Max. Mx	31	-0.01	0.19	0.06
			Max. My	, 31	-0.02	0.19	0.06
			Max. Vy	33	0.12	0.17	0.06
			Max. Vx	31	-0.01	0.00	0.00
T11	20 - 0	Leg	Max Tension	23	383.68	1.09	0.03
			Max. Compression	10	-441.40	-0.00	0.00
			Max. Mx	10	-422.70	1.81	0.02
			Max. My	12	-7.79	-0.17	-1.85
			Max. Vy	10	0.70	1.81	0.02
			Max. Vx	12	-0.48	-0.17	-1.85
		Diagonal	Max Tension	18	10.13	0.00	0.00
			Max. Compression	18	-10.84	0.00	0.00
			Max. Mx	27	2.11	-0.30	0.00
			Max. My	, 27	0.98	0.00	-0.01
			Max. Vy	27	0.12	0.00	0.00
			Max. Vx	27	-0.00	0.00	0.00
		Horizontal	Max Tension	22	0.65	0.11	0.02
			Max. Compression	13	-0.87	0.07	0.03
			Max. Mx	31	-0.06	0.27	0.10
			Max. My	35	0.05	0.27	0.10
			Max. Vy	31	0.14	0.27	0.10
			Max. Vx	35	0.02	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	413.90	32.58	-16.90
	Max. H _x	18	413.90	32.58	-16.90
	Max. H _z	7	-368.72	-29.40	14.65
	Min. Vert	7	-368.72	-29.40	14.65
	$Min. H_x$	7	-368.72	-29.40	14.65
	Min. H _z	18	413.90	32.58	-16.90
Leg B	Max. Vert	10	449.46	-34.30	-18.30
	Max. H _x	23	-389.98	30.32	16.03
	Max. H _z	25	-341.40	25.67	16.45
	Min. Vert	23	-389.98	30.32	16.03
	Min. H _x	10	449.46	-34.30	-18.30
	Min. H _z	10	449.46	-34.30	-18.30
Leg A	Max. Vert	2	421.16	0.71	37.50

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		•
Job		Page
	Aho - Viper	33 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
	Max. H _x	20	24.05	2.39	1.22
	Max. H _z	2	421.16	0.71	37.50
	Min. Vert	15	-366.80	-0.76	-32.78
	Min. H _x	11	-192.12	-2.30	-17.52
	Min. H _z	15	-366.80	-0.76	-32.78

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear <u>.</u>	Overturning $Moment, M_x$	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	37.58	-0.00	-0.00	13.75	-4.91	-0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	45.10	1.05	-61.31	-6330.98	-106.41	25.65
0.9 Dead+1.6 Wind 0 deg - No	33.82	1.05	-61.31	-6328.99	-104.86	25.63
Ice						
1.2 Dead+1.6 Wind 30 deg - No Ice	45.10	27.53	-46.39	-4809.33	-2881.97	62.04
0.9 Dead+1.6 Wind 30 deg - No Ice	33.82	27.53	-46.39	-4808.54	-2877.52	62.01
1.2 Dead+1.6 Wind 60 deg - No Ice	45.10	48.60	-27.18	-2824.93	-5215.23	61.88
0.9 Dead+1.6 Wind 60 deg - No Ice	33.82	48.60	-27.18	-2826.16	-5208.28	61.84
1.2 Dead+1.6 Wind 90 deg - No Ice	45.10	54.55	-0.23	37.51	-5934.23	42.85
0.9 Dead+1.6 Wind 90 deg - No Ice	33.82	54.55	-0.23	33.30	-5926.48	42.82
1.2 Dead+1.6 Wind 120 deg - No Ice	45.10	55.78	29.85	3178.01	-5984.93	37.83
0.9 Dead+1.6 Wind 120 deg - No Ice	33.82	55.78	29.85	3170.55	-5977.23	37.80
1.2 Dead+1.6 Wind 150 deg - No Ice	45.10	30.05	. 50.96	5460.86	-3256.03	9.75
No Ice 0.9 Dead+1.6 Wind 150 deg - No Ice	33.82	30.05	50.96	5451.00	-3251.12	9.75
1.2 Dead+1.6 Wind 180 deg - No Ice	45.10	0.90	55.70	5903.85	-187.82	-24.01
0.9 Dead+1.6 Wind 180 deg - No Ice	33.82	0.90	55.70	5893.55	-186.07	-23.99
1.2 Dead+1.6 Wind 210 deg - No Ice	45.10	-26.41	45.94	4794.21	2692.18	-53.38
0.9 Dead+1.6 Wind 210 deg - No Ice	33.82	-26.41	45.94	4785.12	2690.96	-53.36
1.2 Dead+1.6 Wind 240 deg - No Ice	45.10	-52.37	. 29.03	2985.84	5455.66	-51.61
0.9 Dead+1.6 Wind 240 deg - No Ice	33.82	-52.37	29.03	2978.68	5451.57	-51.57
1.2 Dead+1.6 Wind 270 deg - No Ice	45.10	-54.05	-0.90	-140.57	5807.06	-36.66
0.9 Dead+1.6 Wind 270 deg - No Ice	33.82	-54.04	-0.90	-144.50	5802.48	-36.63
1.2 Dead+1.6 Wind 300 deg - No Ice	45.10	-50.28	-28.94	-3119.09	5425.57	-38.48
0.9 Dead+1.6 Wind 300 deg - No Ice	33.82	-50.28	-28.94	-3119.94	5421.36	-38.46
1.2 Dead+1.6 Wind 330 deg -	45.10	-30.13	-51.20	-5415.87	3224.09	-13.13

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

	•	-2025-08-05 RCC Meeting
Job		Page
	Aho - Viper	34 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
No Ice			***************************************		•	
0.9 Dead+1.6 Wind 330 deg -	33.82	-30.13	-51.20	-5414.40	3222.20	-13.12
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	172.29	-0.00	-0.00	135.67	-54.97	-0.00
1.2 Dead+1.0 Wind 0 deg+1.0	172.29	0.05	-5.96	-501.73	-59.76	2.98
Ice+1.0 Temp			,			
1.2 Dead+1.0 Wind 30 deg+1.0	172.29	2.87	-4.91	-393.35	-364.74	6.06
Ice+1.0 Temp			•			
1.2 Dead+1.0 Wind 60 deg+1.0	172.29	4.94	-2.81	-168.25	-595.33	5.92
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	172.29	5.70	-0.01	136.84	-683.36	4.43
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	172.29	5.24	2.91	450.97	-624.84	3.51
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	172.29	2.99	5.12	688.83	-379.43	1.03
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	172.29	0.04	5.74	752.72	-63.75	-2.89
deg+1.0 Ice+1.0 Temp			,			
1.2 Dead+1.0 Wind 210	172.29	-2.80	4.87	658.72	243.95	-5.66
deg+1.0 Ice+1.0 Temp			•			
1.2 Dead+1.0 Wind 240	172.29	-5.03	2.85	440.72	488.32	-5.44
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	172.29	-5.65	-0.04	128.23	563.17	-4.14
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	172.29	-5.03	-2.90	-181.00	493.55	-3.54
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	172.29	-2.99	-5.13	-416.58	268.32	-1.18
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	37.58	0.18	-10.38	-1060.59	-21.77	4.45
Dead+Wind 30 deg - Service	37.58	4.66	-7.86	-804.09	-492.18	10.48
Dead+Wind 60 deg - Service	37.58	8.23	-4.60	-467.70	-887.08	10.38
Dead+Wind 90 deg - Service	37.58	9.24	-0.04	17.30	-1008.97	7.11
Dead+Wind 120 deg - Service	37.58	9.43	5.05	548.89	-1016.12	6.20
Dead+Wind 150 deg - Service	37.58	5.09	8.63	935.34	-554.89	1.47
Dead+Wind 180 deg - Service	37.58	0.15	9.43	1010.97	-35.41	-4.17
Dead+Wind 210 deg - Service	37.58	-4.47	7.78	823.58	452.51	-9.03
Dead+Wind 240 deg - Service	37.58	-8.86	4.92	516.67	919.51	-8.65
Dead+Wind 270 deg - Service	37.58	-9.16	-0.15	-12.54	979.78	-6.06
Dead+Wind 300 deg - Service	37.58	-8.51	-4.90	-516.97	914.45	-6.31
Dead+Wind 330 deg - Service	37.58	-5.10	-8.67	-905.75	541.66	-2.03

Solution Summary

State and State	Sui	m of Applied Force.	5		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-37.58	0.00	0.00	37.58	0.00	0.000%
2	1.05	-45.10	-61.32	-1.05	45.10	61.31	0.004%
3	1.05	-33.82	-61.32	-1.05	33.82	61.31	0.003%
4	27.53	-45.10	-46.39	-27.53	45.10	46.39	0.001%
5	27.53	-33.82	-46.39	-27.53	33.82	46.39	0.003%
6	48.60	-45.10	-27.18	-48.60	45.10	27.18	0.002%
7	48.60	-33.82	-27.18	-48.60	33.82	27.18	0.004%
8	54.55	-45.10	-0.23	-54.55	45.10	0.23	0.002%
9	54.55	-33.82	-0.23	-54.55	33.82	0.23	0.004%
10	55.78	-45.10	29.85	-55.78	45.10	-29.85	0.001%
11	55.78	-33.82	29.85	-55.78	33.82	-29.85	0.003%
12	30.05	-45.10	50.96	-30.05	45.10	-50.96	0.002%

	Job	- · · · · · · · · · · · · · · · · · · ·	Page
tnxTower		Aho - Viper	35 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

***************************************	Su	m of Applied Forces			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
13	30.05	-33.82	50.96	-30.05	33.82	-50.96	0.004%
14	0.90	-45.10	55.70	-0.90	45.10	-55.70	0.002%
15	0.90	-33.82	55.70	-0.90	33.82	-55.70	0.004%
16	-26.41	-45.10	45.94	26.41	45.10	-45.94	0.001%
17	-26.41	-33.82	45.94	26.41	33.82	-45.94	0.003%
18	-52.37	-45.10	29.03	52.37	45.10	-29.03	0.001%
19	-52.37	-33.82	29.03	52.37	33.82	-29.03	0.003%
20	-54.05	-45.10	-0.90	54.05	45.10	0.90	0.001%
21	-54.05	-33.82	-0.90	54.04	33.82	0.90	0.003%
22	-50.29	-45.10	-28.94	50.28	45.10	28.94	0.002%
23	-50.29	-33.82	-28.94	50.28	33.82	28.94	0.004%
24	-30.13	-45.10	-51.20	30.13	45.10	51.20	0.001%
25	-30.13	-33.82	-51.20	30.13	33.82	51.20	0.003%
26	0.00	-172.29	0.00	0.00	172.29	0.00	0.000%
27	0.05	-172.29	-5.96	-0.05	172.29	5.96	0.000%
28	2.87	-172.29	-4.91	-2.87	172.29	4.91	0.000%
29	4.94	-172.29	-2.81	-4.94	172.29	2.81	0.000%
30	5.70	-172.29	-0.01	-5.70	172.29	0.01	0.000%
31	5.24	-172.29	2.91	-5.24	172.29	-2.91	0.000%
32	2.99	-172.29	5.12	-2.99	172.29	-5.12	0.000%
33	0.04	-172.29	5.74	-0.04	172.29	-5.74	0.000%
34	-2.80	-172.29	4.87	2.80	172.29	-4.87	0.000%
35	-5.03	-172.29	2.85	5.03	172.29	-2.85	0.000%
36	-5.65	-172.29	-0.04	5.65	172.29	0.04	0.000%
37	-5.04	-172.29	-2.90	5.03	172.29	2.90	0.000%
38	-2.99	-172.29	-5.13	2.99	172.29	5.13	0.000%
39	0.18	-37.58	-10.38	-0.18	37.58	10.38	0.001%
40	4.66	-37.58	-7.86	-4.66	37.58	7.86	0.001%
41	8.23	-37.58	-4.60	-8.23	37.58	4.60	0.001%
42	9.24	-37.58	-0.04	-9.24	37.58	0.04	0.001%
43	9.43	-37.58	5.05	-9.43	37.58	-5.05	0.001%
44	5.09	-37.58	8.63	-5.09	37.58	-8.63	0.001%
45	0.15	-37.58	9.43	-0.15	37.58	-9.43	0.001%
46	-4.47	-37.58	7.78	4.47	37.58	-7.78	0.001%
47	-8.86	-37.58	4.92	8.86	37.58	-4.92	0.001%
48	-9.16	-37.58	-0.15	9.16	37.58	0.15	0.001%
49	-8.51	-37.58	-4.90	8.51	37.58	4.90	0.001%
50	-5.10	-37.58	-8.67	5.10	37.58	8.67	0.001%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	10	0.00006273	0.00014951
3	Yes	10	0.00000001	0.00010948
4	Yes	11	0.00000001	0.00006310
5	Yes	10	0.00000001	0.00012036
6	Yes	11	0.0000001	0.00006751
7	Yes	10	0.00005437	0.00013085
8	Yes	11	0.00000001	0.00006547
9	Yes	10	0.00000001	0.00012575
10	Yes	11	0.00000001	0.00006049
11	Yes	10	0.00000001	0.00011355
12	Yes	11	0.00000001	0.00006392
13	Yes	10	0.00005039	0.00012192

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025 08 05 RCC Meeting
Job		Page
	Aho - Viper	36 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

14	Yes	11	0.00000001	0.00006704
15	Yes	10	0.00000001	0.00012967
16	Yes	11	0.00000001	0.00006312
17	Yes	10	0.00000001	0.00012037
18	Yes	11	0.00000001	0.00005887
19	Yes	10	0.00000001	0.00010988
20	Yes	11	0.00000001	0.00006331
21	Yes	10	0.00000001	0.00012068
22	Yes	11	0.00000001	0.00006686
23	Yes	10	0.00005367	0.00012923
24	Yes	11	0.00000001	0.00006305
25	Yes	10	0.00000001	0.00012007
26	Yes	10	0.00000001	0.00014688
27	Yes	11	0.00000001	0.00011925
28	Yes	11	0.00000001	0.00013601
29	Yes	12	0.00000001	0.00006116
30	Yes	12	0.00000001	0.00006938
31	Yes	12	0.00000001	0.00007499
32	Yes	12	0.00000001	0.00007684
33	Yes	12	0.00000001	0.00007484
34	Yes	12	0.00000001	0.00007041
35	Yes	12	0.00000001	0.00006527
36	Yes	12	0.00000001	0.00005686
37	Yes	11	0.00000001	0.00013211
38	Yes	11	100000001	0.00011694
39	Yes	10	0.00000001	0.00012675
40	Yes	10	0.00000001	0.00012826
41	Yes	10	0.00000001	0.00013158
42	Yes	10	0.00000001	0.00013134
43	Yes	10	0.00000001	0.00012971
44	Yes	10	0.00000001	0.00013126
45	Yes	10	0.00000001	0.00013172
46	Yes	10	0.00000001	0.00012860
47	Yes	10	0.00000001	0.00012729
48	Yes	10	0.00000001	0.00012928
49	Yes	10	0.00000001	0.00013136
50	Yes	10	0.00000001	0.00012935

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	o
TI	199 - 184.025	4.864	43	0.22	0.10
T2	184.025 - 180	4.182	43	0.21	0.11
T3	180 - 160	3.995	43	0.21	0.09
T4	160 - 140	3.148	43	0.19	0.06
T5	140 - 120	2.392	43	0.16	0.05
T6	120 - 100	1.741	43	0.14	0.04
T7	100 - 80	1.199	43	0.11	0.03
T8	80 - 60	0.767	43	0.09	0.02
T9	60 - 40	0.438	43	0.06	0.01
T10	40 - 20	0.205	43	0.04	0.01
TII	20 - 0	0.059	43	0.02	0.00

Critical Deflections and Radius of Curvature - Service Wind

4T	Job		Page	
tnxTower		Aho - Viper	37 of 44	
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25	
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar	

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
199.00	5/8-in x 8-ft Lightning Rod	43	4.864	0.22	0.10	177414
198.00	Side Arm Mount [SO 303-1]	43	4.819	0.22	0.10	177414
196.00	Junction Box (9" x 6" x 5")	43	4.729	0.22	0.11	177414
188.00	Ice Shield 10'x7"	43	4.365	0.22	0.11	81356
183.00	PAD8-65AC1S1R	43	4.134	0.21	0.10	166152
175.00	HX6-6W-6WH	43	3.770	0.20	0.07	30392
160.00	Side Arm Mount [SO 303-1]	43	3.148	0.19	0.06	68182
155.00	Ice Shield 10'x7"	43	2.951	0.18	0.06	63156
150.00	PAD8-65AC1S1R	43	2.759	0.18	0.06	53897
130.00	PAD6-65B	43	2.053	0.15	0.05	43304
100.00	Side Arm Mount [SO 303-1]	43	1.199	0.11	0.03	42823
80.00	Pipe Mount [PM 601-1]	43	0.767	0.09	0.02	47631

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	•	0
T1	199 - 184.025	28.365	10	1.27	0.60
T2	184.025 - 180	24.409	10	` 1.24	0.64
T3	180 - 160	23.321	10	1.21	0.52
T4	160 - 140	18.398	10	1.09	0.39
T5	140 - 120	14.002	10	0.96	0.31
T6	120 - 100	10.203	10	0.80	0.24
T7	100 - 80	7.033	10	0.65	0.17
T8	80 - 60	4.502	10	0.50	0.13
T9	60 - 40	2.569	10	0.36	0.09
T10	40 - 20	1.207	10	0.23	0.05
T11	20 - 0	0.349	10	0.12	0.03

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection ·	Tilt	Twist	Radius of
		Load			_	Curvature
ft		Comb.	in	0	0	ft
199.00	5/8-in x 8-ft Lightning Rod	10	28.365	1.27	0.60	27811
198.00	Side Arm Mount [SO 303-1]	10	28.104	1.27	0.62	27811
196.00	Junction Box (9" x 6" x 5")	10	27.582	1.27	0.65	27811
188.00	Ice Shield 10'x7"	10	25.475	1.25	0.69	12746
183.00	PAD8-65AC1S1R	10	24.131	1.23	0.61	34044
175.00	HX6-6W-6WH	10	22.016	1.18	0.42	5259
160.00	Side Arm Mount [SO 303-1]	10	18.398	1.09	0.39	12032
155.00	Ice Shield 10'x7"	10	17.254	1.06	0.37	11142
150.00	PAD8-65AC1S1R	10	16.137	1.03	0.35	9492
130.00	PAD6-65B	10	12.023	0.88	0.27	7563
100.00	Side Arm Mount [SO 303-1]	10	7.033	0.65	0.17	7353
80.00	Pipe Mount [PM 601-1]	10	4.502	0.50	0.13	8160

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025 08 05 PCC Mosting
Job		Page
	Aho - Viper	38 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
***************************************	ft	***************************************		in	Bolts	per Bolt K	per Bolt K	Allowable		
T2	184.025	Leg	A325X	0.7500	4	3.65	29.82	0.123	1	Bolt Tension
T3	180	Leg	A325X	1.0000	4	11.02	53.01	0.208	I	Bolt Tension
		Diagonal	A325X	0.6250	1	6.76	11.86	0.570	1	Member Block Shear
		Top Girt	A325X	0.6250	1	0.88	8.89	0.099	İ	Member Block Shear
T4	160	Leg	A325X	1.0000	4	21.11	53.01	0.398	1	Bolt Tension
		Diagonal	A325X	0.6250	. 1	7.59	11.86	0.640	1	Member Block Shear
T5	140	Leg	A325X	1.0000	4	32.86	53.01	0.620	1	Bolt Tension
		Diagonal	A325X	0.6250	1	9.27	14.58	0.636	1	Member Block Shear
T6	120	Leg	A325X	1.0000	6	29.08	53.01	0.549	1	Bolt Tension
		Diagonal	A325X	0.7500	1	12.01	17.84	0.673	1	Member Bearing
		Horizontal	A325X	0.7500	1 .	3.97	10.16	0.390	1	Member Block Shear
T7	100	Leg	A325X	1.0000	6	36.91	53.01	0.696	1	Bolt Tension
		Diagonal	A325X	0.7500	1	11.41	17.84	0.640	1	Member Bearing
		Horizontal	A325X	0.7500	1	4.77	10.16	0.469	1	Member Block Shear
T8	80	Leg	A325X>1'	1.2500	6	44.33	72.51	0.611	1	Bolt Tension
		Diagonal	A325X	0.7500	1	11.60	17.84	0.650	1	Member Bearing
		Horizontal	A325X	0.7500	1	5.47	10.16	0.538	1	Member Block Shear
Т9	60	Leg	A325X>1'	1.2500	6	51.47	72.51	0.710	1	Bolt Tension
		Diagonal	A325X	0.7500	1	12.21	17.84	0.685	1	Member Bearing
		Horizontal	A325X	0.7500	1	6.10	13.38	0.456	1	Member Bearing
T10	40	Leg	A325X>1'	1.2500	6	58.42	72.51	0.806	1	Bolt Tension
		Diagonal	A325X	0.7500	1	12.83	17.84	0.719	1	Member Bearing
		Horizontal	A325X	0.7500	. 1	6.95	13.38	0.520	1	Member Bearing
T11	20	Diagonal	A325X	0.7500	1.	10.13	17.84	0.568	1	Member Bearing
		Horizontal	A325X	0.7500	1	7.65	17.84	0.429	1	Member Bearing

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.,
	ft		ft	ft		in ²	K	K	ϕP_n
T1	199 - 184.025	1 1/2	14.97	3.65	116.8 K=1.00	1.7672	-9.03	29.26	0.309 1
T2	184.025 - 180	1 1/2	4.02	3.65	116.8 K=1.00	1.7672	-14.74	29.26	0.504
Т3	180 - 160	2 1/4	20.02	5.00	106.8 K=1.00	3.9761	-51.01	77.75	0.656 1

Page Job tnxTower 39 of 44 Aho - Viper Date **Project** Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County hicham.anssar

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	φ <i>P</i> ,,	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T4	160 - 140	2 3/4	20.02	5.00	87.4 K=1.00	5.9396	-97.87	152.99	0.640 1
T5	140 - 120	3	20.02	5.00	80.1 K=1.00	7.0686	-150.19	199.04	0.755 1
T6	120 - 100	3 1/4	20.02	5.00	73.9 K=1.00	8.2958	-198.18	250.37	0.792 1
T7	100 - 80	3 1/2	20.02	5.00	68.6 K=1.00	9.6211	-251.02	306.80	0.818 1
T8	80 - 60	3 3/4	20.02	5.00	64.1 K=1.00	11.0447	-302.05	368.18	0.820 1
Т9	60 - 40	4	20.02	5.00	60.1 K=1.00	12.5664	-351.91	434.40	0.810 1
T10	40 - 20	4 1/4	20.02	5.00	56.5 K=1.00	14.1863	-401.10	505.39	0.794 1
T11	20 - 0	4 1/4	20.03	5.01	56.6 K=1.00	14.1863	-441.40	505.22	0.874

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Diagonal Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	199 - 184.025	1	5.42	5.25	176,3 K=0.70	0.7854	-3.20	5.71	0.560 1
T2	184.025 - 180	SR 1" Ø + SR 1" Ø (Aho - Viper)	5.42	5.25	124.6 K=0.70	0.7854	-6.29	11.24	0.559
T3	180 - 160	L2x2x1/4	6.77	3.25	104.8 K=1.05	0.9380	-7.04	17.05	0.413
T4	160 - 140	L2x2x1/4	8.45	4.05	124.4 K=1.00	0.9380	-7.51	13.45	0.558 1
T5	140 - 120	L2 1/2x2 1/2x1/4	9.70	4.67	115.6 K=1.01	1.1900	-9.25	19.09	0.485
Т6	120 - 100	L3x3x1/4	7.07	6.55	132.7 K=1.00	1.4400	-11.77	18.46	0.637 1
T7	100 - 80	L3x3x1/4	7.62	7.09	143.8 K=1.00	1.4400	-11.75	15.73	0.747 1
T8	80 - 60	L3x3x1/4	8.20	7.67	155.5 K=1.00	1.4400	-12.23	13.46	0.909 1
Т9	60 - 40	L3 1/2 x 3 1/2 x 1/4	8.81	8.27	143.1 K=1.00	1.6875	-12.97	18.62	0.697 1
T10	40 - 20	L3 1/2 x 3 1/2 x 1/4	9.43	8.89	153.8 K=1.00	1.6875	-13.84	16.11	0.859 1
T11	20 - 0	L3 1/2 x 3 1/2 x 1/4	10.30	9.76	168.9 K=1.00	1.6875	-10.80	13.37	0.808 1

 $^{^{1}}P_{n}/\phi P_{n}$ controls

Horizontal Design Data (Compression)

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025 08 05 BCC Meeting
Job		Page
	Aho - Viper	40 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	φ <i>P</i> ,,	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
Tl	199 - 184.025	1	4.00	3.88	130.2 K=0.70	0.7854	-0.38	10.42	0.036 1
T2	184.025 - 180	1	4.00	3.88	130.2 K=0.70	0.7854	-2.47	10.42	0.237 1
Т6	120 - 100	L2 1/2x2 1/2x3/16	9.63	9.35,	96.1 K=0.67	0.9020	-3.97	17.98	0.221 1
T7	100 - 80	L2 1/2x2 1/2x3/16	11.13	10.83	101.8 K=0.61	0.9020	-4.77	16.94	0.281 1
Т8	80 - 60	L2 1/2x2 1/2x3/16	12.63	12.31	107.5 K=0.57	0.9020	-5.47	15.91	0.344 1
Т9	60 - 40	L3x3x3/16	14.13	13.79	104.1 K=0.59	1.0900	-6.10	19.67	0.310 1
T10	40 - 20	L3x3x3/16	15.63	15.27	108.8 K=0.56	1.0900	-6.95	18.69	0.372 1
T11	20 - 0	L3 1/2 x 3 1/2 x 1/4	17.50	17.15	107.1 K=0.57	1.6875	-7.65	29.88	0.256 1

¹ P_u / ϕP_n controls

Secondary Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L,,	Kl/r	A	P_u	ϕP_n	Ratio
140.	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_n}$
T1	199 - 184.025	1	2.00	1.94:	83.9 K=0.90	0.7854	-0.00	17.56	0.000 1
T2	184.025 - 180	1	2.00	1.94	83.9 K=0.90	0.7854	-0.00	17.56	0.000 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Top Girt Design Data (Compression)

***************************************				•					
Section No.	Elevation	Size	L	L_u .	Kl/r	Α	P_u	φ <i>P</i> ,,	Ratio P
	ft		fì	ft		in^2	K	K	$\frac{1}{\Phi P_n}$
T1	199 - 184.025	1 1/8	4.00	3.88	115.7 K=0.70	0.9940	-0.72	15.91	0.045 1
Т3	180 - 160	L2x2x3/16	4.00	3.52	113.6 K=1.06	0.7150	-1.06	11.74	0.090 1

 $^{{}^{1}}P_{u}$ / ϕP_{n} controls

Bottom Girt Design Data (Compression)

Job Page tnxTower 41 of 44 Aho - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County hicham.anssar

Section	Elevation	Size	L	L,	Kl/r	A	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in²	K	K	${\phi P_n}$
T2	184.025 - 180	1	4.00	3.88	130.2	0.7854	-2.21	10.42	0.212 1
					K=0.70				

 $^{{}^{1}}P_{u}/\phi P_{n}$ controls

Tension Checks

Leg Design Data (Tension)										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in²	K	K	ϕP_n	
T1	199 - 184.025	1 1/2	14.97	3.65	116.8	1.7672	8.16	79.52	0.103 1	
T2	184.025 - 180	1 1/2	4.02	0.38	12.0	1.7672	14.62	79.52	0.184^{-1}	
T3	180 - 160	2 1/4	20.02	5.00	106.8	3.9761	44.09	178.92	0.246^{-1}	
T4	160 - 140	2 3/4	20.02	5.00	87.4	5.9396	84.45	267.28	0.316^{-1}	
T5	140 - 120	3	20.02	5.00	80.1	7.0686	131.44	318.09	0.413^{-1}	
T6	120 - 100	3 1/4	20.02	5.00 4	73.9	8.2958	174.67	373.31	0.468^{-1}	
T7	100 - 80	3 1/2	20.02	5.00	68.6	9.6211	221.71	432.95	0.512^{-1}	
T8	80 - 60	3 3/4	20.02	5.00	64.1	11.0447	266.25	497.01	0.536^{-1}	
Т9	60 - 40	4	20.02	5.00	60.1	12.5664	309.13	565.49	0.547^{-1}	
T10	40 - 20	4 1/4	20.02	5.00	56.5	14.1863	350.85	638.38	0.550^{-1}	
T11	20 - 0	4 1/4	20.03	5.01	56.6	14.1863	383.68	638.38	0.601^{-1}	

¹ P_u / ϕP_n controls

		Diag	onal [Desig	n Dat	a (Ten	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T1	199 - 184.025	1	5.42	5.25	251.8	0.7854	3.03	25.45	0.119 1
T2	184.025 - 180	SR 1" Ø + SR 1" Ø (Aho - Viper)	5.42	5.25	178.0	0.7854	7.39	25.45	0.290 1
T3	180 - 160	L2x2x1/4	6.77	3.25	66.9	0.5629	6.76	24.49	0.276^{-1}
T4	160 - 140	L2x2x1/4	8.15	3.91 -	79.9	0.5629	7.59	24.49	0.310^{-1}
T5	140 - 120	L2 1/2x2 1/2x1/4	9.38	4.51	72.7	0.7519	9.27	32.71	0.283 1
T6	120 - 100	L3x3x1/4	6.56	6.04 '	82.2	0.9159	12.01	39.84	0.301^{-1}
T7	100 - 80	L3x3x1/4	7.07	6.55	88.8	0.9159	11.41	39.84	0.286 1
T8	80 - 60	L3x3x1/4	8.20	7.67	103.3	0.9159	11.60	39.84	0.291^{-1}
Т9	60 - 40	L3 1/2 x 3 1/2 x 1/4	8.81	8.27	94.6	1.1016	12.21	47.92	0.255
T10	40 - 20	L3 1/2 x 3 1/2 x 1/4	9.43	8.89	101.4	1.1016	12.83	47.92	0.268
T11	20 - 0	L3 1/2 x 3 1/2 x 1/4	9.86	9.33	106.2	1.1016	10.13	47.92	0.212 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Aho - Viper	42 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Horizontal	Design	Data ((Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	А	P_u	φ <i>P</i> "	Ratio P _u
	ft		ft	ft		in^2	K	K	$\overline{\phi P_n}$
Tl	199 - 184.025	1	4.00	3.88	186.0	0.7854	0.38	25.45	0.015 1
T2	184.025 - 180	1	4.00	3.88	186.0	0.7854	2.05	25.45	0.081^{-1}
T6	120 - 100	L2 1/2x2 1/2x3/16	9.63	9.35	72.1	0.5535	3.97	24.08	0.165 ¹
T7	100 - 80	L2 1/2x2 1/2x3/16	11.13	10.83	83.5	0.5535	4.77	24.08	0.198 ¹
T8	80 - 60	L2 1/2x2 1/2x3/16	12.63	12.31	95.0	0.5535	5.47	24.08	0.227^{-1}
Т9	60 - 40	L3x3x3/16	14.13	13.79	88.1	0.6945	6.10	30.21	0.202^{-1}
T10	40 - 20	L3x3x3/16	15.63	15.27	97.6	0.6945	6.95	30.21	0.230 1
T11	20 - 0	L3 1/2 x 3 1/2 x 1/4	17.50	17.15	94.3	1.1016	7.65	47.92	0.160 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Secondar	y Horizontal	Design	Data /	(Tension)
Secondar	y i iorizoritai	Desidii	Dala	(161121011)

***************************************		***************************************				*******************************	***************************************		***************************************
Section	Elevation	Size	L	$L_{"}$	Kl/r	A	P_u	ϕP_n	Ratio
No.								•	P_u
	fit		ft	ft		in ²	K	K	ϕP_n
Tl	199 - 184.025	1	2.00	1.94	93.0	0.7854	0.00	25.45	0.000^{-1}
T2	184.025 - 180	1	2.00	1.94	93.0	0.7854	0.00	25.45	0.000 1

 $^{{}^{\}dagger}P_{u}/\phi P_{n}$ controls

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P
	ft		ft	ft		in²	K	K	$\frac{1}{\phi P_n}$
T1	199 - 184.025	1 1/8	4.00	3.88	165.3	0.9940	0.74	32.21	0.023 1
T3	180 - 160	L2x2x3/16	4.00	3.52	74.1	0.4308	0.88	18.74	0.047 1

 $^{^{1}}P_{u}/_{\phi}P_{n}$ controls

Section	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in ²	K	K	$\overline{\phi P_n}$
T2	184.025 - 180	1	4.00	3.88	186.0	0.7854	2.19	25.45	0.086 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Aho - Viper	43 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

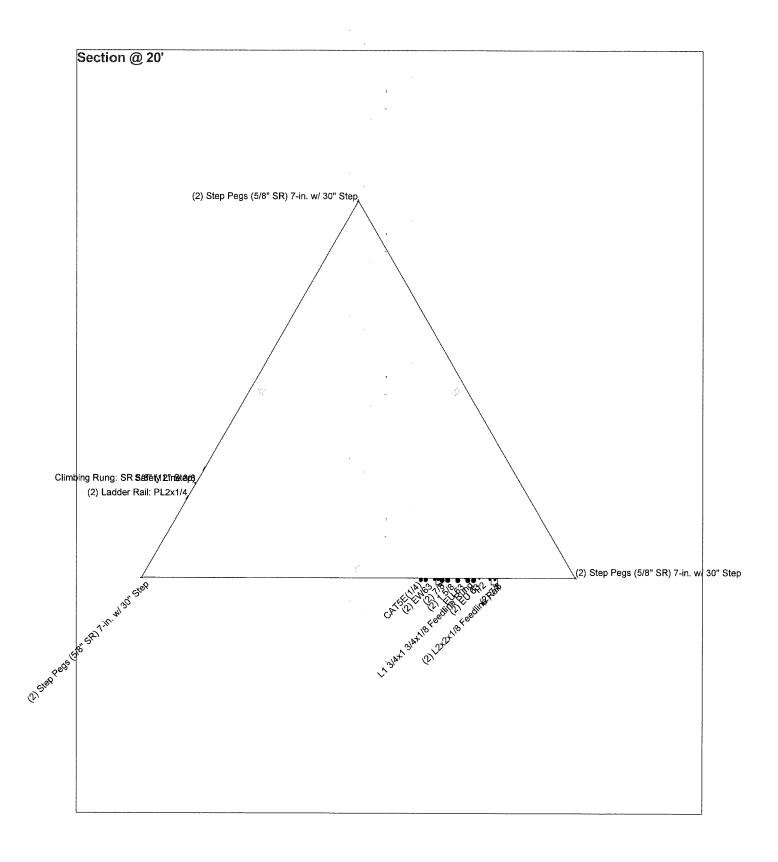
Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$ oldsymbol{\emptyset} P_{allow}$	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
Tl	199 - 184.025	Leg	1 1/2	2	-9.03	29.26	30.9	Pass
T2	184.025 - 180	Leg	1 1/2	33	-14.74	29.26	50.4	Pass
T3	180 - 160	Leg	2 1/4	46	-51.01	77.75	65.6	Pass
T4	160 - 140	Leg	2 3/4	-76	-97.87	152.99	64.0	Pass
T5	140 - 120	Leg	3	103	-150.19	199.04	75.5	Pass
T6	120 - 100	_	3 1/4	130	-198.18	250.37	79.2	Pass
T7	100 - 80	Leg	3 1/4	163	-251.02	306.80	81.8	
T8	80 - 60	Leg	3 3/4	196	-302.05		82.0	Pass
		Leg				368.18		Pass
T9	60 - 40	Leg	4	229	-351.91	434.40	81.0	Pass
T10	40 - 20	Leg	4 1/4	262	-401.10	505.39	79.4	Pass
T11	20.0	*	4.1/4	206	441.40	505.22	80.6 (b)	D
T11	20 - 0	Leg	4 1/4	295	-441.40	505.22	87.4	Pass
T1	199 - 184.025	Diagonal	1	8	-3.20	5.71	56.0	Pass
T2	184.025 - 180	Diagonal	SR 1" Ø + SR 1" Ø (Aho - Viper)	41	-6.29	11.24	55.9	Pas
T3	180 - 160	Diagonal	L2x2x1/4	- 64	-7.04	17.05	41.3	Pass
							57.0 (b)	
T4	160 - 140	Diagonal	L2x2x1/4	79	-7.51	13.45	55.8	Pas
							64.0 (b)	
T5	140 - 120	Diagonal	L2 1/2x2 1/2x1/4	106	-9.25	19.09	48.5	Pas
		_		•			63.6 (b)	
T6	120 - 100	Diagonal	L3x3x1/4	134	-11.77	18.46	63.7	Pas
		Ü	1				67.3 (b)	
T7	100 - 80	Diagonal	L3x3x1/4	167	-11.75	15.73	74.7	Pas
T8	80 - 60	Diagonal	L3x3x1/4	200	-12.23	13.46	90.9	Pas
T9	60 - 40	Diagonal	L3 1/2 x 3 1/2 x 1/4	233	-12.97	18.62	69.7	Pas
T10	40 - 20	Diagonal	L3 1/2 x 3 1/2 x 1/4	266	-13.84	16.11	85.9	Pas
T11	20 - 0	Diagonal	L3 1/2 x 3 1/2 x 1/4 L3 1/2 x 3 1/2 x 1/4	298	-10.80	13.37	80.8	Pas
TI	199 - 184.025	Horizontal	1	26	-0.38	10.42	3.6	Pas
T2	184.025 - 180	Horizontal	1	35	-2.47	10.42	23.7	Pas
Т6	120 - 100	Horizontal	L2 1/2x2 1/2x3/16	132	-3.97	17.98	22.1	Pas
							39.0 (b)	
T7	100 - 80	Horizontal	L2 1/2x2 1/2x3/16	165	-4.77	16.94	28.1	Pas
							46.9 (b)	
T8	80 - 60	Horizontal	L2 1/2x2 1/2x3/16 :	198	-5.47	15.91	34.4	Pas
							53.8 (b)	
T9	60 - 40	Horizontal	L3x3x3/16	231	-6.10	19.67	31.0	Pas
							45.6 (b)	
T10	40 - 20	Horizontal	L3x3x3/16	264	-6.95	18.69	37.2	Pas
							52.0 (b)	
T11	20 - 0	Horizontal	L3 1/2 x 3 1/2 x 1/4	297	-7.65	29.88	25.6	Pas
							42.9 (b)	
TI	199 - 184.025	Secondary Horizontal	1	24	-0.00	17.56	0.1	Pas
T2	184,025 - 180	Secondary Horizontal	i	44	-0.00	17.56	0.1	Pas
T1	199 - 184.025	Top Girt	1 1/8	5	-0.72	15.91	4.5	Pas
T3	180 - 160	Top Girt	L2x2x3/16	48	-1.06	11.74	9.0	Pas
1.5	100 - 100	Top Ont	LLALAS/10	70	-1.00	11./7	9.9 (b)	1 43
TO	104.035 100	Bottom Girt	1	40	-2.21	10.42	21.2	Dog
T2	184.025 - 180	DULUIN GIIT	1 .	40	-2.21	10.42		Pas
						Les (T11)	Summary	n
						Leg (T11)	87.4	Pas
						Diagonal	90.9	Pas
						(T8)		_
						Horizontal	53.8	Pas
						(T8)		
						Secondary	0.1	Pass
						Horizontal		
						(T1)		
						(11)		

			2025-08-05 RCC Meeting.
tnxTower	Job		Page
inxrower		Aho - Viper	44 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710	Client	Watauga County	Designed by

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
						(T3) Bottom Girt (T2)	21.2	Pass
						Bolt Checks	80.6	Pass
***************************************		***************************************			***************************************	RATING =		Pass

Program Version 8.3.1.2 - 12/11/2024 File:C:/Users/hicham.anssar/QneDrive - Engineered Tower Solutions/Desktop/2024/125019_1018_Aho_Mapping SA/SE/8180_Tower Modification Drawings/Analysis/Tower/Aho - Viper.eri


March 26, 2025 Site Name: Aho - Viper Page 9

199.0 Ft Self Support Tower Modification Structural Analysis ETS, PLLC Job Number: 24125019.STR.8180_Rev. 1

APPENDIX B BASE LEVEL DRAWING

Feed Line Plan 20'

______ Round ______ Flat _____ App In Face _____ App Out Fac

Engineered Tower Solutions, PLLC	Job: 🖊	ho - Viper		
3227 Wellington Ct.	Projec	t: ETS, PLLC Job N	lo. 24125019.STR.8180	
Raleigh, NC 27615	Client	Watauga County	Drawn by: hicham.anssar	App'd:
Phone: (919) 782-2710	Code:	TIA-222-G	Date: 03/25/25	Scale: NTS
FAX: 919-782-2710	Path:			Dwg No. E-7

199.0 Ft Self Support Tower Modification Structural Analysis ETS, PLLC Job Number: 24125019.STR.8180_Rev. 1

March 26, 2025 Site Name: Aho - Viper Page 10

APPENDIX C ADDITIONAL CALCULATIONS

	Bol	lt-On Diagonal Bracing Design
Tower Section	180-184 ft	
Pu	6.29 kip	This calculator follows the procedures a
Code	A so at the respective	Document # ENG-MAP-10254. The inte
ø Factor	0.90	an existing bracing member by develop
Allowable Stress Increase	1.00	which would increase it's tension capac
F _y	36 ksi	territoria
Fu	58 ksi	
H, E	29,000 ksi	
Effective Length Factor, "Keff"	0.70	

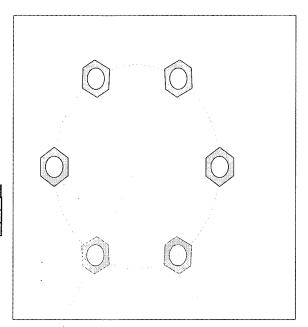
Notes

This calculator follows the procedures and guidelines provided by the Crown Castle Solid Rod Reinforcement
Document # ENG-MAP-10254. The intention of this modification is to increase the compression capacity of
an existing bracing member by developing a modified radius of gyration, but not allowing an increase in area
which would increase it's tension capacity.

Member Type	Member	Area (in²)	Moment of Inertia (in ⁴)	Radius of Gyration (in)	Unbraced Length (in)	$^{\mathrm{KL}}I_{\mathrm{t}}$	$^{Sc}I_{\min\{re.rp\}} \leq ^{KmLu}I_{re}$
Original Member	SR 1" Ø	0.7854	0.0491	0.250	63.00	176.38	addina • 1.a
Additional Member	SR 1* Ø	0.7854	0.0491	0.250	12.00	33.60	Sc, max = 31.18 in
Built-Up Member	SR 1" Ø + SR 1" Ø	0.7854	0,0982	0.354	63.00	124.72	Sufficient

Bolted-On Diago	onal Capacity
Γ _m	0.354 in
K.mt.u/ _{r.m}	124.72
$\lambda_{\rm c}$	1.40
F _{crm}	15.87 ksi
øPn	11.22 kip
Compression Capacity	56.1%

Self Support Anchor Rod Capacity


Site Info	-
Site #	HP-1382
Site Name	Aho - Viper
ETS, PLLC#	24125019.STR.8180

Analysis Considerations	140 AP
TIA-222 Revision	G
Grout Considered:	No
l _{ar} (in)	1.25
Eta Factor, η	0.5

Applied Loads		
	Comp.	Uplift
Axial Force (kips)	449.00	390.00
Shear Force (kips)	39.00	34.00

Considered Eccentricity	
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000

^{*}Anchor Rod Eccentricity Applied

Connection Properties		Analysis Results	6.00
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
(6) 1-1/4" ø bolts (F1554-105 N; Fy=105 ksi, Fu=125 ksi)	Pu_c = 74.83	φPn_t = 96.9	Stress Rating
l _{ar} (in): 1.25	Vu = 6.5	φVn = n/a	90.6%
	Mu = n/a	φMn = n/a	Pass

SST Unit Base Foundation

Site # : HP-1382
Site Name: Aho - Viper
ETS, PLLC #: 24125019.STR.8180

TIA-222 Revision:

Top & Bot. Pad Rein. Different?:	
Tower Centroid Offset?:	Q
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis	Reactions	3
Global Moment, M:	6776	ft-kips
Global Axial, P:	45	kips
Global Shear, V:	63	kips
Leg Compression, P _{comp} :	449	kips
Leg Comp. Shear, V _{u_comp} :	39	kips
Leg Uplift, Puplift:	390	kips
Leg Uplift. Shear, V _{u_uplift} :	34	kips
Tower Height, H:	199	ft
Base Face Width, BW:	18	ft
BP Dist. Above Fdn, bp dist:	3	in

Found				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	200.28	63.00	31.5%	Pass
Bearing Pressure (ksf)	5.63	2.63	46.7%	Pass
Overturning (kip*ft)	9033.54	7232.75	80.1%	Pass
Pier Flexure (Comp.) (kip*ft)	1884.03	204.75	10.9%	Pass
Pier Flexure (Tension) (kip*ft)	848.84	178.50	21.0%	Pass
Pier Compression (kip)	8998.02	460.88	5.1%	Pass
Pad Flexure (kip*ft)	3113.06	2237.73	71.9%	Pass
Pad Shear - 1-way (kips)	602.46	401.89	66.7%	Pass
Pad Shear - Comp 2-way (ksi)	0.201	0.128	63.9%	Pass

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier:	4.0	ft
Ext. Above Grade, E:	1.35	ft
Pier Rebar Size, Sc :	8	
Pier Rebar Quantity, mc:	20	
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, mt:	9	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	- 3	in

Ext. Above Grade, E	1.35	ft	,
Pier Rebar Size, So	:: 8	100	-
Pier Rebar Quantity, mo	:: 20		
Pier Tie/Spiral Size, S	t: 4		
Pier Tie/Spiral Quantity, m	t: 9		
Pier Reinforcement Type	: Tie		
Pier Clear Cover, cc _{pie}	.: 3	in	,

	Pad Properties	1	
	Depth, D:	5.65	ft
	Pad Width, W ₁ :	31.00	ft
	Pad Thickness, T :	1.75	ft
	Pad Rebar Size (Bottom dir. 2), Sp ₂ :	10	
P	ad Rebar Quantity (Bottom dir. 2), mp ₂ :	36	
	Pad Clear Cover, cc _{pad} :	3	in

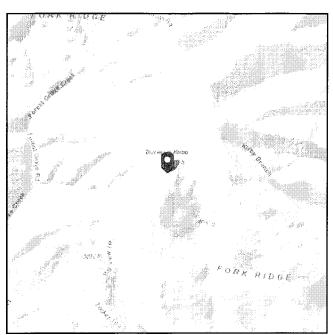
Material Propert		ris#	
Rebar Grade, Fy:	60	ksi	
Concrete Compressive Strength, F'c:	4.5	ksi	
Dry Concrete Density, δ c :	150	pcf	

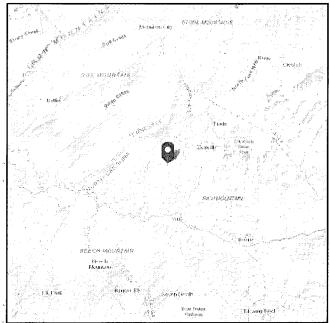
Soil Properties		
Total Soil Unit Weight, γ :	100	pcf
Ultimate Gross Bearing, Qult:	7.500	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	26	degrees
SPT Blow Count, N _{blows} :	6	
Base Friction, μ :	0.3	
Neglected Depth, N:	2.0	ft
Foundation Bearing on Rock?	. No	
Groundwater Depth, gw:	:,N/A	ft

Address:

No Address at This Location

ASCE Hazards Report


Standard: ASCE/SEI 7-10 Latitude:


Risk Category: Ⅳ Longitude: -81.79151

Elevation: 4364.061870703125 ft Soil Class: D - Stiff Soil

(NAVD 88)

36.31608

Wind

Results:

Wind Speed 120 Vmph 10-year MRI 76 Vmph

25-year MRI 84 Vmph 50-year MRI 90 Vmph

100-year MRI

Special

140 Vmph for elevations between 3500 ft and 4500 ft, Topographic effects do not need to be considered with the required wind speeds per Jurisdiction guidances.

96 Vmph

Special Wind Region -- Mountainous terrain, gorges, and special wind regions shown in Fig. 26.5-1 shall be examined for unusual wind conditions. The Authority Having Jurisdiction shall, if necessary, adjust the values given in Fig. 26.5-1 to account for higher local wind speeds. Such adjustment shall be based on meteorological information and an estimate of the basic wind speed obtained in accordance with the provisions in Section 26.5.3.

Data Source:

ASCE/SEI 7-10, Fig. 26.5-1B and Figs. CC-1-CC-4, and Section 26.5.2,

incorporating estata of March 12, 2014 Date Accessed:

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2.

Site Soil Class Results:	:	D - Stiff S	oil							
S _s :		0.272		S _{D1} :		0.157				
S ₁ :		0.098		T _L :		12				
F _a :		1.582		PGA:		0.145				
F _v :		2.4		PGA _M :		0.219				
S _{MS} :		0.431		F _{PGA} :		1.51				
S _{M1} :		0.236		l _e :		1.5				
S _{DS} :		0.287								
Seismic Design 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.06	n Kateg Bry: Por	nse Spectrum		0.30 0.25 0.20 0.15 0.10		Design Respo	onse S _l	pectrum		
0 2	4 6	8 10	12 .	0 - 14 0	2	_ 4 _ 6	8	10	12	14
- "	Sa ^d (g) vs T(s)					S _a (g) vs T(s)				

Data Accessed:

Tue Mar 25 2025

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness:

0.75 in.

Concurrent Temperature:

15 F

Gust Speed

30 mph

Data Source:

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed:

Tue Mar 25 2025

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

In the Appalachian Mountains, ice thicknesses may vary significantly over short distances.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

199.0 Ft Self Support Tower Modification Structural Analysis ETS, PLLC Job Number: 24125019.STR.8180_Rev. 1

March 26, 2025 Site Name: Aho - Viper Page 11

APPENDIX D MODIFICATION DESIGN DRAWINGS

TOWER MODIFICATION DRAWINGS

	SITE INFORMATION
SITE NAME	AHO - VIPER
SITE NUMBER	HP-1382
SITE ADDRESS	1388 SAMPSON ROAD BOONE, NC 28607 WATAUGA COUNTY
LAT, / LONG.	N 38.154419°, W 81,802890°
ETS JOB#.	24125019,STR,8180
TOWER MANUFACTURER	WORLD TOWER COMPANY
TOWER TYPE	SELF SUPPORT TOWER
TOWER HEIGHT	199.0 FT

D				

FROM BOONE, HEAD SOLTHWEST ON GRAND BLYD TOWARD WINNS ST (2) FTD. TURN LEPT CHOT DUCKT SWIMM ST STATE, SWIM 21 S, GAM, TURNS REGIST ONTO ONTO BLUE RUDGE FROM ACCESS (2) STP., TUNN RIGHT ONTO BLUE RUDGE WINN CATTO BLUE RUDGE FROM ACCESS (2) STP., TUNN RIGHT ONTO BLUE RUDGE WINN SWIMM STATE ON TO GEORGE HAVE BE DUGGET, BOTT SWIMM STATE OF SAMPSON RD (1,1 MI), TURN LEPT TO STAY ON SAMPSON RD (3,1 MI), TOWER WILL SWIMM STATE OF THE RIGHT.

	PROJECT CONTACTS
1,	CLIENT REPRESENTATIVE
	MARTY RANDALL
	10-16 CONSULTING MOBILE: (828) 527-2416
	MARTY.RANDALL@1018CONSULTING.COM
	7
2,	CONSTRUCTION MANAGER TED
	•
3.	ENGINEER OF RECORD (EOR)
	J, SCOTT HILGOE, P.E.
	3227 WELLINGTON CT.
	RALEIGH, NC 27615 OFFICE: (819) 782-2710
	SCOTT.HILGOE@ETS-PLLC,COM

OTE FOR CONTRACTOR

SUFFICIENT DETAILS ARE PROVIDED FOR AN EFFECTIVE AND CONSTRUCTIBLE DESIGN BASED ON THE AVAILABLE PROPONATION AT THE THAIR OF THE DESIGN. IF NEW INFORMATION BECCURE THAT OF THE DESIGN. IF NEW INFORMATION BECCURE THAIR OF THE DESIGN AND THE AVAILABLE PROPONATION AT THE THAIR OF THE DESIGN AND THE AVAILABLE PROPONATION OF THE DESIGN AND THE DESIGN AND THE AVAILABLE OF THE REPORT OF THE SERVER THE AVAILABLE OF SERVER AVAILABLE OF THE SERVER THE BIGHT OF REVIEW THE AVAILABLE OF THE SERVER THE BIGHT OF THE AVAILABLE

	CODE COMPLIANCE
	BASED ON THE REQUIREMENTS OF TIA STRUCTURAL STANDARDS FOR STEEL MERS AND ANTENNA SUPPORTING STRUCTURES USING:
TIA CODE	TIA-222-G
BUILDING CODE	2018 NORTH CAROLINA STATE BUILDING CODE (2015 IBC)
NOMINAL WIND SPEED	108 MPH (AS REQUIRED BY WATAUGA COUNTY)
ICE THICKNESS	1.00 IN
WIND SPEED WITH ICE	30 MPH
SERVICE LOAD WIND SPEED	60 MPH
EXPOSURE CATEGORY	С
STRUCTURE CLASS	III III
TOPOGRAPHIC CATEGORY	1
SPECIAL NOTES	

SHEET INDEX

SHEET #	REV. (DATE)	DESCRIPTION
T-1	0-03/25/2026	TITLE PAGE
N-1	0-03/25/2026	MODIFICATION INSPECTION CHECKLIST
N-2	0-03/25/2025	PROJECT NOTES
вм	D-03/25/2025	BILL OF MATERIALS
S-1	0-03/25/2025	TOWER ELEVATION AND MODIFICATION SCHEDULE
S-2	0-03/25/2025	DIAGONAL REINFORCEMENT DETAILS
P-1	0 - 03/25/2025	PHOTOS
	-	
-	-	
-	-	· ·
		· -
•		•
	-	·
	-	
-	-	
•		
	-	
-	-	

PAREIGH NO 27915 9 \$19-702-710 1914-35-031 9 \$19-702-710 1914-35-031 #### PAREIGH NO 27915
STEEL STE NAME AHO - VIPER SITE NAME HP-1382 SITE AND CONCESS 188 SAMPSON BOAD BOONE NO 28607 LATTICES CHILDE STATES IN STATES IN STATES CA 1389 SEAL COT MILE DO 04250025 FOR CONSTRUCTION 1 2 0 04250025 FOR CONSTRUCTION 2 0 04250025 FOR CONSTRUCTION 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SITE NAME AHO - VIPER SITE NAMER HP - 1382 SITE ADDRESS SITE NAMER HP - 1382 SITE NAMER HP - 1382 SITE NAMER ATTURE ADDRESS INDUCTOR OF 28907 ATTURE ADDRESS IN 30 14419 W 91 802020 SEAL CAR OCHE S SI OCH S SI OCHE S SI OCH
AHO - VIPER SITE NUMBER HP-1382 SITE NUMBER HP-1382 SITE NUMBER HP-1382 SITE NUMBER ANTICIDE NUMBER ANTICIDE NUMBER N 35 TRAFF NUMBER N 35 TRAFF NUMBER N 35 TRAFF NUMBER N 36 TRAFF NUMBER N 36 TRAFF NUMBER N 36 TRAFF NUMBER N 36 TRAFF NUMBER N 36 TRAFF NUMBER N 36 TRAFF NUMBER N 36 TRAFF NUMBER N 36 TRAFF NUMBER N 37 TRAFF NUMBER N 3
STE NUMBER HP-138E
##P-1382 ##F-1382 ##F
STEANDRESS STE
BOOKE NO 28667 MITUDER/NORMUNE SEAL C A R O 41389 O 41389 O 41389 REV DATE DETAILS 0 803257025 FOR CONSTRUCTION 1 2 3 3 4 4 5 5 6 0 7 7 6 9 10 10 11 11 12 12 13 14 14
SEAL SEAL
SEAL
041389
REV DATE DATE DATA, SPANSON TRUCTION 1
REV DATE DETAILS
REV DATE DETAILS
1 2 3 4 5 5 6 6 7 7 6 6 9 10 10 11 1 12 12 13 14 14 1 14 1 14 1 14 1 14
3 4 5 5 6 7 7 6 9 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
6 7 7 6 9 9 111 112 112 113 114 114 114 114 114 114 114 114 114
6 0 0 10 11 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14
10 11 12 13 14
11 12 13 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
13 14
DRAWN BY EDR CHECKED BY: HA
SHEET TITLE
TITLE PAGE
SHEET T-1 CURRENT REV # 0 ETS # 24125019.STR.8180

REQUIRED	REPORT ITEM	BRIEF DESCRIPTION
	10 mg/d	PRE-CONSTRUCTION
N/A	EOR APPROVED SHOP DRAWINGS	ONCE THE PRE-MODIFICATION MAPPING IS COMPLETE AND PRIOR TO FARRICATION, THE COMPRACTOR SHALL PROVIDE DETAILED ASSEMBLY DRAWING ANDIOR SHOP DRAWINGS ALONG WITH EOR REFORM DETAILING ANY CHANGES FROM THE ORIGINAL DESIGN TO THE EOR FOR REVIEW AND APPROVIAL.
N/A	FABRICATION INSPECTION	A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THE CONTRACT DOCUMENTS, SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	FABRICATOR CERTIFIED WELD INSPECTION	A CVM SHALL INSPECT ALL WELDING PERFORMED ON STRUCTURAL MEMBERS DURING FABRICATION. A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
×	MATERIAL TEST REPORTS (MTR)	MATERIAL TEST REPORTS SHALL BE PROVIDED FOR MATERIAL USED. MITRS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	FABRICATOR NDE INSPECTION REPORT	CRITICAL SHOP WELDS THAT REQUIRE TESTING ARE NOTED ON THESE CONTRACT DRAWINGS. A CERTIFIED NOT INSPECTOR SHALL PERFORM NON-DESTRUCTIVE EXAMINATION AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	NDE OF MONOPOLE BASE PLATE	ANDE OF THE POLE TO BASE PLATE CONNECTION IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
x	PACKING SLIPS	PACKING/SHIPPING LIST FOR ALL MATERIAL USED DURING CONSTRUCTION OF THE MODIFICATION.
N/A	STING AND INSPECTIONS:	
	Carlo III	CONSTRUCTION
N/A	FOUNDATION INSPECTIONS	A VISUAL OBSERVATION OF THE EXCAVATION AND REBAR SHALL BE PERFORMED BEFORE PLACING THE CONCRETE. A VISUAL OBSERVATION OF THE REBAR SHALL BE PERFORMED BEFORE PLACING THE EPOXY. A SEALED WRITTEN REPORT SHALL BE PROVIDED TO THE MINSPECTOR FOR INCLUSION I THE MIR PROPERT.
N/A	CONCRETE COMP, STRENGTH AND SLUMP TEST	THE CONCRETE MIX DESIGN, SLUMP TEST, AND COMPRESSIVE STRENGTH TESTS SHALL BE PROVIDED AS PART OF THE FOUNDATION REPORT.
N/A	EARTHWORK SOIL COMPACTION	FOUNDATION SOIL COMPACTION SHALL BE INSPECTED AND APPROVED BY AN APPROVED FOUNDATION INSPECTOR AND RESULTS INCLUDED AS PART OF THE FOUNDATION REPORT.
N/A	EARTHWORK BEARING CAPACITY	FOUNDATION SUB-GRADES SHALL BE INSPECTED AND APPROVED BY AN APPROVED FOUNDATION INSPECTOR AND RESULTS INCLUDED AS PART OF TH FOUNDATION REPORT.
N/A	MICROPILE/ROCK ANCHOR	MICROPILES/ROCK ANCHORS SHALL BE INSPECTED BY THE FOUNDATION INSPECTION VENDOR AND SHALL BE INCLUDED AS PART OF THE FOUNDATION INSPECTION REPORT, ADDITIONAL TESTING ANDIOR INSPECTION REQUIREMENTS ARE NOTED IN THE PROJECT NOTES.
N/A	POST-INSTALLED ANCHOR ROD VERIFICATION	POST INSTALLED ANCHOR ROD VERIFICATION SHALL BE PERFORMED IN ACCORDANCE WITH REQUIREMENTS AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	BASE PLATE GROUT VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR THAT CERTIFIES THAT THE GROUT WAS REMOVED AND/OR INSTALLED IN ACCORDANCE WITH APPLICABLE REQUIREMENTS FOR INCLUSION IN THE MI REPORT.
N/A	FIELD CERTIFIED WELD INSPECTION	A CERTIFED WE, DI INSPECTOR SHALL INSPECT AND TEST FIELD WELDS PIER THE WELDING NOTES ON SHEET N.2. A REPORT SHALL BE PROVIDED, NOB OF FIELD WELDS SHALL BE PERFORMED AS REQUIRED BY APPLICABLE STANDARDS AND CONTRACT DOCUMENTS, THE NDE REPORT SHALL BE INCLUDED IN THE CWI REPORT.
N/A	FIELD NDE	A NDE OF THE FIELD WELDS AND ANY ADDITIONAL NDE REQUIREMENTS NOTED IN THESE DESIGN DOCUMENTS.
×	ON-SITE COLD GALVANIZING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE WRITTEN AND PHOTOGRAPHIC DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY ON-SITE COLD GALVANIZING WAS APPLIED PER MANUFACTURER SPECIFICATIONS AND APPLICABLE STANDARDS.
N/A	TENSION TWIST AND PLUMB	THE GENERAL CONTRACTOR SHALL PROVIDE A REPORT IN ACCORDANCE WITH APPLICABLE STANDARDS DOCUMENTING YENSION TWIST AND PLUMB.
N/A	TOWER PLUMB DELIVERABLES	THE CONTRACTOR SHALL PROVIDE WRITTEN AND PHOTOGRAPHIC DOCUMENTATION TO THE MI INSPECTOR VERIFYING THE TOWER PLUMB CONDITION
N/A X	CANISTER DRAWINGS GC AS-BUILT DRAWINGS	THE CONTRACTOR SHALL SUBMIT A LEGISLE COTY OF ANY FINAL FARRICATION OF PARTS DRAWINGS PROVIDED BY THE CAMSTER VENDOR. THE SIDERBAL CONTRACTOR SHALL SIZE A LEGISLE COTY OF THE GORGINA DESCEND CHAMINGS ETHER STATATIO "STATLL, SHA DESCRIPTION NOTIFIES ANY CHAMICES THAT WERE REQUIRED AND APPROVED BY THE ENGINEER OF RECORD, CORREST FORMS APPROVING ALL CHAMICES SHALL BE SUBMITTED.
	STING AND INSPECTIONS:	
N/A		POST-CONSTRUCTION
x	CONSTRUCTION COMPLIANCE LETTER	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THESE CONTRACT DRAWINGS.
N/A	POST-INSTALLED ANCHOR ROD PULL TESTS	POST, INSTALLED ANCHOR RODS SHALL BE TESTED BY AN APPROVED PULL TEST INSPECTOR AND A REPORT SHALL BE PROVIDED INDICATING TESTING RESULTS.
x	PHOTOGRAPHS	PHOTOGRAPHS SHALL BE SUBMITTED TO THE MI. PHOTOS SHALL DOCUMENT ALL PHASES OF THE CONSTRUCTION. THE PHOTOS SHALL BE ORGANIZED IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO.
N/A	BOLT HOLE INSTALLATION VERIFICATION REPORT	THE MI INSPECTOR SHALL VERIEV THE HOLE SIZE AND CONDITION OF 19% OF ALL NON PRE-TENSIONED BOLTS INSTALLED AS PART OF THE MODIFICATION. THE MIREPORT SHALL CONTAIN THE COMPLETED BOLT INSTALLATION VERIFICATION REPORT, INCLUDING THE SUPPORTING PHOTOGRAPHS.
x	PUNCH LIST DEVELOPMENT AND CORRECTION DOCUMENTATION	FINAL PUNCH LIST INDICATING ALL NONCONFORMANCE(S) IDENTIFIED AND THE FINAL RESOLUTION/APPROVAL.
×	MI INSPÉCTOR RÉCORD DRAWING(5)	THE MINSPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTOR'S REDLINE DRAWING AND THE ACTUAL COMPLETED INSTALLATION.
DDITIONAL TE	STING AND INSPECTIONS	

MODIFICATION INSPECTION NOTES

GENERAL

THE MIS AN CHAPTE VISUAL AND HANDLESH INSECTION OF TOWER MODIFICATIONS INCLUDING A REVEWOF OF CONSTRUCTION REPORTS AND ACCOTIONAL PERSINENT DOCUMENTATION PROVIDED BY THE GENERAL CONTRACTOR (GC, AS WELL AS ANY INSECTION LOCKWISHED FROM PAGE OF AND ACTIVATIVE SECTIONS. THE MIS TO CONSUME AND ACCORDANCE OF THE MISSECTION OF A CONTRACT OR ACCORDANCE WITH APPLICABLE STRAMADIOS, AND ACCORDANCE WITH A STRAMADIOS, AND ACCORDANCE WITH A STRAMADIOS, AND ACCORDANCE WITH A STRAMADIOS, AND ACCORDANCE WITH

ND DOCUMENT, CODE OR POLICY CAN ANTICIPE EVERY STUATION THAT MAY ARISE.
ACCORDINGLY, THIS CHECKLIST IS INTENDED TO SERVE AS A SOURCE OF GUIDING
PRINCIPLES IN ESTABLISHING GUIDELINES FOR MODIFICATION INSPECTION.

THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN IT SEE! AND THE MI NEWECTION DOSE WITH MANY CONFIGURATION OF THE MODIFICATION DESIGN FEFFCTIVES BEST AND INTEGRITY RESIGNS WITH THE GOT AT ALL TIMES, THE MI MERCHAND AND AND MANY CONFIGURATION OF THE WORK OF THE MINISTER OF MAIL MERCHAND ON THE CONFIGURANCE MONOCOMPORTMANCE AND PROVIDE TO THE POUNT OF CONTACT FOR REVILLATION.

TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI MISPECTOR BEGIN COMMUNICATION AND COORDINATION AS SOON AS A PICKNESS CORDER FOLIS RECEIVED IT IS EXPECTED THE FACH PARTY WILL BE PROACTIVE IN REACH PARTY IF CONTACT INFORMATION IS NOT MOWNEY THE OF ANDION METERS CONTROL THE ANDION FOR THE PARTY IF CONTACT ON THE OWN THAT THE POINT OF CONTACT POOL.

SERVICE LEVEL COMMITMENT

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MI REPORT:

- EPHCIEVEN' AND EPHCCHIEVESS OF DELIVERING AN M REPORT.

 THE CS SHALL PROPORCE ANNIMAN OF SILLENDES DAYS MOTICE, PREFERAILLY 10, TO
 THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MIT TO BE
 COMDUTED.

 THE CITY OF THE PROPORCE AND THE SITE WILL BE READY FOR THE BIT THE PRITTER
 PROCLECT.

 THE CITY OF THE PROPORCE CONTINUE CLOSELY THROUGHOUT THE EPHTIRE
 PROCLECT.

 SIMULTANEOUSLY FOR ANY CUTY WARE TERSOONING OR REJENSOONING OPERATIONS.

 WHICH PROSSESSEL IT IS PREFERENCE TO HAVE THE CO. AND MI INSPECTOR ON-SITE
 CURRING THE MIT TO HAVE ANY MICH YEAR TERSOONING OPERATIONS.

 WHICH PROSSESSEL IT IS PREFERENCE TO HAVE THE CO. AND MISSISSEST ON ASTET

 CURRING THE MIT TO HAVE ANY MICH OF THE PROPORTION OF SITE

 CURRING THE MIT TO HAVE ANY MICH OF THE PROPORTION OF THE INSTITUTION OF

REQUIRED PHOTOS

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

- ARE TO BE TAKEN AND INCLUDED IN THE MIR REPORT
 PRECONSTRUCTION GENERAL SIX CONDITION
 PROTOGRAPHED DURING THE REINFORCEMENT MODIFICATION
 CONSTRUCTIONSBEETCH AND INSPECTION
 RAW MANTENIALS
 PROFIDED OF ALL CHITICAL DETAILS
 WELD PREPARATION
 WELD PREPARATION
 FINAL INSTALLED CONDITION
 SURFACE CONTING REPORT
 FOR SURFACE CONTING REPORT
 FINAL INSTALLED CONDITION
 FINAL INSTALLED CONDITION
 FINAL INSTALLED CONTING INSPECTION
 FINAL INSTALLED CONTING INST

PHOTOS OF ELEVATED MODIFICATIONS TAKEN ONLY FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

SITE NAME AHO - VIPER SITE NUMBER: HP-1382 SITE ADDRESS; 1388 SAMPSON ROAD BOONE, NC 28697 LATITUDE/LONGITUDE: N 38.154419°, W 81.60280

0	03/25/2025	FOR CONSTRUCTION				
1						
2						
3						
4						
5						
6						
7						
8	8					
9	9					
10	10					
11						
12						
13	13					
14	14					
ORA	MN BY: EDR	CHECKED BY: HA				
SHEE	SHEET TITLE					
	MODIFICATION INSPECTION CHECKLIST					

GENERAL NOTES:

- ALL REFERENCES TO THE OWNER IN THESE DOCUMENTS SHALL BE CONSIDERED WATAUGA COUNTY OR ITS DESIGNATED REPRESENTATIVE.
- ITS DESIGNATED HEMPRESSAT ATIVE.

 ALL WORRE PRESSATE ON THESE DEMANDS MUST BE COURLETED BY THE CONTRACTOR UNLESS NOTED OTHERWISE. THE CONTRACTOR MUST NAVE CONDIDENALE EXPERIENCE IN PERFORMANCE OF WORK TO THE PROPERTY OF WORK TO THE PROPERTY OF WORK TO THE PROPERTY OF WORK TO THE PROPERTY OF THE WORK TO BE PREFORMED AND THAT THE SP ROPERTY LICENSED AND PROPERTY HEGISTERED TO DO THAT WORK TO THE STATE OF PROPERTY ACADIMA.
- I YES YOUNG REFERENCE OF MORTH CARCUMA.

 WORK SHALL BE COMPLETED IN ACCORDANCE WITH THE 2018 NORTH CARCUMA STATE BUILDING CODE
 (2015 IBC).

 WALKESS SHOWN OR NOTED OTHERWISE ON THE CONTRACT DRAWNIGS, OR IN THE SPECIFICATIONS, THE
 FOLLOWING NOTES SHALL ARPLY TO THE MATERIALS LISTED HERBIN, AND TO THE PROCEDURES TO BE
 USED ON THAS PROJECT.
- USED ON THIS PROJECT.

 ALL HARDWARE ASSEMILY MANUFACTURERS INSTRUCTIONS SHALL BE FOLLOWED EXACTLY AND SHALL BLADWARE SHALL WARDWARE SHERWAY MANUFACTURERS INCREDIBLE HERBAN. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE TO INSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING RECTION ANDORS REDIBLOODINGS, THE REQUIRES BUT IS NOT HARDWARD. THE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING RECTION AND REPORT OF THE MODIFIED AND TEMPORARY BRACHMO. THE PROPERTY OF THE CONTRACTOR AFTER THE COMPACTION OF THE PROJECT.
- THE PROMENTY OF THE CONTRACTOR AFTER THE COMMETION OF THE PROJECT.

 ALL DIMENSIONS, DELEVATIONS, AND SESTING CONDITIONS SHOWN ON THE GOMEN SHAME SHELD VISIBLE OF THE CONTRACTOR PRIOR TO BEDINNING ANY MATERIALS ORDERING, CASRICATION OR CONSTRUCTION WORK OF THE PROJECT. CONTRACTOR SHALL NOT STALE CONTRACTOR SHOWN ON THE STALE CONTRACTOR SHALL NOT STALE CONTRACT DELEVANT OF THE CONTRACTOR SHALL NOT STALE CONTRACTOR SHOWN OF THE CONTRACTOR SHAPE OF THE CONTRACTOR SHAPE OF THE CONTRACTOR SHAPE OF THE CONTRACTOR SHAPE OF THE CONTRACTOR SHAPE OF THE CONTRACTOR SHAPE OF CONTRACTOR SHAPE OF THE CONTRACTOR SHALL SHIP OF THE CONTRACTOR SHAPE OF THE CONTRACTOR SHAPE OF THE CONTRACTOR SHALL SHIP OF THE CONTRACTOR SHALL SHAPE OF THE WORK THE CONTRACTOR SHALL SHAPE OF THE WORK THE CONTRACTOR SHALL SHAPE OF THE WORK THE CONTRACTOR SHALL SHAPE OF THE WORK THE CONTRACTOR SHALL SHAPE OF THE WORK THE CONTRACTOR SHALL SHAPE OF THE WORK THE CONTRACTOR SHAPE OF THE WORK THE CONTRACTOR SHAPE OF THE WORK THE CONTRACTOR SHAPE OF THE WORK THE CONTRACTOR SHAPE OF THE WORK THE CONTRACTOR SHAPE OF THE WORK THE CONTRACTOR SHAPE OF THE WORK THE CONTRACTOR SHAPE OF THE WORK THE
- INCLUDE INSPECTION OF THE PROTECTIVE MEASURES OR THE PROCEDURES.

 ALL ANTERIAS AND DEQUIPMENT FURNISHED BHALL BE WINN MICH OF GOOD QUALITY. RESE FROM FHALTS AND DESERTS AND TO DECIMENT FURNISHED BHALL BE WINN MICH OF GOOD QUALITY. RESE FROM FHALTS AND DESERTS AND THE CONTRACT OF CONTRACT DOCUMENTS. ANY AND ALL SUSSTITUTIONS MICH THE CONTRACT OF SHALL FURNISHE SHIFTS ACTION? EVIDENCE AS TO THE KIND AND THAT ALL AND THE PROPERTY OF THE CONTRACT OF SHALL FURNISHE SHIFTS ACTION? EVIDENCE AS TO THE KIND AND THE CONTRACT OF SHALL SHEET SHALL FOR SHALL SHEET SHALL SHEET SHALL SHEET SHALL SHEET SHALL SHEET SHALL SHEET SHALL SHEET SHALL SHEET SHEET SHALL SHEET

- ALL PERMITS THAT MUST BE OBTAINED ARE THE RESPONSIBILITY OF THE CONTRACTOR, THE CONTRACTOR WILL BE RESPONSIBLE FOR ABIDING BY ALL CONDITIONS AND REQUIREMENTS OF THE PERMITS.
- 12. IF APPLICABLE, ALL CONCRETE WORK SHALL COMPLY TO LOCAL CODES AND THE ACI 318-19, "BUILDING REQUIREMENTS FOR STRUCTURAL CONCRETE". 24 HOURS PRIOR TO THE BEGINNING OF ANY CONSTRUCTION, THE CONTRACTOR MUST NOTIFY THE APPLICABLE JURISDICTIONAL (STATE, COUNTY OR CITY) ENGINEER.
- WELDING NOTES:
- ALL WELDING SHALL BE IN ACCORDANCE WITH THE AWS D1.W01.1M, 2015 "STRUCTURAL WELDING CODE-STERL"

- ALL WELDING SHALL BE IN ACCORDANCE WHIT THE AND DIJOLINI 2015 "STRUCTURIAL WELDING CORESTERS."

 ALL WELDING SHALL BE PERFORMED BY AND CERTIFIED WELDERS.

 CONTRIANTOR SHALL RETAIN AN AND CERTIFIED WELD INSPECTION TO PERFORM WISIAL INSPECTIONS ON CONTRIANTOR SHALL RETAIN AND CERTIFIED WELL INSPECTION SHALL BE AND REPORT TO TOWER OWNER.

 SUBMILL IETTER AND REPORT TO TOWER OWNER.

 SUBMILL IETTER AND REPORT TO TOWER OWNER.

 SHEAR OF THE ROD TO BE NOTALLED FOR A DISTANCE OF Z WINDAMM ALL ARQUIND THE AREA TO BE SURFACE, OF THE ROD TO BE NOTALLED FOR A DISTANCE OF Z WINDAMM ALL ARQUIND THE AREA TO BE SURFACE, OF THE ROD TO BE NOTALLED FOR A DISTANCE OF Z WINDAMM ALL ARQUIND THE AREA TO BE SURFACE OF THE ROD TO BE NOTALLED FOR A DISTANCE OF Z WINDAMM ALL ARQUIND THE AREA TO BE SURFACE AND ADDITIONAL AND ADDITIONAL AND THE AREA TO BE SURFACE AND ADDITIONAL AN

STRUCTURAL STEEL NOTES:

- THE ABBICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFIRM TO THE AISC SPECIFICATION AND ERECTION CO. AND RESISTANCE FACTOR DESIGN. 15TH EDITION.

 2. UNLESS OTHER CONSTRUCTION, LOAD AND RESISTANCE FACTOR DESIGN. 15TH EDITION.

 2. UNLESS OTHER AT MOTEO, ALL STRUCTURAL ELEMENTS SHALL CONFORM TO THE FOLLOWING SALUREMENTS.

 3. A STRUCTURAL STEEL.

 4. A STRUCTURAL STEEL.

 5. A STRUCTURAL STEEL.

 6. PRATE ASTM AND (SELF SUPPORTING AND QUYED TOWERS).

 6. PRATE ASTM AND (SELF SUPPORTING AND QUYED TOWERS).

 6. OUTED WIRES ASTM AND (SELF SUPPORTING AND QUYED TOWERS).

 7. QUYED WIRES ASTM AND (SELF SUPPORTING AND QUYED TOWERS).

 8. ALL BOLTS ASTM AND SERVE CAN ANDEED HOST STRENGTH BOLTS.

 C. ALL UBGLTS ASTM AND SERVE BY CAN AND AND ALLY STEEL NUTS.

 E. ALL WASHERS, ASTM FOO HAND END STEEL WASHERS.
- ALL CONNECTIONS NOT FAIL VIETHED ON THEE FAMES HALL BE REFAILED AT THE STEEL FARRICATOR IN ACCORDANCE WITH A 50 STEEL CONSTRUCTION, LOND AND RESISTANCE FACTOR DESIGN, STH EBITION.

 OLES SHALL NOT BE FAILE CUT THAT STEEL LINESS APPROVED BY THE SHORMERS.

 HOT-DIP GALVANZE ALL TIENS UNLESS OTHERWAYE NOTED, AFTER FARRICATION WHISTER PRACTICABLE.

 GALVANIZING, STANZA 23, STAIL ASSISSION OF AS TAR SHARROWS.
- GALWARIZMO ASTALA Y23, ASTALA ASSALASISMOR ASTALASISMOR, ASTALASISMOR, AS ASPELCABLE.

 REPAR DAMAGES DIRFAGES WITH CANAWARING REPARK PARTIDO AND PAINT CONFORMING TO ASTALATAGE
 OR BY APPLICATION OF STECK OR THICK PASTED MATERIAL SPECIFICALLY DISEASED FOR REPARKS TO
 ORAL WANDIANG. CLEAN AREASY TO BE REPARRED AND REMOVE SLIG PRIOR WEIGHT SHEAT SHEARS TO
 THE METALLICS IN STECK OF PASTED. SPECIAL DIRECTION AND EXPERIENCES AND THE STECK OF STECK TO MEET
 THE METALLICS IN STECK OF PASTED. SPECIAL DIRECTION AND EXPERIENCES TO SEE
 AND THE ORDING SHEAT SHEAT OF STECK TO MEET
 AND THE ORDING SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT
 AND THE SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT
 PROMETER AND REPARAGE.

 AND THE SHEAT PROMETER SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT SHEAT
 PROMETER AND REPARAGE.

- FROM THE SHEAR RUANE.
 ALL PROPOSED AND/ONE REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT B AT LEAST RUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BOLT BE AT LEAST RUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BOLVITHE FACE OF THE MOTHER THAT BOLD SHOW THE FACE OF THE MOTHER THAT BOLT SHALL NOT BE REUSED.

 GALVANIZED ASTM A228 BOLTS SHALL NOT BE REUSED.

BOLT TIGHTENING PROCEDURE:

- CONNECTION BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIGHTENED AS PER SECTION AT JOE THE ARC SMECKNESS FOR FRUCTURAL, JOINTS USING ASS OR AND BOLTS, LOCATED IN THE ARC SMECKNESS. THE CONSTRUCTION THE INSTALLATION PROCEDURE IS REPRIENCED ASSTRUCTION. THE INSTALLATION PROCEDURE IS REPRIENCED AS FOLLOWS FATTENESS SHALL BE INSTALLED IN PROFERTY ALLOND HOLES AND TIGHTENED BY ONE OF THE METHODS DISCORDED IN SUSSECTION & 2.1 THOUGH EAST.

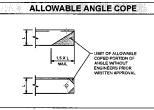
8.2.1 TURN-DE-THE-NUT TIGHTENING
BOLTS SHALL BE RATALLED BY ALL HOLES OF THE CONNECTION AND BROUGHT TO A SHAR TROMT
CONCINION AS DEFINED IN SECTION AS, INFIT. ALL HE BOLTS ARE SHALL TANGOUGH, SHART TIGHT MAD THE
CONCINION AS DEFINED AS SECTION AS, INFIT. ALL HE BOLTS ARE SHALL TANGOUGH SHART HAVE THE HOLES ARE SHART HAVE THE HOLES ARE SHART HAVE THE HOLES ARE SHART HAVE THE HOLES ARE SHART HAVE THE HOLES ARE SHART HAVE THE HOLES ARE SHART HAVE THE HOLES ARE SHART HAVE THE HOLES ARE SHART HAVE THE HOLES ARE SHART HAVE AN ADMONST
THE HOLES ARE ALMATION OF DEVIOURLY PRECISIONED BOLTS.
TO HAVE THE HOLES AND THE HOLES ARE SHART HAVE THE HOLES AND THE HOLES

BOLT L	ENGTHS UP TO AND INCLUDING FOUR DIA.	
¥"	BOLTS UP TO AND INCLUDING 2.0 INCH LENGTH	+X TURN BEYOND SNUG TIGH
ж.	BOLTS UP TO AND INCLUDING 2.5 INCH LENGTH	+X TURN BEYOND SNUG TIGH
*	BOLTS UP TO AND INCLUDING 3.0 INCH LENGTH	+K TURN BEYOND SNUG TIGH
<i>y</i> -	BOLTS UP TO AND INCLUDING 3.5 INCH LENGTH	+K TURN BEYOND SNUG TIGH
1"	BOLTS UP TO AND INCLUDING 4.0 INCH LENGTH	+X TURN BEYOND SNUG TIGH
BOLT L	ENGTHS OVER FOUR DIA. BUT NOT EXCEEDING EIGHT DIA.	
% "	BOLTS 2,25 TO 4,0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGH
*	BOLTS 2.75 TO 5.0 INCH LENGTH	+½ TURN BEYOND SNUG TIGH
Ac-	ROLES 3 25 TO 8 0 INCH CN/3TH	*M THEN SEVEND SMILE TICK

%" BOLTS A.25 TO A BINCH LENGTH +% TURN BEYOND SHUG TIGHT

"BOLTS A.25 TO A BINCH LENGTH +% TURN BEYOND SHUG TIGHT

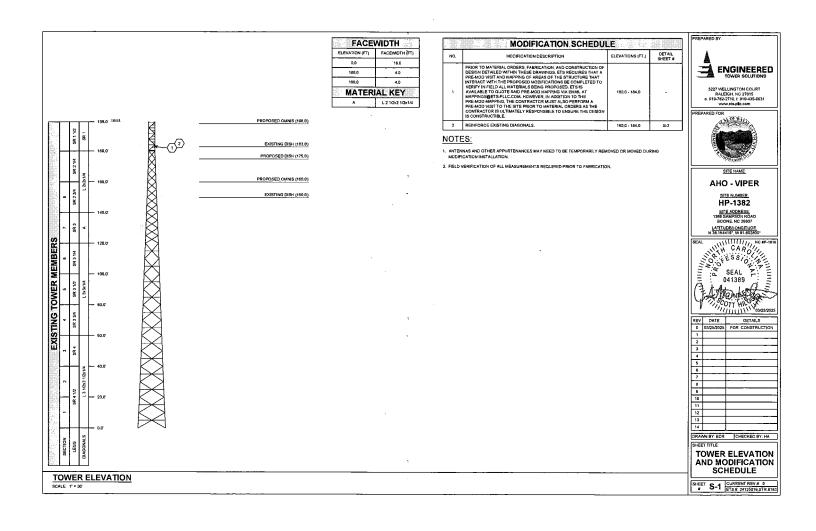
"BOLTS A.25 TO A BINCH LENGTH +% TURN BEYOND SHUG TIGHT

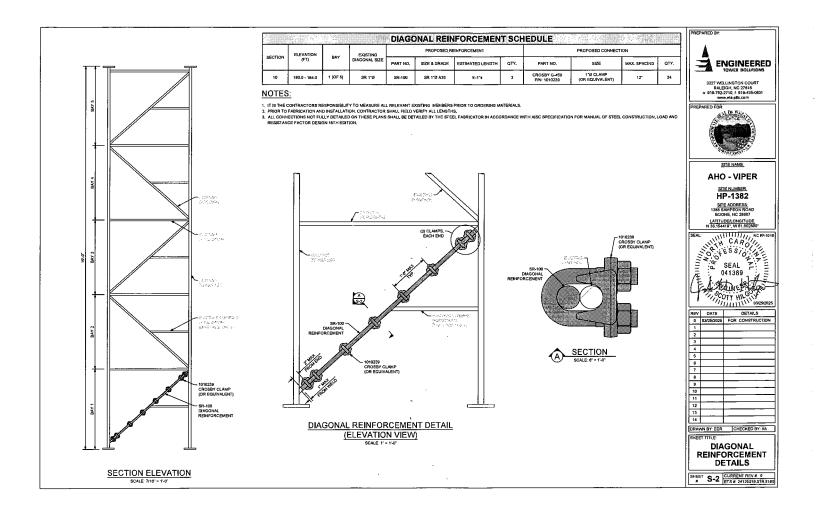

ALL OTHER BOLTED CONRECTIONS SHALL BE BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN
SECTION A.10 OF THE SPECIFICATION.

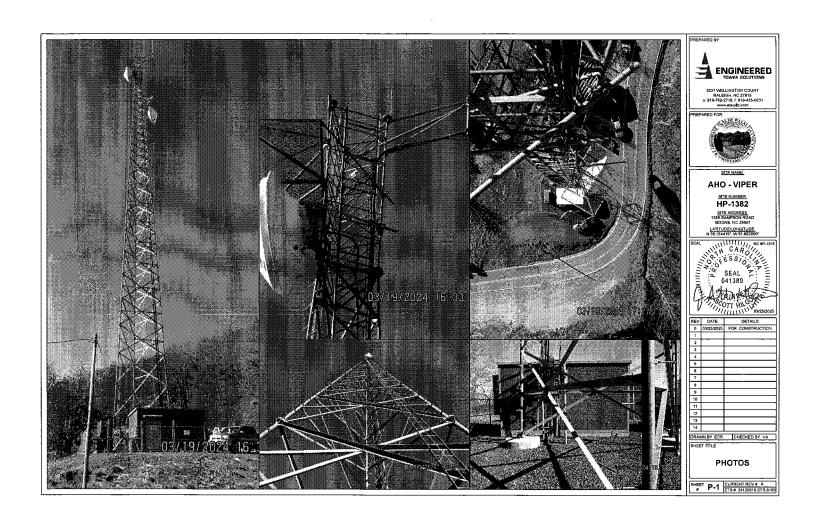
NOMINA	AL HOLE DIME!	SIONS
BOLT DIAMETER	STANDARD HOLE	SHORT SLOT
У.	Ун.	Na x 1%4
*	1%,	1X4 × 1/4
*	1%6	¹¾s x 1
Ж	19/16	15/4 × 15/4
1	11/4	1½ × 1½

BO	LT EDGI	E AND SP	ACING
BOLT DIAMETER	MIN EDGE	SPACING	
и	Ж	1%	
*	1%	1%	EOGE
*4	1%	214	1 1 1
74	1%	2%	SPACING
1	11/4	3	1

GAGES	/ORKABLE	Y
	GAGE	LEG LENGTH
	25	4
GAGE GAGE	2	3)%
	11%	3
]	1%	2%
1	1%	2
1	1	1%






PROJECT NOTES SHEET N-2 CURRENT REV #: 0 ETS #: 24125019.STR.6180

UANTITY REQUIRED	MANUFACTURER	PART NUMBER	DESCRIPTION	LENGTH	DETAIL SHEET #	PART WEIGHT (LB)	TOTAL WEIGHT (LB)	NOTES	
			DIAGONAL REINFORCEMENT MATERIALS & HARDWARE			-			ENGINEER TOWER SOLUTION
3		SR-100	SR 1"Ø A36	5'-1"±	S-2	13.59	40,77		TOWER SOLUTION
24	CROSBY	1010239	1"Ø G-450 CLAMP	-	S-2	2,52	60,48		3227 WELLINGTON COURT
	Ï								RALEIGH, NC 27615 o. 919-762-2710, f: 919-435-06; www.ets-piic.com
									PREPARED FOR
									450
					•				
									V 25
									** Official Control
					-		 		SITE NAME:
							_		AHO - VIPER
				_			 		SITE NUMBER
					-		 	-	HP-1382
	-				-				SITE ADDRESS: 1388 SAMPSON ROAD BOONE, NC 28607
					 	+	-		LATITUDE/LONGITUDE
									SEALNO
							 		H CARO
						 			1 50 6 E 8 8 10 14
									SEAL Z
					 				SEAL CAR (MINISTER)
						<u> </u>	-		III FA XEMENTA
					-				TOOTT HINN
		***	"						REV DATE DETAILS
									0 03/25/2025 FOR CONSTRU
									1 2
									3
									4 5
									6
									7 8
									9
					<u> </u>				10
									12
				-		ļ	ļ		13
					ļ	ļ			DRAWN BY EDR CHECKED BY
									SHEET TITLE
					-		 		BILL OF MATERIA
						<u> </u>	-		BILL OF WATER
						TOTAL WEIGHT (LB):	101,25	PAGE 1 OF 1	SHEET BM CURRENT REV # ETS # 24125019.5

. · ·

Page: 5

Watauga County

BIDDER: K-Co Enterprises, Inc.

TOWER MOD BREAKDOWN:

- 1. Total cost of tower modification materials only
- 1407.00

- 2. Total cost of tower modification labor only
- 3,770.00

3. Total cost of tower modification

5177.00

Page: 1 Watauga County

BIDDER: K-Co

K-Co Enterprises, Inc.

WATAUGA COUNTY, NC	INVITATION FOR BIDS – Aho - Viper		
BID#	Bids will be publicly opened: June 13th, 2025 at 3:00pm		
	Questions Due by: June 2 nd , 2025		
Refer <u>ALL</u> Inquiries to: Marty Randall Telephone No. 828-527-2416	Commodity: Install tower modifications on an existing tower (HP-1382 Aho-Viper) located at 1388 Sampson Road, Boone, NC 28607.		
E-Mail: marty.randall@1018consulting.com	Using Agency Name: HP-1382 – Aho Viper		
(See page 2 for mailing instructions.)			

NOTICE TO BIDDERS

Sealed bids, subject to the conditions made a part hereof, will be received at 814 W King Street, Boone NC 28607 until 3:00 PM on the day of opening and then opened, for furnishing and delivering the commodity as described herein. Refer to page 2 for proper mailing instructions.

Bids submitted via e-mail or facsimile (FAX) machine in response to this Invitation for Bids will not be acceptable. Bids are subject to rejection unless submitted on this form.

EXECUTION

In compliance with this Invitation for Bids, and subject to all the conditions herein, the undersigned offers and agrees to furnish and deliver any or all items upon which prices are bid, at the prices set opposite each item within the time specified herein. By executing this bid, I certify that this bid is submitted competitively and without collusion (G.S. 143-54).

Failure to execute/sign bid prior to submittal shall render bid invalid.

Late bids are not acceptable.

BIDDER: K-Co Enterprises, Inc.		FEDERAL ID OR SOCIAL 26-1278195	FEDERAL ID OR SOCIAL SECURITY NO. 26-1278195		
STREET ADDRESS: 613 Hurricane Creek Rd.	P.O. BOX:	ZIP:			
CITY & STATE & ZIP: Piedmont, SC 29673		TELEPHONE NUMBER: 864-947-8704	TOLL FREE TEL. NO (800)		
PRINCIPAL PLACE OF BUSINESS ADDRESS IF DIFFERE	NT FROM ABOVE (SEE IN	ISTRUCTIONS TO BIDDERS ITE	M #21):		
TYPE OR PRINT NAME & TITLE OF PERSON SIGNING:		FAX NUMBER:			
Ernest Rood - Project Manager	864-947-8204	864-947-8204			
AUTHORIZED SIGNATURE: DATE: 6-11-25		E-MAIL: bids@kcoenterprise	E-MAIL: bids@kcoenterprises.com		

Offer valid for 120 days from date of bid opening unless otherwise stated here: ____ days

ACCEPTANCE OF BID

If any or all parts of this bid are accepted by Watauga County, NC, an authorized representative of Watauga County, NC shall affix their signature hereto and this document and the provisions of the Instructions to Bidders, special terms and conditions specific to this Invitation for Bids, the specifications, and the North Carolina General Contract Terms and Conditions shall then constitute the written agreement between the parties. A copy of this acceptance will be forwarded to the successful bidder(s).

FOR Watauga County, NC USE ONLY		
Offer accepted and contract awarded this	day of	, 20, as indicated on attached certification,
by		(Authorized representative of Watauga County, NC).

Page:	2	
Watau	ga	County

BIDDER:	K-Co Enterprises, Inc.

In an effort to support the sustainability efforts of Watauga County, North Carolina we solicit your cooperation in this effort.

It is desirable that all responses meet the following requirements:

- All copies should be printed double sided.
- All submittals and copies should be printed on recycled paper with a minimum post-consumer content of 30% and indicate this information accordingly on the response.
- Unless absolutely necessary, all bids and copies should minimize or eliminate use of non-recyclable or non reusable materials such as plastic report covers, plastic dividers, vinyl sleeves, and GBC binding. Three-ringed binders, glued materials, paper clips, and staples are acceptable.
- Materials should be submitted in a format which allows for easy removal and recycling of paper materials.

<u>MAILING INSTRUCTIONS:</u> Send two fully executed bid documents. Address envelope and insert bid name as shown below. It is the responsibility of the bidder to have the bid in this office by the specified time and date of opening.

DELIVERED BY US POSTAL SERVICE	DELIVERED BY ANY OTHER MEANS
	SEND SUCH AS FEDX, UPS, ETC. FOR NEXT DAY
814 W King Street Boone NC 28607	814 W King Street Boone NC 28607

Watauga County, NC Tower Construction Project

Watauga County, North Carolina

Scope of Work – Watauga County, NC proposes to modify an existing communications tower site per the attached 3-26-25 ETS Structural Modification 24125019.STR.8180 Rev. 1. All work shall comply with applicable North Carolina Building Codes and ANSI/TIA/EIA Standards. If the following Specification calls for a condition that is greater than the TIA/EIA Standards or North Carolina Building Codes, use the specifications shown in this document. All work shall be coordinated with Watauga County, NC. The modifications and all appurtenances shall be installed and affixed with the highest quality of workmanship. The selected Contractor will advise Watauga County, NC's Contracting Officer and Marty Randall (10-18 Consulting 828-527-2416 marty.randall@1018consulting.com) two weeks in advance of the date the work will start. The contractor will provide Marty Randall weekly project progress reports and immediately report any abnormal conditions encountered during construction.

COMPLETION DEADLINE, Marcharle	والمراكب المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	6 !64	
COMPLETION DEADLINE : Work sho	ila de completea within 90 aay	s of receipt of materials,	not counting bad
woother days			
weather days.			

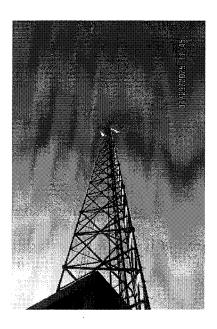
If the above time is not possible, state completic	on time in days from	contract issue.	Days
Understand all requirements in the Scope of Work	YesX	No	

Page: 3 Watauga County	BIDDER:	K-Co Enterprises	, Inc.		
CONTRACTING OFFICER					
This project will be under contract with Wa Contracting Officer will be:	itauga County	, NC and will be u	nder the direct	ion of the Cont	racting Officer. The
Will Holt Watauga, NC Office:828-264-4235 Cell: 828-434-3491					
NOTE: Any questions prior to issue marty.randall@1018consulting.com as					
Understand the Contact information as	listed above	Yes_X	_	No	
CONTRACTOR REQUIREMENTS		•			
The Contractor shall submit the following it	tems with thei	ir bid:			
 Each bid must be accompanied by a bit time the bid is filed with the City. No bid Bid bonds may be submitted in any for certified check or surety issued bid bor 	d shall be cor m allowed un	nsidered if the bone	d is not receive	d simultaneou	sly with the bid.
2. Performance and payment bonds are r	equired once	bid is awarded.			
Watauga County reserves the right to acce	ept or reject a	ny or all bids and t	o waive minor	irregularities.	
Two complete copies of your bid respo	onse must be	e submitted with	your package	e. Failure to s	submit the above-
Understand Contractor Requirements P	rocess	Yes <u>X</u>	No		
BIDDING INSTRUCTIONS Contractors bidding on this project must ful Invitation for Bid, and conditions at the Des to fully understand any potential obstacles any portion of the work or interpretation of the state o	ignated Cons that would pro documents sl	struction Site (DCS event speedy com nould be referred t). The contrac pletion of this p	tor is encourag roject. Any qu	ed to visit the DCS estions concerning
Understand Bidding Instructions Ye	es^	No			
COORDINATION OF THE WORK The Tower Contractor shall notify Marty Ra two weeks prior to the desired construction Failure to give advanced notice may result	n time. Failu	re to give advance	e notice may re	esult in delay o	of the starting date.
Understand the Coordination Requirement	ent	YesX	_	No	
MICROWAVE REALIGNMENT The Tower Contractor shall notify Marty Rabe moved during construction. The Tower original RSL.					
Understand the Microwave Realignment	: Reguiremer	nt Yes X		No	
PERMITS		,• 3 <u>3</u>	_		
The contractor is responsible for obtaining exempt from permits.	permits and s	scheduling inspecti	ons with the pe	ermitting office	. The County is not
Understand the Permit Process		Yes_X	_	No	

EXPEDITE CONSTRUCTION

Page: 4 Watauga County	BIDDER:	K-Co E	Enterprises, Inc). 		
It is expected that the contractor will exp favorable working conditions.	edite comple	tion of th	ne project, taki	ing full adva	ntage of the	weather and other
Understand Expedite Construction Pro	cess		Yes_X_	i	No	
POST CONSTRUCTION INSPECTION (F	PCI)					
Upon completion of the tower modification Solutions ("ETS") to conduct the Post C the findings of the Inspection. (Watauga Watauga County, NC for all initial in documents are at the contractor's exp deviation from the Tower Modification Dr Contractor shall provide to the Contractidocuments each deviation along with Eng	construction In County, NO aspections. A sense. For so awings and S and Officer, a	nspection Chas a Addition Chedulin Opecifica red-line	n ("PCI"), and contract to post all inspection of the contract to post in the contract of the	to generate rovide this as due to difications@during, or as the Drawing a	a complete service. Fe non-conformets-pllc.com a result of	report documenting es will be paid by nity with contractor. In the event any the PCI, the Towel
Understand Final Inspection Process			Yes_X_	I	No	
The Tower Contractor, and/or the subcontractor be licensed to operate a contracting busing NC General Contractors License Numbor The Contractor installing the tower modific Climbing rules that were adopted in February Understand Requirements for Contractor Construction & MATERIALS Tower Contractor must ensure that the toward Contractor is responsible for restrough Components of the tower modification minimum, be hot-dipped galvanized. Understand Construction and Materials EROSION CONTROL	ter 66585 cations must contain and components of the components of	comply volume following the complex of the complex	with Carolina as with the North Cowing revisions X No_ ways remain sea-jon)	s required un Carolina Dep s. ——— ecure.	der NCGS 8	<u>abor's Tower</u>
The Contractor will be responsible for Ero	sion Control p	oractices	and any fines	levied if not	practiced.	
Understand Erosion Control Methods a	and responsi	bilities	Yes_X_	No	-	

TOWER MODIFICATION DRAWINGS (SOW)


3-26-25 ETS Structural Modification 24125019.STR.8180 Rev. 1

Pre Modification Inspection Report
AHO - VIPER (HP-1382)
199-ft± Self-Support Tower
ETS # 24125019.Ins.8182
April 30, 2025
Page 1 of 5

PRE MODIFICATION INSPECTION REPORT

SITE NAME: AHO - VIPER

Performed By:

Alex Meister
Tower Engineer - Inspections

Charlie Kluth
Tower Engineer - Inspections

Pre Modification Inspection Report
AHO - VIPER (HP-1382)
199-ft± Self-Support Tower
ETS # 24125019.Ins.8182

April 30, 2025 Page 2 of 5

1.0 ASSIGNMENT

Subject – Pre-modification inspection of a 199-ft± self-support tower.

Location – 1388 Sampson Rd, Boone, NC 28607

Structure – 199-ft± Self-Support Tower

Purpose – The objective of the inspection was to determine the existing section dimensions from 180' to 184', and to perform a visual inspection of existing conditions and potential issues that may take place during the tower modification.

2.0 SCOPE OF SERVICES

1) Perform a pre-modification inspection

2) Prepare a report of observations and recommendations

3.0 PARTICIPATING PERSONNEL

Representatives: Mr. Marty Randall

10-18 Consulting (828) 527-2416

Consulting Engineers: Mr. Alex Meister

Mr. Charlie Kluth

Engineered Tower Solutions, PLLC (ETS)

3227 Wellington Ct. Raleigh, NC 27615 (919) 782-2710

Pre Modification Inspection Report
AHO - VIPER (HP-1382)
199-ft± Self-Support Tower
ETS # 24125019.Ins.8182
April 30, 2025
Page 3 of 5

4.0 BACKGROUND INFORMATION

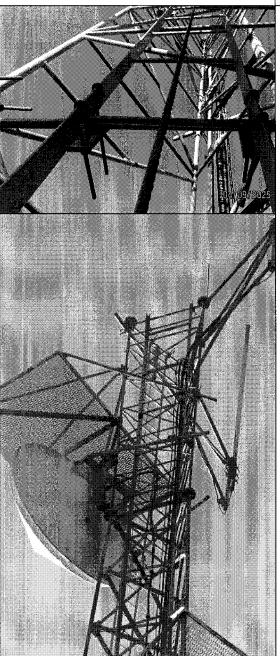
Watauga County requested that ETS conduct a pre modification inspection of the tower. The objective of the inspection was to determine the existing section dimensions from 180' to 184', and to perform a visual inspection of existing conditions and potential issues that may take place during the tower modification.

5.0 INVESTIGATION

Pre Modification Inspection – Alex Meister and Charlie Kluth performed the inspection on April 9, 2025. For the purpose of this inspection, the tower legs were named by letter according to the magnetic azimuth defined by a line from the center of tower to the leg. "A" leg is the leg closest to magnetic north, followed clockwise by "B" and "C."

6.0 RESULTS

- 1. Tower Section Details
- 2. Miscellaneous Obstructions



Pre Modification Inspection Report

AHO - VIPER (HP-1382) 199-ft± Self-Support Tower ETS # 24125019.Ins.8182 April 30, 2025 Page 4 of 5

EXECUTIVE SUMMARY

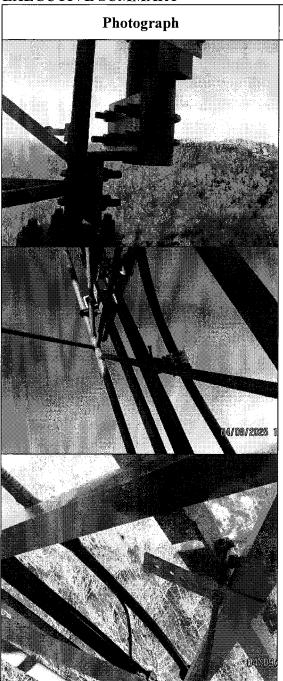
Photograph

Observations and Recommendations

Item 1 – Tower Section Details

Section 10 180'0"±-199'0"± (K bracing right) Bay 1 180'0"±-184'0"±

Leg: SR1.5" ØBay Height: 3.65'


Diagonals: SR1" Ø weldedHorizontal: SR1" Ø welded

• Face width: 4'-0"

Pre Modification Inspection Report
AHO - VIPER (HP-1382)
199-ft± Self-Support Tower
ETS # 24125019.Ins.8182
April 30, 2025
Page 5 of 5

EXECUTIVE SUMMARY

Observations and Recommendations

<u>Item 3 – Miscellaneous Obstructions</u>

Climbing Pegs

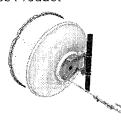
• C leg: spacing 2'-6"

Climbing Ladder

- CA face: width: 1'-3/4", step: 1'-0", J-hooks to horizontal
- A-B face has climbing horizontal

Waveguide

- BC face near B leg
- J-hooks and J-plates to diagonals


Coax

- (1) 1 5/8 FH, (1) 7/8 FH, (1) 1/2 FH, and (1) EU63 attached to waveguide on BC face
- EU63 transitions to Dish at 183'. Secured to diagonal on A B face

Dish Mount at 183'-0"

- Location: C leg
- Pipe mount SO: 8"
 - o MP (1) P4.5"Øx5'-0"
 - Stabilizer (2) P2.4"Ø connected to A and B leg
- Equipment: (1) RFS PAD8-65AC1S1R
- Leg connections: (2) L 5"x3"x3/8"x7 3/4" welded w/ (2) 5/8" Ø U-bolts 1 1/2" C-C

Base Product

1.8m | 6ft ValuLine® High Performance, High XPD Antenna, dual-polarized, 5.925 – 7.125 GHz

Product Classification

Product Type Microwave antenna

Product Brand ValuLine®

General Specifications

Antenna Type HX - ValuLine® High Performance, High XPD

Antenna, dual-polarized

Polarization Dual

Side Struts, Included 1

Side Struts, Optional

Dimensions

Diameter, nominal , 1.8 m | 6 ft

Electrical Specifications

Operating Frequency Band 5.925 - 7.125 GHz

Gain, Low Band 38.3 dBi

Gain, Mid Band 39.1 dBi

Gain, Top Band 39.9 dBi

Boresite Cross Polarization Discrimination (XPD) 33 dB

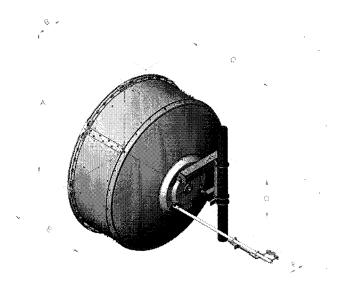
Front-to-Back Ratio 70 dB

Beamwidth, Horizontal 1.8 °

Beamwidth, Vertical 1.8 °

Return Loss 26 dB

VSWR 1.1


Radiation Pattern Envelope Reference (RPE) 7376

Electrical Compliance ACMA FX03_6b, 6p7b | ETSI 302 217 Class

3 | IC 3059A | IC 3064A | US FCC Part 101A

Cross Polarization Discrimination (XPD) Electrical Compliance	ETSI EN 302217 XPD Category 2
Electrical Specifications, Band 2	
Operating Frequency Band	5.725 – 5.850 GHz
Gain, Mid Band	38.4 dBi
Beamwidth, Horizontal	2 °
Beamwidth, Vertical	2 °
Mechanical Specifications	
Compatible Mounting Pipe Diameter	115 mm-120 mm 4.5 in-4.7 in
Fine Azimuth Adjustment Range	±15°
Fine Elevation Adjustment Range	±5°
Wind Speed, operational	200 km/h 124.274 mph
Wind Speed, survival	200 km/h 124.274 mph

Antenna Dimensions and Mounting Information

	Dimensio	ins in incl	hes (mm)			
Antenna size, ft (m)	A	В	С	D	E	F
6 (1.8)	74.8 (1899)	13.4 (340)	47.5 (1206)	20.9 (530)	39.4 (1001)	8.4 (214)

Wind Forces at Wind Velocity Survival Rating

Axial Force (FA)

Angle a for MT Max

Side Force (FS)

Twisting Moment (MT)

Force on Inboard Strut Side

Zcg without Ice

Zcg with 1/2 in (12 mm) Radial Ice

Weight with 1/2 in (12 mm) Radial Ice

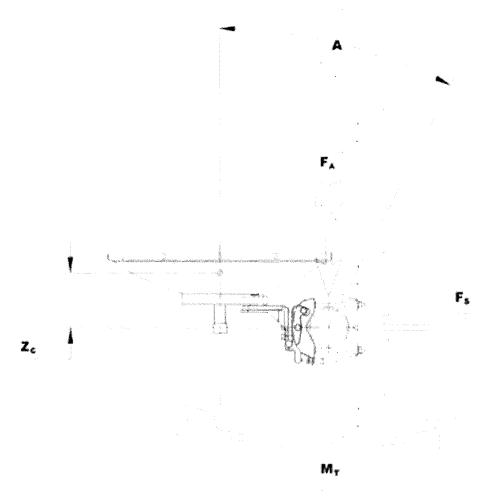
6960 N | 1,564.671 lbf

-130°

1566 N | 352.051 lbf

3923 N-m | 34,721.477 in lb

4075 N | 916.097 lbf


363 mm | 14.291 in

541 mm | 21.299 in

237 kg | 522.495 lb

Page 3 of 7

Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Weight, net 85 kg | 187.393 lb

Regulatory Compliance/Certifications

Agency Classification

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

* Footnotes

Operating Frequency Band

Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

Page 5 of 7

Gain, Mid Band

Boresite Cross Polarization Discrimination (XPD)

Front-to-Back Ratio

Return Loss

VSWR

Radiation Pattern Envelope Reference (RPE)

Wind Speed, operational

Wind Speed, survival

Axial Force (FA)

Side Force (FS)

For a given frequency band, gain is primarily a function of antenna size. The gain of Andrew antennas is determined by either gain by comparison or by computer integration of the measured antenna patterns.

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

Denotes highest radiation relative to the main beam, at 180° ±40°, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise.

The figure that indicates the proportion of radio waves incident upon the antenna that are rejected as a ratio of those that are accepted.

Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band.

Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of +/-1° throughout

Cross Polarization Discrimination (XPD) Electrical Compliance The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

> For VHLP(X), SHP(X), HX and USX antennas, the wind speed where the maximum antenna deflection is 0.3 x the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than 0.1 degrees.

> The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without permanent deformation. Realignment may be required. This wind speed is applicable to antenna with the specified amount of radial ice.

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this

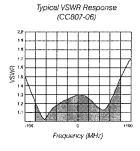
Twisting Moment (MT)

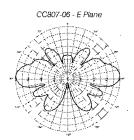
parameter. The individual maximums specified may not
 occur simultaneously. All forces are referenced to the mounting pipe.

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

800 MHz Corporate Collinear Antennas 746-870 MHz

CC807 Series


These industry leading PIM and PIP rated collinear arrays allow site operators to combine, with complete integrity, a large number of communications services into a single, low profile collinear antenna array.


The true corporate feed of these arrays maintains total pattern integrity over a very broad operating and width, similar to that previously available only in exposed dipole configurations. This is now achieved in the preferred from factor of a fully enclosed fiberglass radome. The corporate collinears employ a unique corporate phasing system enabling precision control of the element placements ensuring phase purity resulting in exceptional bandwidth and electrical performance.

Gain is maximised and side lobes reduced dramatically. In a patented design approach the individual dipole elements are soldered to a brass support tube which is directly connected to the mounting tube and the lightning spike at the top of the antenna.

Features:

- 500W Continuous Power rating for CC807-11, CC807-08, CC807-06
- -150dBc Passive Intermodulation (PIM) rating
- 25 kW Peak Instantaneous (PIP) rating
- Extraordinary bandwidth characteristics with superior pattern control
- DC grounding on all elements for the ultimate in lightning protection and dissipation of static noise.

Electrical Specifications

Model Number	CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P
Nominal Gain dBd (dBi)	3 (5.1)	6 (8.1)	8 (10.1)	10.5 (12.6)
Frequency MHz		746 - 8	70	
Tuned Bandwidth MHz		Full Ba	nd	kada taka
VSWR (Return Loss)		< 1.5		
Downtilt ^{e (1)}	Not Offered	0 °Std, -3°,-5°	0 °Std, -1°, -2)°, -3°, -4°, -5°
Vertical Beamwidth°	28	. 17	9	4.5
Horizontal Beamwidth®		Omni +/-	0.5dB	
Input Power W	250		500	
Passive IM 3rd order (2x20W) dBc		-150		
Peak Instantaneous Power kW		. 25		

Mechanical

Model Number	848 G N	CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P
Construction		ir litat a c	' Sky blue fibre	eglass radome	
Length mm (inches)		1203 (47)	1741 (69)	2817 (111)	5219 (205)
Radome Diameter mm (inches)			76	3 (3)	
Weight kg (lbs)		4 (9)	7 (16)	12(27)	22 (49)
Shipping Weight kg (lbs)		8 (18)	11 (25)	18 (40)	30 (66)
	Н		. 115	(4.5)	
Shipping Dimensions mm (inches)	W		115	(4.5)	
mm (menes)	L	1400 (55)	٠ 1900 (75)	3000 (118)	5600 (220)
Termination			4.3-10 fix	ked female	
Suggested Clamps (not included)		2 x L	JC-114	
Invertible Mounting			Ye	s (1)	ata in challaday
Dunicated and and (40)	No Ice	806 (0.9)	1268 (1.4)	2320 (2.5)	4560 (4.9)
Projected area cm² (ft²)	With Ice	1048 (1.2)	1571 (1.7)	2880 (3.1)	5760 (6.2)
Lateral Thrust @160km/h N (100	mph lbs)	96 (22)	150 (34)	276 (62)	540 (121)
Wind Gust Rating km/h (mph)	No Ice		>240	(>150)	
Torque @ 160km/h Nm (100mph	ft-lbs)	20 (15)	73 (54)	278 (205)	1032 (761)

(1) To order pre-set downtilt versions available, simply add a -T2 or -T4, etc towards the end of the part number to denote the downtilt model required. For eg. CC807-11-T2-P to order a CC807-11-P with 2 deg of downtilt. Please note: Models with downtilt are NOT field invertible.

TOWER SOLUTIONS

Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

10-18 Consulting Cell: 828-527-2416

Marty Randall

Date: March 26, 2025

marty.randall@1018consulting.com

Subject:

Structural Modification Analysis Report

Carrier Designation:

Watauga County Reconfiguration

Carrier Site Name:

Aho - Viper

Tower Owner Designation:

NCSHP Site Number:

HP-1382

NCSHP Site Name:

Aho - Viper

Engineering Firm Designation:

ETS, PLLC Job Number:

24125019.STR.8180 Rev. 1

Site Data:

1388 Sampson Road, Boone, Watauga County, NC 28607 Latitude N 36° 09' 15.91", Longitude W 81° 36' 10.08"

199.0 Foot – Self Support Tower

Dear Marty Randall,

Engineered Tower Solutions, PLLC is pleased to submit this "Structural Modification Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

Modified Structure w/ Final Equipment Configuration:

Tower:

90.9% Sufficient Capacity

Foundation:

80.1% Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 140 mph (converted to an equivalent 108 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222 G) as required by the 2018 North Carolina State Building Code (2015 IBC). Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by:

Hicham Anssar Structural Engineer I

Respectfully submitted by:

J. Scott Hilgoe, PE Structural Engineering Manager NC License #P-1016

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity

- 4.1) Recommendations
- 4.2) Dish Antenna Deflection Results

APPENDIX A

tnxTower Output

APPENDIX B

Base Level Drawing

APPENDIX C

Additional Calculations

APPENDIX D

Modification Design Drawings .

1) INTRODUCTION

This tower is a 199-ft self-supporting tower designed by World Tower Company in August of 2021. This tower was originally designed for an ultimate 3-second gust wind speed of 120 mph per TIA-222-H.

2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-G

Structure Class:

111

Nominal Wind Speed:

108 mph (As required by Watauga County)

Exposure Category:

С

Topographic Category:

1 (Topographic effects do not need to be considered with the required

special wind speeds as required by Watauga County)

Ice Thickness:

1.0 in 30 mph

Wind Speed with Ice: Service Wind Speed:

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	(ft)					
198.0	206.0	2	RFI	CC807-11	2	7/0" FLI
(Watauga		2	Tower mounts	Horizontal Mount Pipe/Stabilizer		7/8" FH
County)	198.0	2	Tower mounts	6-ft Side Arm Mount	1	1/2" FH
į · · · , ,	196.0	1	Unknown	TMA (9" x 6" x 5")	-	
175.0		1	Commscope	HX6-6W-6WH		
(Watauga 175.0 County)		1	Tower mount	4" ø x 5-ft Pipe Mount	1	EU63
160.0	168.0	2	RFI ·	CC807-11		
(Watauga	160.0	2	Tower mounts	Horizontal Mount Pipe/Stabilizer	2	1-5/8" FH
County)	160.0	2	Tower mounts	6-ft Side Arm Mount	•	
130.0*		1	Commscope	DB224		
(Watauga County)	• • •		Tower mount	Side Arm Mount	1	7/8" Coax
100.0*		1	Commscope	DB224		
(Watauga County)	110.6	1	Tower mount	Side Arm Mount	1	7/8" Coax
80.0*	***************************************	1	Ubiquiri Networks	AM-V5G-Ti	<u> </u>	
(Watauga County)	0.08	1	Tower Mount	Pipe Mount	1	CAT5E

^{*}Reserved Loading.

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
400.0	188.0	1	Unknown	10-ft Ice Shield	-	-		
183.0 (NCSHP)	102.0	1	RFS	PAD8-65AC1S1R		FILCO		
(INCOLLE)	183.0	103.0	103.0		Tower Mount	5-ft Dish Pipe Mount	1	EU 63
4-0-0	155.0	1	Unknown	10-ft Ice Shield				
150.0 (NCSHP)	150.0	1	RFS	PAD8-65AC1S1R	1	EU 63		
(NCSHP) 1	150.0	1	Tower Mount	5-ft Dish Pipe Mount				
40001		1	RFS .	PAD6-65B				
130.0*	130.0	1	RFS	PAD8-65B	2	EW63		
(NCSHP)		2	Tower Mount	Pipe Mount				

^{*}Reserved Loading.

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Tower Modification Drawings	ETS, PLLC (Job No. 24125019.STR.8180)	03/25/2025	Appendix D
Previous Structural Analysis Report	ETS, PLLC (Job No. 24125019.STR.1181)	02/19/2025	On File
L&A Mapping Report	ETS, PLLC (Job No. 24125019.EI.1182)	03/28/2024	On File
Tower & Foundation Design Package	World Tower (Drawing No. C2107-019 R2)	08/23/2021	On File
Tower & Foundation Design Calculations	World Tower (Job No. C2107-019 R2)	08/09/2021	On File
Final A&E Construction Drawings	ETS, PLLC (Job No. 204655.AE.02, Rev. 4)	04/16/2021	On File
Geotechnical Investigation Report	S&ME (Job No. 21108)	04/21/2021	On File

3.1) Analysis Method

tnxTower (version 8.3.1.2), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the reinforced leg sections. These calculations are presented in Appendix C.

3.2) Assumptions

- 1) Tower and structures were built and have been maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) The anchor rod projection from supporting surface to bottom of leveling nut has been assumed to be lar= 1.25".

This analysis may be affected if any assumptions are not valid or have been made in error. Engineered Tower Solutions, PLLC should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	199 - 184.025	Leg	1 1/2 🔍	2	-9.03	29.26	30.9	Pass
T2	184.025 - 180	Leg	1 1/2	33	-14.74	29.26	50.4	Pass
Т3	180 - 160	Leg	2 1/4	46	-51.01	77.75	65.6	Pass
T4	160 - 140	Leg	2 3/4	76	-97.87	152.99	64.0	Pass
T5	140 - 120	Leg	3	103	-150.19	199.04	75.5	Pass
Т6	120 - 100	Leg	3 1/4	130	-198.18	250.37	79.2	Pass
T7	100 - 80	Leg	3 1/2	163	-251.02	306.80	81.8	Pass
Т8	80 - 60	Leg	3 3/4	196	-302.05	368.18	82.0	Pass
Т9	60 - 40	Leg	4 .	229	-351.91	434.40	81.0	Pass
T10	40 - 20	Leg	4 1/4	262	-401.10	505.39	79.4 80.6 (b)	Pass
T11	20 - 0	Leg	4 1/4	295	-441.40	505.22	87.4	Pass
T1	199 - 184.025	Diagonal	1	8	-3.20	5.71	56.0	Pass
T2	184.025 - 180	Diagonal	SR 1" Ø + SR 1" Ø (Aho - Viper)	41	-6.29	11.24	55.9	Pass
Т3	180 - 160	Diagonal	L2x2x1/4	64	-7.04	17.05	41.3 57.0 (b)	Pass
T4	160 - 140	Diagonal	L2x2x1/4	79	-7.51	13.45	55.8 64.0 (b)	Pass
T5	140 - 120	Diagonal	L2 1/2x2 1/2x1/4	106	-9.25	19.09	48.5 63.6 (b)	Pass
Т6	120 - 100	Diagonal	L3x3x1/4	134	-11.77	18.46	63.7 67.3 (b)	Pass
T7	100 - 80	Diagonal	L3x3x1/4	167	-11.75	15.73	74.7	Pass
Т8	80 - 60	Diagonal	L3x3x1/4	200	-12.23	13.46	90.9	Pass

March 26, 2025 Site Name: Aho - Viper Page 6

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
Т9	60 - 40	Diagonal	L3 1/2 x 3 1/2 x 1/4	233	-12.97	18.62	69.7	Pass
T10	40 - 20	Diagonal	L3 1/2 x 3 1/2 x 1/4	266	-13.84	16.11	85.9	Pass
T11	20 - 0	Diagonal	L3 1/2 x 3 1/2 x 1/4	298	-10.80	13.37	80.8	Pass
T1	199 - 184.025	Horizontal	1	26	-0.38	10.42	3.6	Pass
T2	184.025 - 180	Horizontal	1	35	-2.47	10.42	23.7	Pass
Т6	120 - 100	Horizontal	L2 1/2x2 1/2x3/16	132	-3.97	17.98	22.1 39.0 (b)	Pass
Т7	100 - 80	Horizontal	L2 1/2x2 1/2x3/16	165	-4.77	16.94	28.1 46.9 (b)	Pass
Т8	80 - 60	Horizontal	L2 1/2x2 1/2x3/16	198	-5.47	15.91	34.4 53.8 (b)	Pass
Т9	60 - 40	Horizontal	L3x3x3/16	231	-6.10	19.67	31.0 45.6 (b)	Pass
T10	40 - 20	Horizontal	L3x3x3/16	264	-6.95	18.69	37.2 52.0 (b)	Pass
T11	20 - 0	Horizontal	L3 1/2 x 3 1/2 x 1/4	297	-7.65	29.88	25.6 42.9 (b)	Pass
T1	199 - 184.025	Secondary Horizontal	1 '	24	-0.00	17.56	0.1	Pass
T2	184.025 - 180	Secondary Horizontal	1	44	-0.00	17.56	0.1	Pass
T1	199 - 184.025	Top Girt	1 1/8	5	-0.72	15.91	4.5	Pass
Т3	180 - 160	Top Girt	L2x2x3/16	48	-1.06	11.74	9.0 9.9 (b)	Pass
T2	184.025 - 180	Bottom Girt	1	40	-2.21	10.42	21.2	Pass
			,				Summary	
		***************************************	ι			Leg (T11)	87.4	Pass
						Diagonal (T8)	90.9	Pass
						Horizontal (T8)	53.8	Pass
				200000000000000000000000000000000000000		Secondary Horizontal (T1)	0.1	Pass
						Top Girt (T3)	9.9	Pass
			·		~~~~	Bottom Girt (T2)	21.2	Pass
			,			Bolt Checks	80.6	Pass
						Rating =	90.9	Pass

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	90.6	Pass
1	Base Foundation (Structural)	0	71.9	Pass
1	Base Foundation (Soil Interaction)	0	80.1	Pass

Structure Rating (max from all components) = 90.9%		Structure Rating (max from all components) =	90.9%
--	--	--	-------

Notes:

4.1) Recommendations

The tower and its foundations have sufficient capacity to carry the final load configuration once the proposed modifications are installed (see Appendix D).

The loading modification, as follows, must be completed for the results of this analysis to be valid:

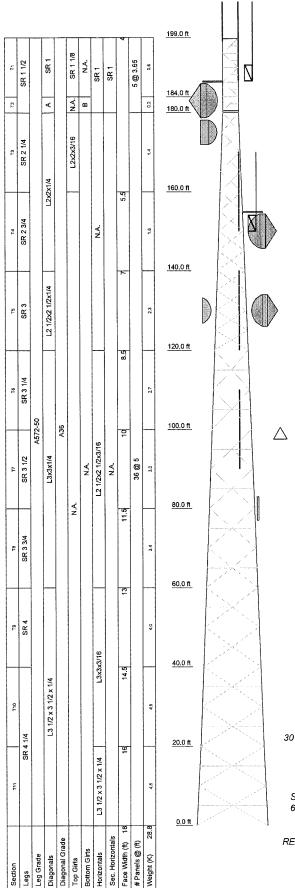
Loading Changes:

1- Existing 1-5/8" Coax at 198-ft to be removed.

4.2) Dish Antenna Deflection Results

The results of the tilt and twist values for a 60 mph 3-second gust service wind speed per the TIA-222-G standard are given below:

Critical Deflections and Radius of Curvature - Service Wind


Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
	, ,	Load				Curvature
ft		Comb.	in	0	0	ft
183.00	PAD8-65AC1S1R	43	4.134	0.21	0.10	166152
175.00	HX6-6W-6WH	43	3.770	0.20	0.07	30392
150.00	PAD8-65AC1S1R	43	2.759	0.18	0.06	53897
130.00	PAD6-65B	43	2.053	0.15	0.05	43304

¹⁾ See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

199.0 Ft Self Support Tower Modification Structural Analysis ETS, PLLC Job Number: 24125019.STR.8180_Rev. 1

March 26, 2025 Site Name: Aho - Viper Page 8

APPENDIX A TNXTOWER OUTPUT

Legs

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
5/8-in x 8-ft Lightning Rod	199	10' x 2,375" Horizontal Mount	160
Side Arm Mount [SO 303-1]	198	Pipe/Stabilizer	
Side Arm Mount [SO 303-1]	198	CC807-11	160
D'1x 2.375" Horizontal Mount 198		CC807-11	160
le Arm Mount [SO 303-1] 198 le Arm Mount [SO 303-1] 198 vx 2.375" Horizontal Mount 198 le/Stabilizer 1	Side Arm Mount [SO 303-1]	160	
10°x 2.375" Horizontal Mount	198	Ice Shield 10'x7"	155
Pipe/Stabilizer		PAD8-65AC1S1R	150
CC807-11	198	4.5" x 5-ft Dish Pipe Mount	150
CC807-11	198	DB224	130
Junction Box (9" x 6" x 5")	196	Pipe Mount [PM 601-1]	130
Ice Shield 10'x7"	188	Pipe Mount [PM 602-1]	130
4.5" x 5-ft Dish Pipe Mount	183	Side Arm Mount [SO 303-1]	130
PAD8-65AC1S1R	183	PAD6-65B	130
Pipe Mount [PM 602-1]	175	PAD8-65B	130
HX6-6W-6WH	175	DB224	100
Side Arm Mount [SO 303-1]	160	Side Arm Mount [SO 303-1]	100
10' x 2.375" Horizontal Mount	160	AM-V5G-Ti	80
Pipe/Stabilizer		Pipe Mount [PM 601-1]	80

SYMBOL LIST

MARK	SIZE	MARK	SIZE
Α	SR 1" Ø + SR 1" Ø (Aho - Viper)	В	SR 1

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

- 1. Tower designed for Exposure C to the TIA-222-G Standard.
- 2. Tower designed for a 108 mph basic wind in accordance with the TIA-222-G Standard.
- 3. Tower is also designed for a 30 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind.
- Tower Structure Class III.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 90.9%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 449 K SHEAR: 39 K

UPLIFT: -390 K SHEAR: 34 K

AXIAL 172 K SHEAR MOMENT 6K / 786 kip-ft

TORQUE 6 kip-ft 30 mph WIND - 1.0000 in ICE

AXIAL 45 K MOMENT SHEAR 6776 kip-ft

TORQUE 62 kip-ft REACTIONS - 108 mph WIND

> Engineered Tower Solutions, PLLC ob: Aho - Viper Project: ETS, PLLC Job No. 24125019.STR.8180 3227 Wellington Ct. Client: Watauga County Drawn by: hicham.anssar Raleigh, NC 27615 Scale: NTS Code: TIA-222-G Date: 03/25/25 Phone: (919) 782-2710 Dwg No. E-1 FAX: 919-782-2710

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Aho - Viper	1 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham anssar

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 199.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 4.00 ft at the top and 18.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 108 mph.

Structure Class III.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 30 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Kz In Exposure D Hurricane Region

 (Let Max No. 1)

 Always Use Max Kz

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

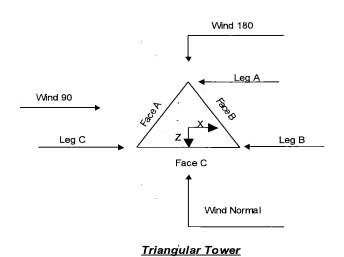
 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)

 (Let Max No. 2)


 (Let Max No. 2)
- √ Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Use Special Wind Profile

- Assume Legs Pinned
- √ Assume Rigid Index Plate
 √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurtenances Alternative Appurt. EPA Calculation Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules

- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- Include Angle Block Shear Check
 Use TIA-222-G Bracing Resist. Exemption
 Use TIA-222-G Tension Splice Exemption
 Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside And Inside Corner Radii Are Known

Page Job tnxTower 2 of 44 Aho - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Client Raleigh, NC 27615 Designed by Phone: (919) 782-2710 FAX: 919-782-2710 Watauga County hicham.anssar

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft		-	ft		ft
T1	199.00-184.03			4.00	1	14.98
T2	184.03-180.00			4.00	1	4.03
T3	180.00-160.00			4.00	1	20.00
T4	160.00-140.00			5.50	1	20.00
T5	140.00-120.00			7.00	1	20.00
Т6	120.00-100.00			8.50	1	20.00
T7	100.00-80.00			10.00	1	20.00
T8	80.00-60.00			11.50	1	20.00
T9	60.00-40.00			13.00	1	20.00
T10	40.00-20.00			14.50	1	20.00
T11	20.00-0.00			16.00	1	20.00

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	n Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
Tl	199.00-184.03	3.65	K Brace Right	No	Yes+Steps	4.5000	0.0000
T2	184.03-180.00	3.65	K Brace Left	` No	Yes+Steps	0.0000	4.5000
Т3	180.00-160.00	5.00	X Brace	No	No	0.0000	0.0000
T4	160.00-140.00	5.00	X Brace	No	No	0.0000	0.0000

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Aho - Viper	3 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T5	140.00-120.00	5.00	X Brace	No	Yes	0.0000	0.0000
T6	120.00-100.00	5.00	Double K	No	Yes	0.0000	0.0000
T7	100.00-80.00	5.00	Double K	No	Yes	0.0000	0.0000
T8	80.00-60.00	5.00	Double K	No	Yes	0.0000	0.0000
T9	60.00-40.00	5.00	Double K	No	Yes	0.0000	0.0000
T10	40.00-20.00	5.00	Double K	No.	Yes	0.0000	0.0000
T11	20.00-0.00	5.00	Double K	,No	Yes	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Type	Size	Grade
T1 199.00-184.03	Solid Round	1 1/2	A572-50	Solid Round	1	A36
			(50 ksi)	-		(36 ksi)
T2 184.03-180.00	Solid Round	1 1/2	A572-50.	Arbitrary	SR 1" Ø + SR 1" Ø (Aho -	A36
			(50 ksi)	Shape	Viper)	(36 ksi)
ГЗ 180.00-160.00	Solid Round	2 1/4	A572-50°	Equal Angle	L2x2x1/4	A36
			(50 ksi)			(36 ksi)
T4 160.00-140.00	Solid Round	2 3/4	A572-50	Equal Angle	L2x2x1/4	A36
			(50 ksi)			(36 ksi)
Γ5 140.00-120.00	Solid Round	3	A572-50	Equal Angle	L2 1/2x2 1/2x1/4	A36
			(50 ksi)			(36 ksi)
T6 120.00-100.00	Solid Round	3 1/4	A572-50	Equal Angle	L3x3x1/4	A36
			(50 ksi)			(36 ksi)
T7 100.00-80.00	Solid Round	3 1/2	A572-50	Equal Angle	L3x3x1/4	A36
			(50 ksi)			(36 ksi)
T8 80.00-60.00	Solid Round	3 3/4	A572-50.	Equal Angle	L3x3x1/4	A36
			(50 ksi)			(36 ksi)
T9 60.00-40.00	Solid Round	4	A572-50°	Equal Angle	L3 1/2 x 3 1/2 x 1/4	A36
			(50 ksi)			(36 ksi)
T10 40.00-20.00	Solid Round	4 1/4	A572-50	Equal Angle	L3 1/2 x 3 1/2 x 1/4	A36
			(50 ksi)			(36 ksi)
T11 20.00-0.00	Solid Round	4 1/4	A572-50	Equal Angle	L3 1/2 x 3 1/2 x 1/4	A36
			(50 ksi)	-		(36 ksi)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft				· · · · · · · · · · · · · · · · · · ·		
T1 199.00-184.03	Solid Round	1 1/8	A36	Solid Round		A36
			(36 ksi)			(36 ksi)
T2 184.03-180.00	Equal Angle		A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T3 180.00-160.00	Equal Angle	L2x2x3/16	A36	Solid Round		A36
			(36 ksi)			(36 ksi)

Engineered Tower Solutions, PLLC 3227 Wellington Ct.

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		- 2025 00 05 DGG M
Job	,	Page
	Aho - Viper	4 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Туре	Size	Grade
	Mid						
ft	Girts						
Г1 199.00-184.03	None	Flat Bar		· A36	Solid Round	1	A36
				(36 ksi)			(36 ksi)
2 184.03-180.00	None	Flat Bar		A36	Solid Round	1	A36
				(36 ksi)			(36 ksi)
6 120.00-100.00	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
				(36 ksi)			(36 ksi)
T7 100.00-80.00	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
				(36 ksi)			(36 ksi)
T8 80.00-60.00	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
				(36 ksi)			(36 ksi)
T9 60.00-40.00	None	Flat Bar		A36	Equal Angle	L3x3x3/16	A36
				(36 ksi)			(36 ksi)
T10 40.00-20.00	None	Flat Bar		A36	Equal Angle	L3x3x3/16	A36
				(36 ksi)			(36 ksi)
T11 20.00-0.00	None	Flat Bar		A36	Equal Angle	L3 1/2 x 3 1/2 x 1/4	A36
				(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
T1 199.00-184.03	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T2 184.03-180.00) Solid Round	1	A36	Solid Round		A572-50
Manuscondo manuscono de la companya del companya del la companya del companya de la companya de la companya de la companya del companya de la companya del compan			(36 ksi)			(50 ksi)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
T1 199.00-184.03	0.00	0.3750	A36 (36 ksi)	1	1	l	36.0000	36.0000	36.0000
T2 184.03-180.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T3 180.00-160.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T4 160.00-140.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T5 140.00-120.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T6 120.00-100.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
Т7	0.00	0.3750	A36	1	1	I	36.0000	36.0000	36.0000

treve Towns	Job		Page
tnxTower		Aho - Viper	5 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAY: 010-782-7710	Client	Watauga County	Designed by hicham.anssar

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
100.00-80.00			(36 ksi)						
T8 80.00-60.00	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T9 60.00-40.00	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T10	0.00	0.3750	A36	1	, 1	1	36.0000	36.0000	36.0000
40.00-20.00			(36 ksi)						
T11 20.00-0.00	0.00	0.3750	A36	1	' 1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace ` Diags ,	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	I	1	1	1
199.00-184.03				1	1	. 1	1	1	1	1
T2	Yes	Yes	1	1	0.7	1	1	1	1	1
184.03-180.00				1	0.7	1	1	1	1	1
T3	Yes	Yes	1	1	1	i	1	1	1	1
180.00-160.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	I	1	1
160.00-140.00				1	1	· I	1	1	1	I
T5	Yes	Yes	1	1	1	1	1	1	1	1
140.00-120.00				1	1 .	1	1	1	1	1
T6	Yes	Yes	1	1	. 1	1	1	0.5	1	1
120.00-100.00				1	1	1	1	0.5	1	1
Т7	Yes	Yes	1	1	1	1	1	0.5	1	1
100.00-80.00				1	1	. 1	1	0.5	1	1
T8	Yes	Yes	1	1	1	1	1	0.5	1	1
80.00-60.00				1	1	1	1	0.5	1	1
T9	Yes	Yes	1	1	1	1	1	0.5	1	1
60.00-40.00				1	1	1	1	0.5	1	1
T10	Yes	Yes	1	1	1	1	1	0.5	1	1
40.00-20.00				1	1	. 1	1	0.5	1	1
T11	Yes	Yes	1	1	1 ~	1	1	0.5	1	1
20.00-0.00				1	1 ,	1	1	0.5	1	1

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025-00-05 DCCM-4
Job	,	Page
	Aho - Viper	6 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 199.00-184.03	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1
T2 184.03-180.00	0.0000	1	0.0000	1	0.0000	1	0.0000	. 1	0.0000	0.75	0.0000	1	0.0000	1
T3 180.00-160.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 160.00-140.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 140.00-120.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 120.00-100.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 100.00-80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation ft	Redur Horiz		Reduna Diago			Redundant Sub-Diagonal		idant rizontal	Redundant Vertical		Reduna	lant Hip		lant Hip gonal
·	Net Width Deduct in	i U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 199.00-184.03	0.0000	0.75 (1)	•	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
	0.0000	0.75 (2)	0.0000	0.75 (2)							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75	~						0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75 (4)	***************************************						0.0000	0.75 (4)	0.0000	0.75 (4)
T2 184.03-180.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75(1)	0.0000	0.75(1)
104.05-100.00	0.0000	0.75 (2)	0.0000	0.75	***************************************						0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75	***************************************						0.0000	0.75 (4)	0.0000	0.75 (4)
T3	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
180.00-160.00	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75	***************************************						0.0000	0.75 (4)	0.0000	0.75 (4)
T4	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
160.00-140.00	0.0000	0.75 (2)	0.0000	(1) 0.75 (2)	***************************************					200000000000000000000000000000000000000	0.0000	0.75 (2)	0.0000	0.75 (2)
				(2)	***				1					

4 T	Job		Page
tnxTower		Aho - Viper	7 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower Elevation fi	Redui Horiz		Reduna Diagoi		Reduna Sub-Diag		Redui Sub-Ho		Redundan	t Vertical	Reduna	lant Hip	3	lant Hip gonal
<i>)</i> •	Net Widti Deduct in	h U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
***************************************	0.0000	0.75 (3)	0.0000	0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75 (4)					***************************************		0.0000	0.75 (4)	0.0000	0.75 (4)
T5 140.00-120.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75 (2)	0.0000	0.75					***************************************		0.0000	0.75 (2)	0.0000	0.75(2)
	0.0000	0.75 (3)	0.0000	(2) 0.75 (3)					***************************************		0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75	***				***************************************		0.0000	0.75 (4)	0.0000	0.75 (4)
T6 120.00-100.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
120.00-100.00	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T7 100.00-80.00	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
100.00-80.00	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75						***************************************	0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)
T8 80.00-60.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75 (2)	0.0000	0.75						***************************************	0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)
T9 60.00-40.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75 (2)	0.0000	(1) 0.75 (2)							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75			-				0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T10 40.00-20.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
40.00-20.00	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75						***************************************	0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75 (4)				=	***************************************	***************************************	0.0000	0.75 (4)	0.0000	0.75 (4)
T11 20.00-0.00	0.0000	0.75 (1)	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)

Engineered Tower Solutions, PLLC 3227 Wellington Ct.

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025 08 05 BCC Meeting
Job	1	Page
	Aho - Viper	8 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

0	0.0000).75 (2) 0	.0000	0.75 (2)	,	0.0000	0.75 (2)	0.0000	0.75 (2)
0	0.0000 (0.75 (3) 0	.0000	0.75	1	0.0000	0.75 (3)	0.0000	0.75 (3)
0	0.000.0	0.75 (4) 0	.0000	0.75 (4)		0.0000	0.75 (4)	0.0000	0.75 (4)

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hor	izontal
Elevation	Connection														
ft	Туре					<u></u>					·····				
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in	*************	in		in	
T1	Flange	0.7500	0	0.6250	0	0.6250	.0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
199.00-184.03		A325X		A325X		A325X	,	A325N		A325N		A325X		A325N	
T2	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
184.03-180.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T3	Flange	1.0000	4	0.6250	1	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
180.00-160.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T4	Flange	1.0000	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T5	Flange	1.0000	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
Т6	Flange	1.0000	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
120.00-100.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T7	Flange	1.0000	6	0.7500	1	0.6250	.0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
100.00-80.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T8 80.00-60.00	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T9 60.00-40.00	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T10	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
40.00-20.00		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T11 20.00-0.00	Flange	1.2500	0	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	1	0.6250	0
	-	A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
***			***************************************						***************************************				
Step Pegs (5/8" SR) 7-in. w/ 30" Step	Α	No	No	Ar (CaAa)	40.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49
Step Pegs (5/8" SR) 7-in. w/ 30" Step	В	No	No	Ar (CaAa)	40.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		•
Job		Page
	Aho - Viper	9 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
Step Pegs (5/8" SR) 7-in.	С	No	Calculation No	Ar (CaAa)	199.00 -	0.0000	0.5	2	2	0.3500	0.3500		0.49
w/ 30" Step					0.00								
Ladder Rail: PL2x1/4	Α	No	No	Af (CaAa)	199.00 - 1.00	0.0000	-0.25	2	2	12.7500 3.0000	2.0000		3.83
Climbing Rung: SR 5/8" (12" Step)	A	No	No	Ar (CaAa)	199.00 - 1.00	0.0000	-0.25	1	1	0.6250	0.6250		1.04
Safety Line 3/8 ***	A	No	No	Ar (CaAa)	199.00 - 1.00	0.0000	-0.25	1	1	0.3750	0.3750		0.22
L2x2x1/8 Feedline Rail	C	No	No	Af (CaAa)	199.00 - 0.00	0.0000	-0.25	2	2	21.7500 2.8404	2.8404		4.52
L1 3/4x1 3/4x1/8	C	No	No	Af (CaAa)	199.00 - 0.00	0.0000	-0.25	1	1	1.7500	1.7500		4.52
Feedline Rung													
7/8	С	No	No	Ar (CaAa)	198.00 - 8.00	0.0000	-0.31	2	2	1.1100	1.1100		0.54
1/2	С	No	No	Ar (CaAa)	198.00 - 8.00	0.0000	-0.28	I	1	0.5800	0.5800		0.25
EU 63	С	No	No	Ar (CaAa)	150.00 - 8.00	0.0000		2	2	0.5000	2.0300		0.56
EU 63	С	No	No	Ar (CaAa)	183.00 - 150.00	0.0000	-0.26	1	1	2.0300	2.0300		0.56

1 5/8	С	No	No	Ar (CaAa)	160.00 - 8.00	0.0000	-0.2	2	2	0.5000	1.9800		1.04
EU 63	С	No	No	Ar (CaAa)	175.00 - 8.00	0.0000	-0.23	1	1	2.0300	2.0300		0.56
***							_						
EW63	С	No	No	Ar (CaAa)	130.00 - 8.00	0.0000	-0.15	2	2	0.5000	1.5742		0.51
7/8	С	No	No	Ar (CaAa)	100.00 - 8.00	0.0000	-0.18	2	2	0.5000	1.1100		0.54
7/8	С	No	No	Ar (CaAa)	130.00 - 100.00	0.0000	-0.18	1	1	0.5000	1.1100		0.54
CAT5E(1/4) ***	C	No	No	Ar (CaAa)	80.00 - 8.00	0.0000	-0.13	1	1	0.2600	0.2600		0.04

Feed Line/Linear Appurtenances - Entered As Area										
					į.					
Description	Face	Allow	Exclude	Component	Placement	Total	$C_A A_A$	Weight		
	or	Shield	From	Type		Number				
	Leg		Torque		ft		ft²/ft	plf		
			Calculation					= :		
***			***************************************		***************************************		•••••			

Feed Line/Linear Appurtenances Section Areas

		<u> </u>	2025 08-05 BCC Meeting
tnxTower	Job	1	Page
malower		Aho - Viper	10 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower	Tower	Face	A_R	A_F	C_AA_A	$C_A A_A$	Weight
Section	Elevation				. In Face	Out Face	
••••	ft	***************************************	ft²	ft²	ft^2	ft ²	K
T1	199.00-184.03	Α	0.000	0.000	11.481	0.000	0.13
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	23.507	0.000	0.24
T2	184.03-180.00	Α	0.000	0.000	3.086	0.000	0.04
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	7.003	0.000	0.07
T3	180.00-160.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	38.874	0.000	0.34
T4	160.00-140.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	49.839	0.000	0.39
T5	140.00-120.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	56.128	0.000	0.41
T6	120.00-100.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	60.386	0.000	0.42
T7	100.00-80.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	62.606	0.000	0.43
T8	80.00-60.00	A	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	63.126	0.000	0.44
Т9	60.00-40.00	Α	0.000	0.000	15.333	0.000	0.18
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	63.126	0.000	0.44
T10	40.00-20.00	A	0.000	0.000	16.733	0.000	0.20
	_	В	0.000	0.000	1.400	0.000	0.02
		Ċ	0.000	0.000	63.126	0.000	0.44
T11	20.00-0.00	Ä	0.000	0.000	15.967	0.000	0.19
		В	0.000	0.000	1.400	0.000	0.02
		Č	0.000	0.000	48.343	0.000	0.38

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft²	ft²	ft²	ft²	K
T1	199.00-184.03	Α	2.981	0.000	0.000	47.189	0.000	1.06
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	92.523	0.000	1.96
T2	184.03-180.00	Α	2.966	0.000	0.000	12.635	0.000	0.28
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	27.733	0.000	0.59
T3	180.00-160.00	Α	2.945	0.000	0.000	62.459	0.000	1.39
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	153.054	0.000	3.27
T4	160.00-140.00	Α	2.909	0.000	0.000	61.872	0.000	1.36
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	196.287	0.000	3.89
T5	140.00-120.00	Α	2.867	0.000	0.000	61.211	0.000	1.34
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	224.428	0.000	4.24
T6	120.00-100.00	Α	2.820	0.000	0.000	60.451	0.000	1.30
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	243.333	0.000	4.50
T7	100.00-80.00	Α	2.764	0.000	0.000	59.555	0.000	1.26

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Aho - Viper	11 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C_AA_A In Face	$C_{\Lambda}A_{\Lambda}$ Out Face	Weight
	ft	Leg	in	ft^2	ft²	ft²	ft²	K
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	253.215	0.000	4.46
T8	80.00-60.00	Α	2.695	0.000	0.000	58.457	0.000	1.22
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	260.257	0.000	4.51
T9	60.00-40.00	Α	2.606	0.000	0.000	57.030	0.000	1.16
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	254.363	0.000	4.30
T10	40.00-20.00	Α	2.476	0.000	0.000	74.977	0.000	1.29
		В		0.000	0.000	20.023	0.000	0.22
		C		0.000	0.000	245.789	0.000	4.01
T11	20.00-0.00	Α	2.219	0.000	0.000	66.495	0.000	1.06
		В		0.000	0.000	18.205	0.000	0.18
		C		0.000	0.000	165.106	0.000	2.62

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	· CP _X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	199.00-184.03	1.2553	4.2816	-0.4120	4.1526
T2	184.03-180.00	1.6213	4.3232	0.0719	3.1475
T3	180.00-160.00	1.8981	4.5010	0.6468	5.5289
T4	160.00-140.00	3.4366	6.3640	2.1899	8.8351
T5	140.00-120.00	4.1972	7.2338	3.3737	11.2061
T6	120.00-100.00	4.9386	8.4230	4.6387	14.2759
T7	100.00-80.00	5.6227	9.2579	5.4793	16.0132
T8	80.00-60.00	6.0977	10.0101	6.3259	18.0549
T9	60.00-40.00	6.0437	9.8214	6.7092	18.9387
T10	40.00-20.00	6.7676	9.7356	9.0858	17.2542
T11	20.00-0.00	4.8553	7.4113	6.0132	13.7339

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T1	4	Step Pegs (5/8" SR) 7-in, w/	184.03 -	0.6000	0.4246
		30" Step	199.00		
T1	5	Ladder Rail: PL2x1/4	184.03 -	0.6000	0.4246
			199.00		
T1	6	Climbing Rung: SR 5/8" (12"	184.03 -	0.6000	0.4246
		Step)	199.00		
T1	7	Safety Line 3/8	184.03 -	0.6000	0.4246
			199.00		
T1	9	L2x2x1/8 Feedline Rail	184.03 -	0.6000	0.4246
			199.00		
T1	10	L1 3/4x1 3/4x1/8 Feedline	184.03 -	- 0.6000	0.4246
		Rung	199.00	4	
T1	12	7/8	184.03 -	0.6000	0.4246
			198.00		
T1	13	1/2	184.03 -	0.6000	0.4246

			2025 09 05 PCC Meeting
, an	Job	•	Page
tnxTower		Aho - Viper	12 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 F4Y: 919-782-7710	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
	Client	Watauga County	Designed by hicham.anssar

T	Park III	December 6	T17.	, 	V
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	ͺ K _a No Ice	K _a
Section	Record No.		198.00	No ice	Ice
T2	4	Step Pegs (5/8" SR) 7-in. w/	180.00 -	0.6000	0.3046
		30" Step	184.03		*.**
T2	5	Ladder Rail: PL2x1/4	180.00 -	0.6000	0.3046
			184.03		
T2	6	Climbing Rung: SR 5/8" (12"	180.00 -	0.6000	0.3046
Т2	7	Step) Safety Line 3/8	184.03 180.00 -	0.6000	0.3046
'2	'	Barety Enic 576	184.03	0.0000	0.5040
Т2	9	L2x2x1/8 Feedline Rail	180.00 -	, 0.6000	0.3046
			184.03	,	
T2	10	L1 3/4x1 3/4x1/8 Feedline	180.00 -	0.6000	0.3046
T2	12	Rung 7/8	184.03	0.6000	0.2046
12	12	776	180.00 - 184.03	0.0000	0.3046
T2	13	1/2	180.00 -	0.6000	0.3046
i			184.03		0,20.0
T2	15	EU 63	180.00 -	0.6000	0.3046
		a (5/0/10=) - (183.00		
T3	4	Step Pegs (5/8" SR) 7-in. w/	160.00 -	0.6000	0.4055
Т3	5	30" Step Ladder Rail: PL2x1/4	180.00 160.00 -	. 0.6000	0.4055
1 '~	, ,	Eadder Rail. I EEXII4	180.00	0.0000	0.4033
Т3	6	Climbing Rung: SR 5/8" (12"	160.00 -	0.6000	0.4055
1		Step)	180.00		
T3	7	Safety Line 3/8	160.00 -	0.6000	0.4055
Т2	9	L2x2x1/8 Feedline Rail	180.00	0.6000	0.4055
T3	9	L2x2x1/8 Feedline Rail	160.00 - 180.00	0.0000	0.4055
Т3	10	L1 3/4x1 3/4x1/8 Feedline	160.00 -	0.6000	0.4055
		Rung	180.00		
Т3	12	7/8	160.00 -	0.6000	0.4055
	10		180.00	0.6000	0.4055
T3	13	1/2	160.00 - 180.00	0.6000	0.4055
Т3	15	EU 63	160.00 -	0.6000	0.4055
1	10	20 03	180.00	0.0000	0.1000
Т3	19	EU 63	160.00 -	0.6000	0.4055
			175.00		
T4	4	Step Pegs (5/8" SR) 7-in. w/ 30" Step	140.00 -	0.6000	0.5061
T4	5	Ladder Rail: PL2x1/4	160.00 140.00 -	0.6000	0.5061
1 7	,	Ladder Rail. I LEXII+	160.00	0.0000	0.5001
T4	6	Climbing Rung: SR 5/8" (12"	140.00 -	0.6000	0.5061
		Step)	160.00		
T4	7	Safety Line 3/8	140.00 -	0.6000	0.5061
T4	م	L2x2x1/8 Feedline Rail	160.00	0.6000	0.5061
14	9	LZXZXI/8 reedline Kall	140.00 - 160.00	0.0000	0.5061
T4	10	L1 3/4x1 3/4x1/8 Feedline	140.00 -	0.6000	0.5061
		Rung	160.00		
T4	12	7/8	140.00 -	0.6000	0.5061
[,		1.0	160.00	0.4000	0.5061
T4	13	1/2	140.00 - 160.00	0.6000	0.5061
T4	14	EU 63	140.00 -	0.6000	0.5061
'`	[20 03	150.00	5.0000	2.5001
T4	15	EU 63	150.00 -	0.6000	0.5061
[160.00		
T4	17	1 5/8	140.00 -	0.6000	0.5061
T4	19	EU 63	160.00 140.00 -	0.6000	0.5061
• • • • • • • • • • • • • • • • • • • •	1.71	20 03	1 10.00	0.0000	0.5001

tnxTower	Job		Page
inxTower		Aho - Viper	13 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.	Description	Segment Elev	No Ice	Ice
			160.00		
T5	4	Step Pegs (5/8" SR) 7-in. w/		0.6000	0.5391
T5	5	30" Step Ladder Rail: PL2x1/4	140.00 120.00 -	0.6000	0.5391
13	3	Laddel Rail. FL2X1/4	140.00	0.0000	0.5591
T5	6	Climbing Rung: SR 5/8" (12"	120.00 -	0.6000	0.5391
	_	Step)	140.00		
T5	7	Safety Line 3/8	120.00 - 140.00	0.6000	0.5391
T5	9	L2x2x1/8 Feedline Rail	120.00 -	0.6000	0.5391
			140.00	:	
T5	10	L1 3/4x1 3/4x1/8 Feedline	120.00 -	0.6000	0.5391
Т5	12	Rung 7/8	140.00 120.00 -	0.6000	0.5391
		,,-	140.00		
T5	13	1/2	120.00 -	0.6000	0.5391
Т5	14	EU 63	140.00 120.00 -	0.6000	0.5391
1 1	1.1	20 03	140.00	0.0000	0.5571
T5	17	1 5/8	120.00 -	0.6000	0.5391
T5	19	EU 63	140.00 120.00 -	0.6000	0.5391
13	19	EU 03	140.00	. 0.0000	0.3391
T5	21	EW63	120.00 -	0.6000	0.5391
Tr.e	0.2	7/0	130.00	0.6000	0.5301
T5	23	7/8	120.00 - 130.00	0.6000	0.5391
Т6	4	Step Pegs (5/8" SR) 7-in. w/	100.00 -	0.6000	0.5999
m.c.	ء	30" Step	120.00	0.6000	0.5000
Т6	5	Ladder Rail: PL2x1/4	100.00 - 120.00	0.6000	0.5999
Т6	6	Climbing Rung: SR 5/8" (12"	100.00 -	0.6000	0.5999
	_	Step)	120.00		
Т6	7	Safety Line 3/8	100.00 - 120.00	0.6000	0.5999
Т6	9	L2x2x1/8 Feedline Rail	100.00	0.6000	0.5999
			120.00		
T6	10	L1 3/4x1 3/4x1/8 Feedline Rung	100.00 - 120.00	0.6000	0.5999
Т6	12	7/8	100.00 -	0.6000	0.5999
			120.00		
Т6	13	1/2	100.00 -	0.6000	0.5999
Т6	14	EU 63	120.00 100.00 -	0.6000	0.5999
			120.00	*	
Т6	17	1 5/8	100.00 -	0.6000	0.5999
Т6	19	EU 63	120.00 100.00 -	0.6000	0.5999
10		20 03	120.00	0.0000	0.5777
T6	21	EW63	100.00 -	0.6000	0.5999
Т6	23	7/8	120.00 100.00 -	0.6000	0.5999
10	22	776	120.00	0.0000	0.3777
T7	4	Step Pegs (5/8" SR) 7-in. w/	80.00 - 100.00	0.6000	0.6000
Т7	5	30" Step Ladder Rail: PL2x1/4	80.00 - 100.00	0.6000	0.6000
T7	6	Climbing Rung: SR 5/8" (12"		0.6000	0.6000
		Step)			
T7 T7	7 9	Safety Line 3/8 L2x2x1/8 Feedline Rail		0.6000 0.6000	0.6000 0.6000
T7	10.	L1 3/4x1 3/4x1/8 Feedline		0.6000	0.6000
		Rung			-

		2025	08 05 BCC Mosting
, /T	Job	:	Page
tnxTower		Aho - Viper	14 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
	Client	Watauga County	Designed by hicham.anssar

Tower	Feed Line	Description	Feed Line	, K _a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T7	12	7/8	80.00 - 100.00	0.6000	0.6000
T7	13		80.00 - 100.00	0.6000	0.6000
T7	14		80.00 - 100.00	0.6000	0.6000
T7	17		80.00 - 100.00	0.6000	0.6000
T7	19		80.00 - 100.00	0.6000	0.6000
Т7	21		80.00 - 100.00	0.6000	0.6000
Т7	22	7/8		0.6000	0.6000
Т8	4	Step Pegs (5/8" SR) 7-in. w/	60.00 - 80.00	0.6000	0.6000
		30" Step			
Т8	5	Ladder Rail: PL2x1/4	60.00 - 80.00	0.6000	0.6000
Т8	6	Climbing Rung: SR 5/8" (12"	60.00 - 80.00	. 0.6000	0.6000
		Step)			
Т8	7	Safety Line 3/8	60.00 - 80.00	0.6000	0.6000
T8	9	L2x2x1/8 Feedline Rail	60.00 - 80.00	0.6000	0.6000
Т8	10	L1 3/4x1 3/4x1/8 Feedline	60.00 - 80.00	0.6000	0.6000
		Rung			
T8	12	7/8	60.00 - 80.00	0.6000	0.6000
Т8	13	1/2	60.00 - 80.00	0.6000	0.6000
Т8	14	EU 63	60.00 - 80.00	0.6000	0.6000
T8	17	1 5/8	60.00 - 80.00	0.6000	0.6000
T8	19	EU 63	60.00 - 80.00	0.6000	0.6000
T8	21	EW63	60.00 - 80.00	, 0.6000	0.6000
T8	22	7/8	60.00 - 80.00	0.6000	0.6000
T8	24	CAT5E(1/4)	60.00 - 80.00	0.6000	0.6000
Т9	4	Step Pegs (5/8" SR) 7-in. w/	40.00 - 60.00	0.6000	0.6000
то	5	30" Step Ladder Rail: PL2x1/4	40.00 60.00	0.6000	0.6000
T9 T9	6	Climbing Rung: SR 5/8" (12"	40.00 - 60.00 40.00 - 60.00	0.6000 0.6000	0.6000 0.6000
19	0	Step)	40.00 - 60.00	0.0000	0.6000
Т9	7	Safety Line 3/8	40.00 - 60.00	0.6000	0.6000
T9	9	L2x2x1/8 Feedline Rail	40.00 - 60.00	0.6000	0.6000
T9	10	L1 3/4x1 3/4x1/8 Feedline	40.00 - 60.00	0.6000	0.6000
· ' [Rung	10.00 00.00	0.0000	0.0000
Т9	12	7/8	40.00 - 60.00	0.6000	0.6000
Т9	13	1/2	40.00 - 60.00	0.6000	0.6000
Т9	14	EU 63	40.00 - 60.00	0.6000	0.6000
Т9	17	1 5/8	40.00 - 60.00	0.6000	0.6000
Т9	19	EU 63	40.00 - 60.00	0.6000	0.6000
Т9	21	EW63	40.00 - 60.00	0.6000	0.6000
Т9	22	7/8	40.00 - 60.00	0.6000	0.6000
Т9	24	CAT5E(1/4)	40.00 - 60.00	0.6000	0.6000
T10	2	Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
		30" Step			
T10	3	Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
		30" Step			
T10	4	Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
		30" Step			
T10	5	Ladder Rail: PL2x 1/4	20.00 - 40.00		
T10	6	Climbing Rung: SR 5/8" (12"	20.00 - 40.00	0.6000	0.6000
	_	Step)	20.00 10.55	0 /00=	0.4000
T10	7	Safety Line 3/8	20.00 - 40.00	0.6000	0.6000
T10	9	L2x2x1/8 Feedline Rail	20.00 - 40.00	0.6000	0.6000
T10	10	L1 3/4x1 3/4x1/8 Feedline	20.00 - 40.00	0.6000	0.6000
T10	10	Rung	20.00 40.00	0.4000	0.4000
T10	12	7/8	1	0.6000	0.6000
T10	13 14	1/2 EU 63	1	0.6000	0.6000
T10 T10	14	1 5/8	1	0.6000	0.6000
T10	17	EU 63	20.00 - 40.00	0.6000 0.6000	0.6000 0.6000
T10	21	EW63	20.00 - 40.00	0.6000	0.6000
T10	21	7/8	20.00 - 40.00		0.6000
T10			1		
110	47	(1/4)	20.00 - 40.00	0.0000	0.0000

4T	Job		Page
tnxTower		Aho - Viper	15 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T11	2	Step Pegs (5/8" SR) 7-in. w/	0.00 - 20.00	0.6000	0.6000
		30" Step			
T11	3	Step Pegs (5/8" SR) 7-in. w/	0.00 - 20.00	0.6000	0.6000
		30" Step			
T11	4	Step Pegs (5/8" SR) 7-in. w/	0.00 - 20.00	0.6000	0.6000
		30" Step			
T11	5	Ladder Rail: PL2x1/4	1.00 - 20.00	0.6000	0.6000
T11	6	Climbing Rung: SR 5/8" (12"	1.00 - 20.00	0.6000	0.6000
		Step)			
T11	7	Safety Line 3/8	1.00 - 20.00	0.6000	0.6000
T11	9	L2x2x1/8 Feedline Rail	0.00 - 20.00	0.6000	0.6000
T11	10	L1 3/4x1 3/4x1/8 Feedline	0.00 - 20.00	0.6000	0.6000
		Rung			
T11	12	7/8	8.00 - 20.00	0.6000	0.6000
T11	13	1/2	8.00 - 20.00	0.6000	0.6000
T11	14	EU 63	8.00 - 20.00	0.6000	0.6000
T11	17	1 5/8	8.00 - 20.00	0.6000	0.6000
T11	19	EU 63	8.00 - 20.00	0.6000	0.6000
TII	21	EW63	8.00 - 20.00	0.6000	0.6000
T11	22	7/8	8.00 - 20.00	0.6000	0.6000
T11	24	CAT5E(1/4)	8.00 - 20.00	0.6000	0.6000

			Di	screte 1	ower L	oads			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o '	ft		ft²	ft²	K
***	***************************************		······				***************************************		······································
5/8-in x 8-ft Lightning Rod	С	From Leg	0.00	0.00	199.00	No Ice 1/2" Ice	0.44 1.15	0.44 1.15	0.01
***			4.00			1" Ice	1.88	1.88	0.02
Side Arm Mount [SO 303-1]	Α	From Leg	3.00 0.00	0.00	198.00	No Ice 1/2" Ice	1.08 1.63	5.31 7.57	0.12 0.16
			0.00		•	I" Ice	2.21	9.93	0.22
Side Arm Mount [SO 303-1]	В	From Leg	3.00 0.00 0.00	0.00	198.00	No Ice 1/2" Ice 1" Ice	1.08 1.63 2.21	5.31 7.57 9.93	0.12 0.16 0.22
10' x 2.375" Horizontal Mount Pipe/Stabilizer	A	From Leg	0.00 0.00 0.00	0.00	198.00	No Ice 1/2" Ice 1" Ice	2.38 3.40 4.45	0.06 0.12 0.21	0.04 0.06 0.08
10' x 2.375" Horizontal Mount Pipe/Stabilizer	В	From Leg	0.00 0.00 0.00 0.00	0.00	198.00	No Ice 1/2" Ice 1" Ice	2.38 3.40 4.45	0.21 0.06 0.12 0.21	0.08 0.04 0.06 0.08
CC807-11	Α	From Leg	6.00 0.00	0.00	198.00	No Ice 1/2" Ice	4.71 7.63	4.71 7.63	0.05 0.09
CC807-11	В	From Leg	8.00 6.00 0.00	0.00	198.00	1" Ice No Ice 1/2" Ice	9.40 4.71 7.63	9.40 4.71 7.63	0.14 0.05 0.09
Junction Box (9" x 6" x 5")	В	From Face	8.00 0.50	0.00	196.00	1" Ice No Ice	9.40 0.83	9.40 0.50	0.14 0.03

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025 09 05 DCC Masting
Job	,	Page
	Aho - Viper	16 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Description	Face or	Offset Type	Offsets: Horz	Azimuth . Adjustment	Placement		C_AA_A Front	C _A A _A Side	Weight
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft²	K
			ft						
		••••••••••••••••••••••••	ft 0.00			1/2" Ice	0.95	0.59	0.03
			0.00			1" Ice	1.07	0.69	0.04

Ice Shield 10'x7"	C	From Leg	3.00	0.00	188.00	No Ice	7.00	4.90	0.05
			0.00	,		1/2" Ice	7.71	5.41	0.43
	_		0.00			1" Ice	8.43	5.93	0.82
4.5" x 5-ft Dish Pipe Mount	C	From Leg	0.67	0.00	183.00	No Ice	1.44	1.44	0.05
			0.00			1/2" Ice 1" Ice	2.08 2.40	2.08	0.07
***			0.00			1 ice	2.40	2.40	0.09
Ice Shield 10'x7"	В	From Leg	3.00	0.00	155.00	No Ice	7.00	4.90	0.05
	_		0.00	,		1/2" Ice	7.71	5.41	0.43
			0.00			1" Ice	8.43	5.93	0.82
4.5" x 5-ft Dish Pipe Mount	В	From Leg	0.67	0.00	150.00	No Ice	1.44	1.44	0.05
•		_	0.00			1/2" Ice	2.08	2.08	0.07
			0.00			1" Ice	2.40	2.40	0.09
*** ***		Emans Torr	2.00	,	160.00	NI V	1.00	5 2 1	0.10
Side Arm Mount [SO 303-1]	A	From Leg	3.00 0.00	0.00	160.00	No Ice 1/2" Ice	1.08 1.63	5.31 7.57	0.12 0.16
			0.00			1" Ice	2.21	9.93	0.16
Side Arm Mount [SO 303-1]	В	From Leg	3.00	0.00	160.00	No Ice	1.08	5.31	0.22
nde ram wount [50 505-1]	D	Trom Leg	0.00	0.00	100.00	1/2" Ice	1.63	7.57	0.12
			0.00			1" Ice	2.21	9.93	0.22
10' x 2.375" Horizontal	Α	From Leg	0.00	0.00	160.00	No Ice	2.38	0.06	0.04
Mount Pipe/Stabilizer			0.00			1/2" Ice	3.40	0.12	0.06
•			0.00			1" Ice	4.45	0.21	0.08
10' x 2.375" Horizontal	В	From Leg	0.00	0.00	160.00	No Ice	2.38	0.06	0.04
Mount Pipe/Stabilizer			0.00			1/2" Ice	3.40	0.12	0.06
			0.00	1		I" Ice	4.45	0.21	0.08
CC807-11	Α	From Leg	6.00	0.00	160.00	No Ice	4.82	4.82	0.05
			0.00			1/2" Ice	7.63	7.63	0.09
G0007 11			8.00	0.00	1.60.00	1" Ice	9.40	9.40	0.14
CC807-11	В	From Leg	6.00	0.00	160.00	No Ice	4.82	4.82	0.05
			0.00 8.00			1/2" Ice 1" Ice	7.63 9.40	7.63 9.40	0.09 0.14
***			8.00			1 100	7.40	9.40	0.14
Pipe Mount [PM 602-1]	С	From Leg	0.67	0.00	175.00	No Ice	2.78	2.78	0.09
•			0.00			1/2" Ice	3.21	3.21	0.11
			0.00			1" Ice	3.64	3.64	0.14
***	-		0						
Pipe Mount [PM 601-1]	С	From Leg	0.50	0.00	130.00	No Ice	1.32	1.32	0.07
			0.00			1/2" Ice	1.58	1.58	0.08
Pipe Mount [PM 602-1]	В	From Leg	0.00	0.00	130.00	1" Ice	1.84	1.84	0.09
i the Month [LIM 007-1]	מ	rioin Leg	0.50 0.00	0.00	130.00	No Ice 1/2" Ice	2.78 3.21	2.78 3.21	0.09 0.11
			0.00			1" Ice	3.64	3.64	0.11
***			2.00			. 100	5.51	5.51	0.11
Side Arm Mount [SO 303-1]	Α	From Leg	3.00	0.00	130.00	No Ice	1.08	5.31	0.12
		_	0.00			1/2" Ice	1.63	7.57	0.16
		_	0.00			1" Ice	2.21	9.93	0.22
Side Arm Mount [SO 303-1]	Α	From Leg	3.00	0.00	100.00	No Ice	1.08	5.31	0.12
			0.00			1/2" Ice	1.63	7.57	0.16
DD44		г. •	0.00	0.00	100.00	1" Ice	2.21	9.93	0.22
DB224	Α	From Leg	6.00	0.00	130.00	No Ice	4.50	4.50	0.04
			0.00 10.60			1/2" Ice	6.78	6.78	0.07
DB224	Α	From Leg	6.00	0.00	100.00	1" Ice	9.07	9.07 4.50	0.12 0.04
	Α	1 TOILLEY	0.00	0.00	100.00	No Ice	4.50	4.30	0.04

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		•
Job		Page
	Aho - Viper	17 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
			ft ft ft	σ	ft		ft²	ft²	K
	***************************************		0.00			1/2" Ice	6.78	6.78	0.07
***			10.60			l" Ice	9.07	9.07	0.12
Pipe Mount [PM 601-1]	В	From Leg	0.50	0.00	80.00	No Ice	1.32	1.32	0.07
		Č	0.00			1/2" Ice	1.58	1.58	0.08
			0.00			1" Ice	1.84	1.84	0.09
AM-V5G-Ti	В	From Leg	1.00	0.00	80.00	No Ice	0.74	0.41	0.01
		· ·	0.00			1/2" Ice	0.86	0.51	0.01
			0.00			1" Ice	0.99	0.62	0.02

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
	······································	***************************************	***************************************	ft	0	0	ft	ft		ft^2	<u>K</u>
*** PAD8-65AC1S1R	С	Paraboloid w/Radome	From Leg	1.50 0.00 0.00	60.00	·	183.00	8.62	No Ice 1/2" Ice 1" Ice	58.31 59.45 60.58	0.29 0.59 0.90
***				0.00					1 100	00.50	0.70
PAD8-65AC1S1R	В	Paraboloid w/Radome	From Leg	1.50 0.00 0.00	0.00		150.00	8.62	No Ice 1/2" Ice I" Ice	58.31 59.45 60.58	0.29 0.59 0.90
HX6-6W-6WH	С	Paraboloid w/Shroud (HP)	From Leg	1.50 0.00 0.00	74.50		175.00	6.23	No Ice 1/2" Ice 1" Ice	30.48 31.30 32.13	0.19 0.35 0.51

PAD6-65B	С	Paraboloid w/o Radome	From Leg	1.50 0.00 0.00	0.00		130.00	6.58	No Ice 1/2" Ice 1" Ice	34.04 34.90 35.77	0.19 0.36 0.54
***				00					- 100		
PAD8-65B	В	Paraboloid w/Radome	From Leg	1.50 0.00 0.00	0.00		130.00	8.00	No Ice 1/2" Ice 1" Ice	50.27 51.32 52.37	0.29 0.55 0.81
***				0.00					1 100	32.31	0.01

Tower Pressures - No Ice

 $G_H = 0.850$

Page Job tnxTower 18 of 44 Aho - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	C_AA_A	C_AA_A
Elevation					а			_	%	In	Out
					c					Face	Face
ft	ft		psf	ft²	е	ft²	ft²	ft²		ft²	ft²
T1	191.51	1.451	42	61.772	Α	0.000	6.824	3.744	54.86	11.481	0.000
199.00-184.03					В	0.000	6.824		54.86	0.000	0.000
					C	0.000	7.470		50.12	23.507	0.000
T2	182.01	1.436	42	16.603	Α	0.000	2.526	1,006	39.83	3.086	0.000
184.03-180.00					В	0.000	2.526		39.83	0.000	0.000
					C	0.000	2.688		37.44	7.003	0.000
T3	170.00	1.415	41	98.753	Α	9.476	7.507	7.507	44.20	15.333	0.000
180.00-160.00					В	9.476	7.507		44.20	0.000	0.000
	1				С	9.476	7.507		44.20	38.874	0.000
T4	150.00	1.378	40	129.587	Α	10.286	9.175	9.175	47.15	15.333	0.000
160.00-140.00					В	10.286	9.175		47.15	0.000	0.000
					C	10.286	9.175		47.15	49.839	0.000
T5	130.00	1.337	39	160.004	Α	14.881	10.009	10.009	40.21	15.333	0.000
140.00-120.00					В	14.881	10.009		40.21	0.000	0.000
					С	14.881	10.009		40.21	56.128	0.000
Т6	110.00	1.291	38	190.420	A	16.971	10.843	10.843	38.98	15.333	0.000
120.00-100.00					В	16.971	10.843		38.98	0.000	0.000
					С	16.971	10.843		38.98	60.386	0.000
T7	90.00	1.238	36	220.837	A	18.647	11.678	11.678	38.51	15.333	0.000
100.00-80.00					В	18.647	11.678		38.51	0.000	0.000
					С	18.647	11.678		38.51	62.606	0.000
T8 80.00-60.00	70.00	1.174	34	251.254	Α	20.389	12.512	12.512	38.03	15.333	0.000
					В	20.389	12.512		38.03	0.000	0.000
					C	20.389	12.512		38.03	63.126	0.000
T9 60.00-40.00	50.00	1.094	32	281.671	Α	26.068	13.346	13.346	33.86	15.333	0.000
					В	26.068	13.346		33.86	0.000	0.000
					С	26.068	13.346		33.86	63.126	0.000
T10	30.00	0.982	29	312.088	A	28.233	14.180	14.180	33.43	16.733	0.000
40.00-20.00					В	28.233	14.180		33.43	1.400	0.000
					С	28.233	14.180		33.43	63.126	0.000
T11 20.00-0.00	10.00	0.850	25	347.092	Α	32.247	14.190	14.190	30.56	15.967	0.000
					В	32.247	14.190		30.56	1.400	0.000
					С	32.247	14.190		30.56	48.343	0.000

Tower Pressure - With Ice

 $G_H = 0.850$

Section	Z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	C_AA_A
Elevation			į			а			ŀ	%	In	Out
1						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft²		ft²	ft^2
TI	191.51	1.451	3	2.9806	69.211	Α	0.000	39.827	18.622	46.76	47.189	0.000
199.00-184.03			I			В	0.000	39.827	ŀ	46.76	0.000	0.000
						C	0.000	44.323	į	42.01	92.523	0.000
T2	182.01	1.436	3	2.9655	18.592	Α	0.000	12.928	4.985	38.56	12.635	0.000
184.03-180.00						В	0.000	12.928	i	38.56	0.000	0.000
						C	0.000	14.047	l	35.49	27.733	0.000
T3	170.00	1.415	3	2.9453	108.577	Α	9.476	55.071	27.161	42.08	62.459	0.000
180.00-160.00						В	9.476	55.071	ŀ	42.08	0.000	0.000
			ŀ			C	9.476	55.071		42.08	153.054	0.000
T4	150.00	1.378	3	2.9087	139.289	Α	10.286	58.505	28.585	41.55	61.872	0.000
160.00-140.00			İ			В	10.286	58.505	ŀ	41.55	0.000	0.000
						C	10.286	58.505	l.	41.55	196.287	0.000
T5	130.00	1.337	3	2.8674	169.568	Α	14.881	63.278	29.143	37.29	61.211	0.000
140.00-120.00			Į			В	14.881	63.278	ŀ	37.29	0.000	0.000

hicham.anssar

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		e
Job		Page
	Aho - Viper	19 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	z	Kz	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	_In	Out
e e			_	_		C					Face	Face
ft	ft		psf	in	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft²
						C	14.881	63.278		37.29	224.428	0.000
T6	110.00	1.291	3	2.8199	199.827	Α	16.971	62.971	29.660	37.10	60.451	0.000
120.00-100.00					1	В	16.971	62.971		37.10	0.000	0.000
						С	16.971	62.971		37.10	243.333	0.000
T7 100.00-80.00	90.00	1.238	2	2.7638	230.057	Α	18.647	66.084	30.120	35.55	59.555	0.000
						В	18.647	66.084		35.55	0.000	0.000
						С	18.647	66.084		35.55	253.215	0.000
T8 80.00-60.00	70.00	1.174	2	2.6952	260.245	Α	20.389	68.919	30.497	34.15	58,457	0.000
						В	. 20.389	68.919		34.15	0.000	0.000
						С	20.389	68.919		34.15	260,257	0.000
T9 60.00-40.00	50.00	1.094	2	2.6061	290.364	Α	26.068	71.220	30.736	31.59	57.030	0.000
		- ,,,,,	_		_,	В	26.068	71.220		31.59	0.000	0.000
						Č	26.068	71.220		31.59	254.363	0.000
T10 40.00-20.00	30.00	0.982	2	2.4763	320.348	Ā	28.233	72,411	30.704	30.51	74,977	0.000
110 10:00 20:00	30.00	0.502	-	2	520.5 10	В	28.233	72.411	30.701	30.51	20.023	0.000
						Č	28.233	72.411	ľ	30.51	245.789	0.000
T11 20.00-0.00	10.00	0.850	2	2.2186	354.497	A	32.247	69.889	29.006	28.40	66.495	0.000
111 20.00-0.00	10.00	0.650	4	2.2100	334.43/	В	32.247	69.889	29.000	28.40	18.205	0.000
1						0						
						C	32.247	69.889		28.40	165.106	0.000

Tower Pressure - Service

 $G_H = 0.850$

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а			_	%	In	Out
					С					Face	Face
ft	ft		psf	ft²	е	ft²	ft²	ft²		ft²	ft²
T1	191.51	1.451	11	61.772	Α	0.000	6.824	3.744	54.86	11.481	0.000
199.00-184.03					В	0.000	6.824		54.86	0.000	0.000
					С	0.000	7.470		50.12	23.507	0.000
T2	182.01	1.436	11	16.603	Α	0.000	2.526	1.006	39.83	3.086	0.000
184.03-180.00					В	0.000	2.526		39.83	0.000	0.000
					C	0.000	2.688		37.44	7.003	0.000
T3	170.00	1.415	11	98.753	Α	9.476	7.507	7.507	44.20	15.333	0.000
180.00-160.00					В	9.476	7.507		44.20	0.000	0.000
					C	9.476	7.507		44.20	38.874	0.000
T4	150.00	1.378	11	129.587	Α	10.286	. 9.175	9.175	47.15	15.333	0.000
160.00-140.00					В	10.286	. 9.175		47.15	0.000	0.000
	1				С	10.286	9.175		47.15	49.839	0.000
T5	130.00	1.337	10	160.004	Α	14.881	10.009	10.009	40.21	15.333	0.000
140.00-120.00					В	14.881	10.009		40.21	0.000	0.000
					C	14.881	10.009		40.21	56.128	0.000
T6	110.00	1.291	10	190.420	Α	16.971	10.843	10.843	38.98	15.333	0.000
120.00-100.00					В	16.971	10.843		38.98	0.000	0.000
1					C	16.971	10.843		38.98	60.386	0.000
T7	90.00	1.238	10	220.837	Α	18.647	11.678	11.678	38.51	15.333	0.000
100.00-80.00					В	18.647	11.678		38.51	0.000	0.000
					C	18.647	11.678		38.51	62.606	0.000
T8 80.00-60.00	70.00	1.174	9	251.254	A	20.389	12.512	12.512	38.03	15.333	0.000
					В	20.389	. 12.512		38.03	0.000	0.000
					C	20.389	12.512		38.03	63.126	0.000
T9 60.00-40.00	50.00	1.094	9	281.671	Α	26.068	13.346	13.346	33.86	15.333	0.000
					В	26.068	13.346		33.86	0.000	0.000
					C	26.068	13.346		33.86	63.126	0.000

Page Job tnxTower 20 of 44 Aho - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County hicham.anssar

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	C_AA_A	$C_A A_A$
Elevation					а				%	In	Out
					c					Face	Face
ft	ft		psf	ft ²	e	ft^2	ft²	.ft²		ft²	ft²
T10	30.00	0.982	8	312.088	A	28.233	14.180	14.180	33.43	16.733	0.000
40.00-20.00					В	28.233	14.180		33.43	1.400	0.000
					С	28.233	14.180		33.43	63.126	0.000
T11 20.00-0.00	10.00	0.850	7	347.092	Α	32,247	14.190	14.190	30.56	15.967	0.000
					В	32.247	14.190		30.56	1.400	0.000
					С	32.247	14.190		30.56	48.343	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft²	K	plf	
T1	0.37	0.60	Α	0.11	2.922	42	1	1	3.854	1.13	75.56	С
199.00-184.03			В	0.11	2.922		1	1	3.854			
			С	0.121	2.881		1	1	4.222			
T2	0.10	0.19	Α	0.152	2.764	42	, 1	1	1.434	0.35	86.36	C
184.03-180.00			В	0.152	2.764		. 1	1	1.434			
			С	0.162	2.728		1	1	1.529			
T3	0.52	1.37	Α	0.172	2.692	41	1	1	13.756	2.36	118.06	C
180.00-160.00			В	0.172	2.692		1	1	13.756			
			С	0.172	2.692		1	1	13.756			ŀ
T4	0.57	1.83	Α	0.15	2.771	40	1	1	15.494	2.73	136.32	С
160.00-140.00			В	0.15	2.771		1	1	15.494			ŀ
			С	0.15	2.771		1	1	15.494			
T5	0.59	2.34	Α	0.156	2.751	39	1	1	20.499	3.22	160.87	С
140.00-120.00			В	0.156	2.751		1	1	20.499			
			С	0.156	2.751		1	1	20.499			
Т6	0.60	2.67	Α	0.146	2.786	38	. 1	1	22.935	3.43	171.42	С
120.00-100.00			В	0.146	2.786		. 1	1	22.935			
			С	0.146	2.786		1	1	22.935			
T7	0.61	3.03	Α	0.137	2.819	36	1	1	24.947	3.52	176.23	С
100.00-80.00			В	0.137	2.819		1	1	24.947			
			С	0.137	2.819		1	1	24.947			
T8	0.61	3.41	Α	0.131	2.843	34	1	1	27.027	3.54	177.09	С
80.00-60.00			В	0.131	2.843		1	1	27.027			
			C	0.131	2.843		1	1	27.027			
T9	0.61	4.05	Α	0.14	2.809	32	1	1	33.095	3.74	186.87	С
60.00-40.00			В	0.14	2.809		1	1	33.095			
			С	0.14	2.809		1	1	33.095			
T10	0.65	4.50	Α	0.136	2.824	29	1	1	35.670	3.58	179.20	С
40.00-20.00			В	0.136	2.824		1	1	35.670			1
			C	0.136	2.824		1	1	35.670			
T11	0.59	4.85	Α	0.134	2.832	25	1	1	39.879	3.16	158.18	С
20.00-0.00			В	0.134	2.832		1	1	39.879			
			С	0.134	2.832		1	1	39.879			
Sum Weight:	5.82	28.82						OTM	2776.87	30.76		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

tnxTower	Job	All No.	Page 21 of 44
		Aho - Viper	21 01 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAY: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	e	C_F	q _:	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а						-			Face
		_	c			psf						
ft	K	K	e			• -			ft²	K	plf	
T1	0.37	0.60	Α	0.11	2.922	42	0.8	1	3.854	1.10	73.38	Α
199.00-184.03			В	0.11	2.922		0.8	1	3.854			
			C	0.121	2.881		0.8	1	4.222			
T2	0.10	0.19	Α	0.152	2.764	42	0.8	1	1.434	0.34	84.53	Α
184.03-180.00			В	0.152	2.764		0.8	1	1.434			
			С	0.162	2.728		0.8	1	1.529			
T3	0.52	1.37	Α	0.172	2.692	41	0.8	1	11.861	2.18	109.10	A
180.00-160.00			В	0.172	2.692		0.8	1	11.861			
			C	0.172	2.692		. 0.8	1	11.861			
T4	0.57	1.83	Α	0.15	2.771	.40	0.8	1	13.437	2.53	126.57	A
160.00-140.00			В	0.15	2.771		0.8	1	13.437			
			C	0.15	2.771		0.8	1	13.437			
T5	0.59	2.34	Α	0.156	2.751	39	0.8	1	17.523	2.95	147.29	Α
140.00-120.00			В	0.156	2.751		0.8	. 1	17.523			
			С	0.156	2.751		0.8	1	17.523			
T6	0.60	2.67	Α	0.146	2.786	38	0.8	1	19.541	3.13	156.27	Α
120.00-100.00			В	0.146	2.786		0.8	1	19.541			
			С	0.146	2.786		0.8	1	19.541			
T7	0.61	3.03	Α	0.137	2.819	36	0.8	1	21.218	3.20	160.09	A
100.00-80.00			В	0.137	2.819		0.8	1.	21.218			
			C	0.137	2.819		. 0.8	1	21.218			
T8	0.61	3.41	Α	0.131	2.843	.34	0.8	1	22.949	3.20	160.21	Α
80.00-60.00			В	0.131	2.843		0.8	1	22.949			
			C	0.131	2.843		0.8	1	22.949			
T9	0.61	4.05	Α	0.14	2.809	32	0.8	1	27.881	3.34	167.00	Α
60.00-40.00			В	0.14	2.809		0.8	. 1	27.881			
			C	0.14	2.809		0.8	1	27.881			
T10	0.65	4.50	Α	0.136	2.824	29	0.8	1	30.024	3.20	159.77	Α
40.00-20.00			В	0.136	2.824		0.8	1	30.024			
			C	0.136	2.824		0.8	1	30.024			
T11	0.59	4.85	Α	0.134	2.832	25	0.8	1	33.429	2.78	138.92	A
20.00-0.00			В	0.134	2.832		0.8	1	33.429			
			С	0.134	2.832	•	, 0.8	I	33.429			
Sum Weight:	5.82	28.82						OTM	2552.88	27.94		
l									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				4					Face
			С			psf						1
ft	K	K	е						ft^2	K	plf	
T1	0.37	0.60	Α	0.11	2.922	42	0.85	1	3.854	1.12	74.96	В
199.00-184.03			В	0.11	2.922		0.85	1	3.854			
			С	0.121	2.881		0.85	. 1	4.222			
T2	0.10	0.19	Α	0.152	2.764	42	0.85	1	1.434	0.35	86.09	В
184.03-180.00			В	0.152	2.764		0.85	1	1.434			
			C	0.162	2.728		0.85	1	1.529			
Т3	0.52	1.37	Α	0.172	2.692	41	0.85	1	12.335	2.26	112.87	В
180.00-160.00			В	0.172	2.692		0.85	1	12.335			
	·		C	0.172	2.692		0.85	1	12.335			
T4	0.57	1.83	Α	0.15	2.771	40	. 0.85	1	13.951	2.61	130.50	В
160.00-140.00			В	0.15	2.771		0.85	1	13.951			
			C	0.15	2.771		0.85	1	13.951			

Page Job tnxTower Aho - Viper 22 of 44 Project Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft²	K	plf	
T5	0.59	2.34	Α	0.156	2.751	39	0.85	1	18.267	3.04	152.14	В
140.00-120.00			В	0.156	2.751		0.85	1	18.267			
			C	0.156	2.751		0.85	1	18.267			
T6	0.60	2.67	Α	0.146	2.786	38	0.85	1	20.390	3.23	161.46	В
120.00-100.00			В	0.146	2.786		0.85	1	20.390			
			C	0.146	2.786		0.85	1	20.390			
T7	0.61	3.03	Α	0.137	2.819	36	0.85	1	22.150	3.31	165.47	В
100.00-80.00			В	0.137	2.819		0.85	1	22.150			
			С	0.137	2.819		- 0.85	1	22.150			
T8	0.61	3.41	Α	0.131	2.843	34	0.85	1	23.968	3.31	165.71	В
80.00-60.00			В	0.131	2.843		0.85	1	23.968			
			С	0.131	2.843		0.85	1	23.968			
T9	0.61	4.05	Α	0.14	2.809	32	0.85	i	29.185	3.46	173.15	В
60.00-40.00			В	0.14	2.809		0.85	1	29.185			
			С	0.14	2.809		0.85	1	29.185			
T10	0.65	4.50	Α	0.136	2.824	29	0.85	1	31.435	3.31	165.44	В
40.00-20.00			В	0.136	2.824		0.85	1	31.435			
			С	0.136	2.824		0.85	1	31.435			
T11	0.59	4.85	Α	0.134	2.832	25	0.85	1	35.042	2.89	144.36	В
20.00-0.00			В	0.134	2.832		0.85	1	35.042			
			С	0.134	2.832		. 0.85	1	35.042			
Sum Weight:	5.82	28.82						OTM	2635.21	28.89		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
		-	С			psf.						
ft	K	K	е						ft ²	K	plf	
T1	3.02	3.09	Α	0.575	1.821	3	1	1	29.013	0.27	18.22	С
199.00-184.03			В	0.575	1.821		1	1	29.013			
ł l			С	0.64	1.785		1	1	34.129			
T2	0.87	0.87	Α	0.695	1.776	. 3	1	1	10.443	0.08	19.17	C
184.03-180.00			В	0.695	1.776		1	1	10.443			
			C	0.756	1.79		1	1	11.963			
T3	4.66	6.19	Α	0.594	1.808	3	1	1	50.244	0.40	19.89	C
180.00-160.00			В	0.594	1.808		1	1	50.244			
			C	0.594	1.808		1	1	50.244			
T4	5.25	6.95	Α	0.494	1.908	3	1	1	50.170	0.48	24.07	C
160.00-140.00			В	0.494	1.908		i	1	50.170			
			C	0.494	1.908		1	1	50.170			
T5	5.58	8.54	Α	0.461	1.956	3	1	1	56.941	0.54	27.22	C
140.00-120.00			В	0.461	1.956		1	1	56.941			
1			C	0.461	1.956		1	1	56.941			
Т6	5.80	9.12	Α	0.4	2.064	3	1	1	57.037	0.59	29.58	C
120.00-100.00			В	0.4	2.064		1	1	57.037			
			C	0.4	2.064		1	I	57.037			
T7	5.72	9.84	A.	0.368	2.13	2	1	1	59.824	0.59	29.60	C
100.00-80.00			В	0.368	2.13		1	1	59.824	i		
			C	0.368	2.13		1	1	59.824			
Т8	5.72	10.53	A	0.343	2.188	2	1	1	62.673	0.59	29.43	C
80.00-60.00			В	0.343	2.188		1	1	62.673			
			C	0.343	2.188		1	1	62.673	J		

hicham.anssar

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	1 	Page
	Aho - Viper	23 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	e						ft^2	K	plf	
T9	5.46	12.02	Α	0.335	2.207	2	1	1	69.555	0.57	28.58	С
60.00-40.00			В	0.335	2.207		1	1	69.555			
			C	0.335	2.207		1	1	69.555			
T10	5.52	12.49	Α	0.314	2.259	2	1	1	71.931	0.55	27.32	С
40.00-20.00			В	0.314	2.259		1	1	71.931			
			C	0.314	2.259		1	1	71.931			
T11	3.86	12.48	Α	0.288	2.328	2	1	1	73.852	0.42	21.09	С
20.00-0.00			В	0.288	2.328		` 1	1	73.852			
1			C	0.288	2.328		. 1	1	73.852			
Sum Weight:	51.48	92.13						OTM	485.66	5.09		
									kip-ft			

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				4	ļ				Face
			c			psf		l				
ft	K	K	е						ft²	K	plf	
T1	3.02	3.09	Α	0.575	1.821	3	0.8	1	29.013	0.26	17.61	C
199.00-184.03			В	0.575	1.821		0.8	1	29.013			
			С	0.64	1.785		0.8	1	34.129			
T2	0.87	0.87	Α	0.695	1.776	3	0.8	1	10.443	0.08	18.73	C
184.03-180.00			В	0.695	1.776		0.8	1	10.443			
			С	0.756	1.79		0.8	1	11.963			
T3	4.66	6.19	Α	0.594	1.808	3	0.8	1	48.349	0.39	19.48	A
180.00-160.00			В	0.594	1.808		0.8	1	48.349			
			С	0.594	1.808		0.8	1	48.349			
T4	5.25	6.95	Α	0.494	1.908	3	0.8	1	48.112	0.47	23.62	A
160.00-140.00			В	0.494	1.908		0.8	1	48.112			
			C	0.494	1.908		0.8	1	48.112	Î		
T5	5.58	8.54	Α	0.461	1.956	3	0.8	1	53.964	0.53	26.57	Α
140.00-120.00			В	0.461	1.956		0.8	1	53.964			
			С	0.461	1.956		0.8	. 1	53.964			
T6	5.80	9.12	Α	0.4	2.064	3	0.8	1	53.643	0.58	28.83	Α
120.00-100.00			В	0.4	2.064		0.8	1	53.643			
			C	0.4	2.064		0.8	1	53.643			
T7	5.72	9.84	A	0.368	2.13	2	0.8	1	56.095	0.58	28.78	Α
100.00-80.00			В	0.368	2.13		0.8	1	56.095			
			C	0.368	2.13		0.8	1	56.095			
Т8	5.72	10.53	Α	0.343	2.188	2	8.0 ٠	1	58.595	0.57	28.56	A
80.00-60.00			В	0.343	2.188		0.8	1	58.595			
	1		C	0.343	2.188		0.8	1	58.595			
T9	5.46	12.02	Α	0.335	2.207	2	0.8	1	64.342	0.55	27.54	A
60.00-40.00			В	0.335	2.207		0.8	1	64.342			
			С	0.335	2.207		0.8	. 1	64.342			
T10	5.52	12.49	Α	0.314	2.259	2	0.8	I	66.284	0.53	26.28	Α
40.00-20.00			В	0.314	2.259		0.8	1	66.284			
			C	0.314	2.259		0.8	1	66.284			
T11	3.86	12.48	Α	0.288	2.328	2	0.8	1	67.403	0.40	20.03	Α
20.00-0.00			В	0.288	2.328		0.8	1	67.403			
			C	0.288	2.328		0.8	1	67.403			
Sum Weight:	51.48	92.13					t .	OTM	472.95	4.93		
									kip-ft			

			2025 08 05 RCC Meeting
Anna Tonus	Job	,	Page
tnxTower		Aho - Viper	24 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
i			c			psf						
ft	K	K	е						ft²	K	plf	
T1	3.02	3.09	Α	0.575	1.821	3	0.85	1	29.013	0.26	17.41	В
199.00-184.03			В	0.575	1.821		0.85	1	29.013			l
			C	0.64	1.785		0.85	1	34.129			Ì
T2	0.87	0.87	Α	0.695	1.776	3	0.85	1	10.443	0.07	18.48	С
184.03-180.00			В	0.695	1.776		0.85	1	10.443			
	1		С	0.756	1.79		0.85	1	11.963			
T3	4.66	6.19	Α	0.594	1.808	3	0.85	1	48.823	0.40	20.03	В
180.00-160.00			В	0.594	1.808	l ·	0.85	1	48.823			
			С	0.594	1.808		0.85	1	48.823			
T4	5.25	6.95	Α	0.494	1.908	3	0.85	1	48.627	0.48	24.14	В
160.00-140.00			В	0.494	1.908		0.85	1	48.627			
			С	0.494	1.908		0.85	1	48.627			
T5	5.58	8.54	Α	0.461	1.956	3		1	54.708	0.54	27.06	В
140.00-120.00			В	0.461	1.956		0.85	1	54.708			
			C	0.461	1.956		0.85	1	54.708			
Т6	5.80	9.12	Α	0.4	2.064	3	0.85	1	54.492	0.59	29.32	В
120.00-100.00			В	0.4	2.064		0.85	1	54.492			
			С	0.4	2.064		0.85	1	54.492			
T7	5.72	9.84	Α	0.368	2.13	2	0.85	1	57.027	0.58	29.20	В
100.00-80.00			В	0.368	2.13	·	0.85	1	57.027			
			C	0.368	2.13		0.85	1	57.027			
Т8	5.72	10.53	Α	0.343	2.188	2	0.85	1	59.615	0.58	28.97	В
80.00-60.00			В	0.343	2.188		0.85	1	59.615			
			C	0.343	2.188		0.85	1	59.615			
T9	5.46	12.02	Α	0.335	2.207	2	0.85	1	65.645	0.56	27.96	В
60.00-40.00			В	0.335	2.207		0.85	1	65.645			
			С	0.335	2.207		0.85	1	65.645			
T10	5.52	12.49	Α	0.314	2.259	2	0.85	1	67.696	0.53	26.69	В
40.00-20.00			В	0.314	2.259		0.85	1	67.696			
			C	0.314	2.259		0.85	1	67.696			
T11	3.86	12.48	Α	0.288	2.328	2	0.85	1	69.015	0.41	20.48	В
20.00-0.00			В	0.288	2.328	·	0.85	1	69.015			
			С	0.288	2.328		0.85	1	69.015			
Sum Weight:	51.48	92.13						OTM	480.02	5.01		
									kip-ft			

Tower Forces - Service - Wind Normal To Face

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
ft	K	K	c e			psf			£p2	K	plf	1 1100
71	0.37	0.60		0.11	2.922		-	1	2 054			
	0.37	0.60	A	0.11		11	1	1	3.854	0.30	20.28	C
199.00-184.03			В	0.11	2.922		1	1	3.854			
			С	0.121	2.881		1	1	4.222			
T2	0.10	0.19	Α	0.152	2.764	11	1	1	1.434	0.09	23.18	С
184.03-180.00			В	0.152	2.764		1	1	1.434			
		-	С	0.162	2.728		1	1	1.529			

Area Torres	Job		Page
tnxTower		Aho - Viper	25 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c	<u> </u>		psf						
ft	K	K	e						ft^2	K	plf	
T3	0.52	1.37	Α	0.172	2.692	11	1	1	13.756	0.63	31.68	С
180.00-160.00			В	0.172	2.692		1	1	13.756			
			С	0.172	2.692		1	1	13.756			
T4	0.57	1.83	Α	0.15	2.771	11	1	1	15.494	0.73	36.59	C
160.00-140.00			В	0.15	2.771		1	1	15.494			
			C	0.15	2.771		1	1	15.494			
T5	0.59	2.34	Α	0.156	2.751	10	1	1	20.567	0.87	43.26	С
140.00-120.00			В	0.156	2.751		` 1	1	20.567	'		
			C	0.156	2.751		. 1	1	20.567			
Т6	0.60	2.67	Α	0.146	2.786	10	1	1	23.121	0.92	46.23	C
120.00-100.00			В	0.146	2.786		1	1	23.121			
			С	0.146	2.786		1	1	23.121			
T7	0.61	3.03	Α	0.137	2.819	10	1.	1	25.261	0.95	47.66	С
100.00-80.00			В	0.137	2.819		1	. 1	25.261			
			C	0.137	2.819		1	1	25.261			
T8	0.61	3.41	Α	0.131	2.843	9	-1	1	27.469	0.96	48.02	C
80.00-60.00			В	0.131	2.843		1	1	27.469			
			C	0.131	2.843		1	1	27.469			
T9	0.61	4.05	Α	0.14	2.809	9	- 1	1	33.629	1.01	50.70	C
60.00-40.00			В	0.14	2.809		٠ 1	1	33.629			
			C	0.14	2.809		. 1	1	33.629			
T10	0.65	4.50	Α	0.136	2.824	. 8	1	1	36.263	0.97	48.64	C
40.00-20.00			В	0.136	2.824	·	1	1	36.263			
1			C	0.136	2.824		1	1	36.263			
T11	0.59	4.85	Α	0.134	2.832	7	1	1	40.280	0.86	42.78	С
20.00-0.00			В	0.134	2.832		1	1	40.280			
			С	0.134	2.832		1	1	40.280			
Sum Weight:	5.82	28.82						OTM	748.26	8.31		
	1								kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	K	e						ft²	K	plf	
TI	0.37	0.60	Α	0.11	2.922	11	0.8	1	3.854	0.29	19.69	A
199.00-184.03			В	0.11	2.922		0.8	1	3.854			
			С	0.121	2.881		0.8	1	4.222			
T2	0.10	0.19	Α	0.152	2.764	11	0.8	1	1.434	0.09	22.69	Α
184.03-180.00			В	0.152	2.764		0.8	1	1.434			
			C	0.162	2.728		0.8	1	1.529			
T3	0.52	1.37	Α	0.172	2.692	11	0.8	1	11.861	0.59	29.28	Α
180.00-160.00			В	0.172	2.692		0.8	1	11.861			
			C	0.172	2.692		0.8	. 1	11.861			
T4	0.57	1.83	Α	0.15	2.771	11	0.8	1	13.437	0.68	33.97	A.
160.00-140.00			В	0.15	2.771		0.8	1	13.437			
			C	0.15	2.771		0.8	1	13.437			
T5	0.59	2.34	Α	0.156	2.751	10	0.8	1	17.591	0.79	39.61	Α
140.00-120.00			В	0.156	2.751		0.8	1	17.591			
			С	0.156	2.751		0.8	1	17.591			
T6	0.60	2.67	Α	0.146	2.786	10	8.0 ،	1	19.727	0.84	42.16	Α
120.00-100.00			В	0.146	2.786		0.8	1	19.727			
1			С	0.146	2.786		0.8	1	19.727			

Page Job tnxTower 26 of 44 Aho - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County hicham.anssar

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf.						
ft	K	K	e						ft²	K	plf	
T7	0.61	3.03	Α	0.137	2.819	10	0.8	1	21.531	0.87	43.33	Α
100.00-80.00			В	0.137	2.819		0.8	1	21.531			
			С	0.137	2.819		0.8	1	21.531			
Т8	0.61	3.41	Α	0.131	2.843	9	0.8	1	23.391	0.87	43.49	A
80.00-60.00			В	0.131	2.843		0.8	1	23.391			
			С	0.131	2.843		0.8	1	23.391			
T9	0.61	4.05	A	0.14	2.809	9	0.8	1	28.416	0.91	45.37	A
60.00-40.00			В	0.14	2.809		0.8	1	28.416			
			C	0.14	2.809		- 0.8	1	28.416			
T10	0.65	4.50	Α	0.136	2.824	.8	0.8	1	30.616	0.87	43.43	A
40.00-20.00	İ		В	0.136	2.824		0.8	1	30.616			
			С	0.136	2.824		0.8	1	30.616			
TII	0.59	4.85	Α	0.134	2.832	7	0.8	1	33.831	0.75	37.61	Α
20.00-0.00			В	0.134	2.832		0.8	1	33.831			
			C	0.134	2.832		0.8	1	33.831			
Sum Weight:	5.82	28.82						OTM	688.14	7.55		
									kip-ft			

Tower Forces - Service - Wind 90 To Face

Weight	Weight			C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
1		а									Face
		c			psf						
K	K	е						ft²	K	plf	
0.37	0.60	Α	0.11	2.922	11	0.85	1	3.854	0.30	20.12	В
		В	0.11	2.922		0.85	1	3.854			
		С	0.121	2.881		0.85	1	4.222			
0.10	0.19	Α	0.152	2.764	11	0.85	1	1.434	0.09	23.10	В
		В	0.152	2.764		0.85	1	1.434			
		С	0.162	2.728		0.85	1	1.529			
0.52	1.37	Α	0.172	2.692	11	0.85	1	12.335	0.61	30.29	В
		В	0.172	2.692		0.85	1	12.335			
		С	0.172	2.692		0.85	1	12.335			
0.57	1.83	Α	0.15	2.771	11	0.85	1	13.951	0.70	35.02	В
		В	0.15	2.771	,	0.85	1	13.951			
		С	0.15	2.771		0.85	1	13.951			
0.59	2.34	Α	0.156	2.751	10	0.85	1	18.335	0.82	40.91	В
-		В	0.156	2.751		0.85	1	18.335			
		C	0.156	2.751		0.85	1	18.335	•		
0.60	2.67	Α	0.146	2.786	10	0.85	1	20.575	0.87	43.56	В
		В	0.146	2.786		0.85	1	20.575			
		C	0.146	2.786		0.85	1	20.575			
0.61	3.03	Α	0.137	2.819	10	0.85	1	22.464	0.90	44.77	В
		В	0.137	2.819		0.85	1	22.464			
		C	0.137	2.819		0.85	1	22.464			
0.61	3.41	Α	0.131	2.843	9	0.85	1	24.410	0.90	44.96	В
		В	0.131	2.843		0.85	1	24.410			
		С	0.131	2.843		0.85	1	24,410			
0.61	4.05	Α	0.14	2.809	9	0.85	1	29,719	0.94	47.02	В
l		В	0.14	2.809		0.85	1	29.719			_
		С	0.14	2.809		0.85	1	29.719			
0.65	4.50	Α	0.136	2.824	8	0.85	1	32.028	0.90	44.95	В
ļ		В	0.136	2.824		0.85	1	32.028			
		С	0.136	2.824		0.85	1				
	0.10 0.52 0.57 0.59 0.60 0.61 0.61	0.10 0.19 0.52 1.37 0.57 1.83 0.59 2.34 0.60 2.67 0.61 3.03 0.61 3.41 0.61 4.05	0.10 0.19 B C A B C C O.52 1.37 A B C C O.59 2.34 A B C C O.60 2.67 A B C C O.61 3.03 A B C C O.61 3.41 A B C C C C C C C C C C C C C C C C C C	0.10	0.10	0.10	0.10 0.19 A 0.11 2.922 0.85 0.10 0.19 A 0.152 2.764 11 0.85 0.52 1.37 A 0.172 2.692 11 0.85 0.52 1.37 A 0.172 2.692 11 0.85 0.57 1.83 A 0.15 2.771 11 0.85 0.57 1.83 A 0.15 2.771 0.85 0.59 2.34 A 0.15 2.771 0.85 0.59 2.34 A 0.156 2.751 0.85 0.60 2.67 A 0.146 2.786 10 0.85 <td> O.10</td> <td> Decomposition Color Colo</td> <td> B</td> <td>0.10</td>	O.10	Decomposition Color Colo	B	0.10

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		0
Job		Page
	Aho - Viper	27 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c .			psf						
ft	K	K	е						$-ft^2$	K	plf	
T11	0.59	4.85	Α	0.134	2.832	7	0.85	1	35.443	0.78	39.07	В
20.00-0.00			В	0.134	2.832		0.85	1	35.443			
			С	0.134	2.832		0.85	1	35.443			
Sum Weight:	5.82	28.82						OTM	710.24	7.81		
									kip-ft			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces X	Forces	Overturning	Overturning	
	K	K K	Z K	Moments, M_x kip-ft	Moments, M_z kip-ft	kip-ft
Leg Weight	18.10	- A	- A	κιρ-ji	кір-уі	кір-јі
Bracing Weight	10.72					
Total Member Self-Weight	28.82			13.72	-4.88	
Total Weight	37.58			13.72	-4.88	
Wind 0 deg - No Ice	57.55	0.65	-38.32	-3938.43	-67.45	15.98
Wind 30 deg - No Ice		17.21	-29.00	-2990.84	-1795.31	38.70
Wind 60 deg - No Ice		30.38	-16.99	-1755.48	-3247.79	38.60
Wind 90 deg - No Ice		34.10	-0.15	26.52	-3695.34	26.73
Wind 120 deg - No Ice		34.86	18.66	1981.73	-3727.17	23.59
Wind 150 deg - No Ice		18.78	31.85	3402.99	-2028.15	6.08
Wind 180 deg - No Ice		0.56	34.81	3678.84	-117.90	-14.97
Wind 210 deg - No Ice		-16.50	28.71	2988.05	1675.09	-33.29
Wind 240 deg - No Ice		-32.73	18.15	1862.28	3395.46	-32.16
Wind 270 deg - No Ice		-33.78	-0.56	-84.10	3613.90	-22.84
Wind 300 deg - No Ice		-31.43	-18.09	-1938.39	3376.38	-24.00
Wind 330 deg - No Ice		-18.83	-32.00	-3368.32	2005.93	-8.19
Member Ice	63.31					
Total Weight Ice	164.77			129.59	-52.56	
Wind 0 deg - Ice		0.05	-5.96	-496.01	-57.26	2.93
Wind 30 deg - Ice		2.87	-4.91	-389.57	-356.46	5.96
Wind 60 deg - Ice		4.94	-2.81	-168.67	-582.55	5.79
Wind 90 deg - Ice		5.70	-0.01	130.59	-668.87	4.30
Wind 120 deg - Ice		5.24	2.91	438.81	-611.59	3.43
Wind 150 deg - Ice		2.99	5.12	672.20	-370.81	1.01
Wind 180 deg - Ice		0.04	5.74	734.92	-61.07	-2.85
Wind 210 deg - Ice		-2.80	4.87	642.69	240.80	-5.56
Wind 240 deg - Ice		-5.03	2.85	428.81	480.52	-5.31
Wind 270 deg - Ice		-5.65	-0.04	122.24	553.88	-4.02
Wind 300 deg - Ice		-5.04	2.90	-181.18	485.68	-3.46
Wind 330 deg - Ice		-2.99	-5.13	-412.41	264.70	-1.16
Total Weight	37.58			13.72	-4.88	
Wind 0 deg - Service		0.18	-10.38	-1070.57	-19.51	4.44
Wind 30 deg - Service		4.66	-7.86	-814.88	-488.38	10.47
Wind 60 deg - Service		8.23	-4.60	-479.56	-881.96	10.36
Wind 90 deg - Service		9.24	-0.04	3.84	-1003.46	7.09
Wind 120 deg - Service		9.43	5.05	533.72	-1010.62	6.19
Wind 150 deg - Service		5.09	8.63	918.93	-550.87	1.46
Wind 180 deg - Service		0.15	9.43	994.34	-33.05	-4.16
Wind 210 deg - Service		-4.47	7.78	807.57	453.30	-9.02
Wind 240 deg - Service		-8.86	4.92	501.66	918.78	-8.63
Wind 270 deg - Service		-9.16	-0.15	-25.85	978.78	-6.05 -6.30
Wind 300 deg - Service		-8.51	-4.90	-528.65	913.66	-0.30

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

	202	00 05 DCC Mosting
Job		Page
	Aho - Viper	28 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M _x	Moments, M _z	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 330 deg - Service		-5.10	-8.67	-916.18	542.09	-2.03

Load Combinations

			7
Comb.		Description	`
No.			
1	Dead Only		
2	1.2 Dead+1.6 Wind 0 deg - No Ice		
3	0.9 Dead+1.6 Wind 0 deg - No Ice		
4	1.2 Dead+1.6 Wind 30 deg - No Ice		
5	0.9 Dead+1.6 Wind 30 deg - No Ice		
6	1.2 Dead+1.6 Wind 60 deg - No Ice		
7	0.9 Dead+1.6 Wind 60 deg - No Ice		
8	1.2 Dead+1.6 Wind 90 deg - No Ice		
9	0.9 Dead+1.6 Wind 90 deg - No Ice		•
10	1.2 Dead+1.6 Wind 120 deg - No Ice		
11	0.9 Dead+1.6 Wind 120 deg - No Ice		
12	1.2 Dead+1.6 Wind 150 deg - No Ice		
13	0.9 Dead+1.6 Wind 150 deg - No Ice		
14	1.2 Dead+1.6 Wind 180 deg - No Ice		
15	0.9 Dead+1.6 Wind 180 deg - No Ice		
16	1.2 Dead+1.6 Wind 210 deg - No Ice		
17	0.9 Dead+1.6 Wind 210 deg - No Ice		
18	1.2 Dead+1.6 Wind 240 deg - No Ice		
19	0.9 Dead+1.6 Wind 240 deg - No Ice		
20	1.2 Dead+1.6 Wind 270 deg - No Ice		
21	0.9 Dead+1.6 Wind 270 deg - No Ice		
22	1.2 Dead+1.6 Wind 300 deg - No Ice		
23	0.9 Dead+1.6 Wind 300 deg - No Ice		
24	1.2 Dead+1.6 Wind 330 deg - No Ice		
25	0.9 Dead+1.6 Wind 330 deg - No Ice		
26	1.2 Dead+1.0 Ice+1.0 Temp		
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp		
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp		
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp		
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp		
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp		
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp		
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp		
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp		
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp		
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp		
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp		
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp		
39	Dead+Wind 0 deg - Service		
40	Dead+Wind 30 deg - Service		
41	Dead+Wind 60 deg - Service		
42	Dead+Wind 90 deg - Service		
43	Dead+Wind 120 deg - Service		
44	Dead+Wind 150 deg - Service		
45	Dead+Wind 180 deg - Service		
46	Dead+Wind 210 deg - Service		
47	Dead+Wind 240 deg - Service		
48	Dead+Wind 270 deg - Service		
49	Dead+Wind 300 deg - Service		

Page Job tnxTower 29 of 44 Aho - Viper Project Date Engineered Tower Solutions, 15:46:29 03/25/25 ETS, PLLC Job No. 24125019.STR.8180 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County hicham.anssar

Comb.	Description
	1
No.	
50	Dead+Wind 330 deg - Service

			Maximum	Meml	er For	ces	
Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	<i>J-</i>	-7F-		Comb.	K	kip-ft	kip-ft
T1	199 - 184.025	Leg	Max Tension	. 7	8.16	0.04	-0.00
* *	199 101.025	248	Max. Compression	10	-9.03	-0.54	0.19
			Max. Mx	8	-7.42	-0.57	0.33
			Max. My	13	0.04	-0.33	-0.58
			Max. Vy	22	0.57	-0.00	0.00
			Max. Vx	14	-0.58	-0.00	-0.00
		Diagonal	Max Tension	14	3.03	0.00	0.00
		8	Max. Compression	2	-3.20	0.00	0.00
			Max. Mx	32	0.44	0.05	0.00
			Max. My	10	-0.78	0.00	-0.00
			Max. Vy	32	-0.04	0.00	0.00
			Max. Vx	- 10	0.00	0.00	0.00
		Horizontal	Max Tension	22	0.38	0.00	0.00
		Horizontai	Max. Compression	10	-0.38	0.00	0.00
			Max. Mx	33	-0.02	0.04	0.00
			Max. My	8	0.05	0.00	0.00
			Max. Vy	33	-0.04	0.00	0.00
			Max. Vx	8	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	8	0.00	-0.00	-0.00
		11011110111111	Max. Compression	20	-0.00	-0.00	-0.00
			Max. Mx	31	0.00	-0.01	0.00
			Max. My	8.	0.00	-0.00	-0.00
			Max. Vy	- 31	0.02	-0.01	0.00
			Max. Vx	8	0.00	-0.00	-0.00
		Top Girt	Max Tension	' 14	0.74	0.00	0.00
		rop one	Max. Compression	2	-0.72	0.00	0.00
			Max. Mx	27	-0.02	0.04	0.00
			Max. My	8	-0.09	0.00	0.00
			Max. Vy	27	-0.04	0.00	0.00
			Max. Vx	8	-0.00	0.00	0.00
T2	184.025 - 180	Leg	Max Tension	7	14.62	0.04	-0.05
12	101.025 100	2008	Max. Compression	10	-15.99	-1.18	0.15
			Max. Mx	8	11.59	-1.28	-0.50
			Max. My	12	-0.96	-0.73	-1.09
			Max. Vy	- 8	3.28	-1.28	-0.50
			Max. Vx	14	2.46	-0.27	-1.07
		Diagonal	Max Tension	, 8	7.39	0.00	0.00
		Diagonal	Max. Compression	22	-6.29	0.00	0.00
			Max. Mx	34	0.53	0.03	0.00
			Max. My	10	2.71	0.00	-0.00
			Max. Vy	34	-0.02	0.00	0.00
			Max. Vx	10	0.02	0.00	0.00
		Horizontal	Max Tension	22	2.05	0.00	0.00
		Honzomai	Max. Compression	10	-2.47	0.00	0.00
			Max. Mx	33	-0.08	0.04	0.00
			Max. My	8.	-2.20	0.04	0.00
			Max. Wy	. 33	-2.20 0.04	0.00	0.00
			Max. Vy Max. Vx	8	-0.00	0.00	0.00
		Secondary	Max. Vx Max Tension	. 8	0.00	-0.00	-0.00
		Secondary Horizontal	IVIAX I CHSIOII	o	0.00	-0.00	-0.00

Max. Compression

20

-0.00

-0.00

-0.00

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

_		2025-09-05 DCC Masting
Job		Page
	Aho - Viper	30 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation ft	•		- Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. Mx	31	0.00	-0.01	-0.00
			Max. My	8	0.00	-0.00	-0.00
			Max. Vy	31	0.02	-0.01	-0.00
			Max. Vx	8	0.00	-0.00	-0.00
		Bottom Girt	Max Tension	2	2.19	0.00	0.00
			Max. Compression	12	-2.21	0.00	0.00
			Max. Mx	26	-0.01	0.04	0.00
			Max. My	8	-2.12	0.00	0.00
			Max. Vy	26	0.04	0.00	0.00
			Max. Vx	- 8	-0.00	0.00	0.00
T3	180 - 160	Leg	Max Tension	23	44.09	-0.02	0.01
	.00 100	205	Max. Compression	10	-51.01	0.11	-0.02
			Max. Mx	10	-20.05	0.95	-0.72
			Max. My	10	8.52	-0.57	-1.38
			Max. Vy	11	0.75	-0.21	0.18
			Max. Vx	12	-1.90	0.02	0.18
		Diagonal	Max Tension	10	6.76		
		Diagonai		10		0.00	0.00
			Max. Compression		-7.04	0.00	0.00
			Max. Mx	35	0.24	0.04	-0.00
			Max. My	. 10	-6.73	-0.02	-0.03
			Max. Vy	34	0.04	0.03	0.00
		m 0:.	Max. Vx	- 10	0.01	0.00	0.00
		Top Girt	Max Tension	11	0.85	0.00	0.00
			Max. Compression	12	-1.06	0.00	0.00
			Max. Mx	26	-0.09	-0.05	0.00
			Max. My	34	-0.10	0.00	0.00
			Max. Vy	26	0.05	0.00	0.00
		_	Max. Vx	34	-0.00	0.00	0.00
T4	160 - 140	Leg	Max Tension	23	84.45	-0.05	0.02
			Max. Compression	10	-97.87	0.20	0.04
			Max. Mx	10	-97.87	0.20	0.04
			Max. My	22	-39.45	-0.00	0.27
			Max. Vy	22	-1.03	-0.13	0.02
			Max. Vx	- 16	1.52	0.01	-0.04
		Diagonal	Max Tension	8	7.59	0.00	0.00
			Max. Compression	8	-7.69	0.00	0.00
			Max. Mx	31	0.31	0.05	-0.00
			Max. My	8	-7.65	-0.01	-0.03
			Max. Vy	32	0.05	0.05	-0.00
			Max. Vx	8	0.01	0.00	0.00
T5	140 - 120	Leg	Max Tension	23	131.45	-0.15	0.03
		Ü	Max. Compression	10	-150.19	-0.05	0.06
			Max. Mx	10	-109.72	0.20	0.04
			Max. My	6	-73.69	0.03	-0.37
			Max. Vy	8	-1.63	-0.14	-0.07
			Max. Vx	4	-2.06	0.04	0.11
		Diagonal	Max Tension	8	9.27	0.00	0.00
		Diagonal	Max. Compression	8	-9.25	0.00	0.00
			Max. Mx	31	0.50	0.08	0.00
			Max. My	6	-8.24	0.00	-0.03
			Max. Vy	33	0.07	0.07	0.01
т.	120 100	т	Max. Vx	6	0.01	0.00	0.00
T6	120 - 100	Leg	Max Tension	23	174.67	0.51	0.03
			Max. Compression	10	-198.18	-0.54	-0.03
			Max. Mx	10	-197.99	0.99	0.00
			Max. My	12	-1.33	-0.06	-0.81
			Max. Vy	10	-0.38	0.99	0.00
			Max. Vx	4	-0.26	-0.08	-0.73
		Diagonal	Max Tension	8	12.01	0.00	0.00
			Max. Compression	8	-12.17	0.00	0.00
			man compression			0.00	0.00

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2023 00 03 Bee Meeting
Job		Page
	Aho - Viper	31 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. My	31	-0.06	0.00	0.00
			Max. Vy	32	-0.08	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
		Horizontal	Max Tension	22	0.38	0.03	0.01
			Max. Compression	23	-0.56	0.00	-0.00
			Max. Mx	33	0.11	0.08	0.03
			Max. My	8	-0.29	0.01	0.04
			Max. Vy	33	0.08	0.08	0.03
		_	Max. Vx	` 8	-0.01	0.00	0.00
T7	100 - 80	Leg	Max Tension	. 23	221.71	0.64	0.03
			Max. Compression	10	-251.02	-0.69	-0.03
			Max. Mx	10	-250.79	1.23	0.01
			Max. My	12	-1.96	-0.10	-0.93
			Max. Vy	10	-0.46	1.23	0.01
		D: 1	Max. Vx	8	0.57	0.04	0.25
		Diagonal	Max Tension	8	11.41	0.00	0.00
			Max. Compression	10	-11.75	0.00	0.00
			Max. Mx	32	0.75	-0.16	0.00
			Max. My	31	-0.07	0.00	0.00
			Max. Vy	32	0.08	0.00	0.00
		T1	Max. Vx	31	-0.00	0.00	0.00
		Horizontal	Max Tension	, 22	0.47	0.03	0.01
			Max. Compression	23	-0.66	0.01	0.00
			Max. Mx	29	0.11	0.09	0.03
			Max. My	6	-0.56	0.02	0.04
			Max. Vy	29	0.09	0.09	0.03
Т8	90 (0	Ť	Max. Vx	31	-0.01	0.00	0.00
10	80 - 60	Leg	Max Tension	23	266.25	0.74	0.04
			Max. Compression	10	-302.05	-0.75	-0.05
			Max. Mx	10 22	-301.80	1.43 -0.57	0.02 1.07
			Max. My Max. Vy	10	-133.05 -0.54	1.43	0.02
			Max. Vx	- 22	-0.34	-0.57	1.07
		Diagonal	Max Tension	. 7	11.60	0.00	0.00
		Diagonai	Max. Compression	' 10	-12.23	0.00	0.00
			Max. Mx	32	0.77	-0.19	0.00
			Max. My	31	-0.03	0.00	0.01
			Max. Vy	32	0.09	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
		Horizontal	Max Tension	22	0.55	0.03	0.01
			Max. Compression	23	-0.72	0.01	0.00
			Max. Mx	33	0.16	0.12	0.04
			Max. My	31	0.03	0.11	0.04
			Max. Vy	33.	0.09	0.12	0.04
			Max. Vx	- 31	-0.01	0.00	0.00
T9	60 - 40	Leg	Max Tension	23	309.13	0.88	0.04
		8	Max. Compression	10	-351.91	-0.89	-0.03
			Max. Mx	10	-351.63	1.67	0.02
			Max. My	12	-4.39	-0.18	-1.30
			Max. Vy	10	-0.63	1.67	0.02
			Max. Vx	22	-0.38	-0.70	1.29
		Diagonal	Max Tension	7	12.21	0.00	0.00
		3	Max. Compression	10	-12.97	0.00	0.00
			Max. Mx	32	0.86	-0.25	0.00
			Max. My	31	0.07	0.00	0.01
			Max. Vy	32	-0.11	0.00	0.00
			Max. Vx	- 31	-0.00	0.00	0.00
		Horizontal	Max Tension	22	0.65	0.00	0.00
			Max. Compression	13	-0.82	0.02	0.02
			Max. Mx	31	0.01	0.16	0.05
					-0.00		

Engineered Tower Solutions, PLLC

neerea Tower Soluti PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		0005 00 05 DGG \ (
Job	Aho - Viper	32 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	,	71		Comb.	K	kip-ft	kip-ft
			Max. Vy	33	0.11	0.15	0.05
			Max. Vx	31	-0.01	0.00	0.00
T10	40 - 20	Leg	Max Tension	23	350.85	1.04	0.03
			Max. Compression	10	-401.10	-0.55	-0.02
			Max. Mx	10	-377.19	1.93	0.03
			Max. My	12	-6.07	-0.22	-1.70
			Max. Vy	10 .	0.73	1.93	0.03
			Max. Vx	. 12	0.47	-0.22	-1.70
		Diagonal	Max Tension	7	12.83	0.00	0.00
		-	Max. Compression	10	-13.84	0.00	0.00
			Max. Mx	32	1.04	-0.28	0.00
			Max. My	31	0.28	0.00	0.01
			Max. Vy	32	0.12	0.00	0.00
			Max. Vx	31	0.00	0.00	0.00
		Horizontal	Max Tension	22	0.76	0.00	0.00
			Max. Compression	13	-0.94	0.03	0.02
			Max. Mx	31	-0.01	0.19	0.06
			Max. My	31	-0.02	0.19	0.06
			Max. Vy	33	0.12	0.17	0.06
			Max. Vx	31	-0.01	0.00	0.00
T11	20 - 0	Leg	Max Tension	. 23	383.68	1.09	0.03
		_	Max. Compression	- 10	-441.40	-0.00	0.00
			Max. Mx	10	-422.70	1.81	0.02
			Max. My	12	-7.79	-0.17	-1.85
			Max. Vy	10	0.70	1.81	0.02
			Max. Vx	12	-0.48	-0.17	-1.85
		Diagonal	Max Tension	18	10.13	0.00	0.00
			Max. Compression	18	-10.84	0.00	0.00
			Max. Mx	27	2.11	-0.30	0.00
			Max. My	27	0.98	0.00	-0.01
			Max. Vy	27	0.12	0.00	0.00
			Max. Vx	27	-0.00	0.00	0.00
		Horizontal	Max Tension	22	0.65	0.11	0.02
			Max. Compression	- 13	-0.87	0.07	0.03
			Max. Mx	31	-0.06	0.27	0.10
			Max. My	35	0.05	0.27	0.10
			Max. Vy	31	0.14	0.27	0.10
			Max. Vx	35	0.02	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	413.90	32.58	-16.90
	Max. H _x	18	413.90	32.58	-16.90
	Max. Hz	7	-368.72	-29.40	14.65
	Min. Vert	7	-368.72	-29.40	14.65
	Min. H _x	7	-368.72	-29.40	14.65
	Min. H _z	18	413.90	32.58	-16.90
Leg B	Max. Vert	10	449.46	-34.30	-18.30
	Max. H _x	23	-389.98	30.32	16.03
	Max. Hz	25	-341.40	25.67	16.45
	Min. Vert	23	-389.98	30.32	16.03
	$Min. H_x$	10	449.46	-34.30	-18.30
	Min. Hz	10	449.46	-34.30	-18.30
Leg A	Max. Vert	2	421.16	0.71	37.50

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		S
Job		Page
	Aho - Viper	33 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load Comb.	K	K	K
**************************************	Max. H _x	20	24.05	2.39	1.22
	Max. H _z	2	421.16	0.71	37.50
	Min. Vert	15	-366.80	-0.76	-32.78
	Min. H _x	11	-192.12	-2.30	-17.52
	Min. H _z	15	-366.80	-0.76	-32.78

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	<u>K</u>	<u>K</u>	<i>K</i>	kip-ft	kip-ft	kip-ft
Dead Only	37.58	-0.00	-0.00	13.75	-4.91	-0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	45.10	1.05	-61.31	-6330.98	-106.41	25.65
0.9 Dead+1.6 Wind 0 deg - No Ice	33.82	1.05	-61.31	-6328.99	-104.86	25.63
1.2 Dead+1.6 Wind 30 deg - No Ice	45.10	27.53	-46.39	-4809.33	-2881.97	62.04
0.9 Dead+1.6 Wind 30 deg - No Ice	33.82	27.53	-46.39	-4808.54	-2877.52	62.01
1.2 Dead+1.6 Wind 60 deg - No Ice	45.10	48.60	-27.18	-2824.93	-5215.23	61.88
0.9 Dead+1.6 Wind 60 deg - No Ice	33.82	48.60	-27.18	-2826.16	-5208.28	61.84
1.2 Dead+1.6 Wind 90 deg - No Ice	45.10	54.55	-0.23	37.51	-5934.23	42.85
0.9 Dead+1.6 Wind 90 deg - No Ice	33.82	54.55	-0.23	33.30	-5926.48	42.82
1.2 Dead+1.6 Wind 120 deg - No Ice	45.10	55.78	29.85	3178.01	-5984.93	37.83
0.9 Dead+1.6 Wind 120 deg - No Ice	33.82	55.78	29.85	3170.55	-5977.23	37.80
1.2 Dead+1.6 Wind 150 deg - No Ice	45.10	30.05	50.96	5460.86	-3256.03	9.75
0.9 Dead+1.6 Wind 150 deg - No Ice	33.82	30.05	50.96	5451.00	-3251.12	9.75
1.2 Dead+1.6 Wind 180 deg - No Ice	45.10	0.90	55.70	5903.85	-187.82	-24.01
0.9 Dead+1.6 Wind 180 deg - No Ice	33.82	0.90	55.70	5893.55	-186.07	-23.99
1.2 Dead+1.6 Wind 210 deg - No Ice	45.10	-26.41	45.94	4794.21	2692.18	-53.38
0.9 Dead+1.6 Wind 210 deg - No Ice	33.82	-26.41	45.94	4785.12	2690.96	-53.36
1.2 Dead+1.6 Wind 240 deg - No Ice	45.10	-52.37	29.03	2985.84	5455.66	-51.61
0.9 Dead+1.6 Wind 240 deg - No Ice	33.82	-52.37	29.03	2978.68	5451.57	-51.57
1.2 Dead+1.6 Wind 270 deg - No Ice	45.10	-54.05	-0.90	-140.57	5807.06	-36.66
0.9 Dead+1.6 Wind 270 deg - No Ice	33.82	-54.04	-0.90	-144.50	5802.48	-36.63
1.2 Dead+1.6 Wind 300 deg - No Ice	45.10	-50.28	-28.94	-3119.09	5425.57	-38.48
0.9 Dead+1.6 Wind 300 deg - No Ice	33.82	-50.28	-28.94	-3119.94	5421.36	-38.46
1.2 Dead+1.6 Wind 330 deg -	45.10	-30.13	-51.20	-5415.87	3224.09	-13.13

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025 00 05 DCC M
Job		Page
	Aho - Viper	34 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Load Combination	Vertical	Shear _x	Shear <u>.</u>	Overturning Moment, Mx	Overturning Moment, M ₌	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
No Ice		······			***************************************	***************************************
0.9 Dead+1.6 Wind 330 deg -	33.82	-30.13	-51.20	-5414.40	3222.20	-13.12
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	172.29	-0.00	-0.00	135.67	-54.97	-0.00
1.2 Dead+1.0 Wind 0 deg+1.0	172.29	0.05	-5.96	-501.73	-59.76	2.98
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	172.29	2.87	-4.91	-393.35	-364.74	6.06
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	172.29	4.94	-2.81	-168.25	-595.33	5.92
Ice+1.0 Temp			2			
1.2 Dead+1.0 Wind 90 deg+1.0	172.29	5.70	-0.01	136.84	-683.36	4.43
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	172.29	5.24	2.91	450.97	-624.84	3.51
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	172.29	2.99	5.12	688.83	-379.43	1.03
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	172.29	0.04	5.74	752.72	-63.75	-2.89
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	172.29	-2.80	4.87	658.72	243.95	-5.66
deg+1.0 Ice+1.0 Temp						2.00
1.2 Dead+1.0 Wind 240	172.29	-5.03	. 2.85	440.72	488.32	-5.44
deg+1.0 Ice+1.0 Temp		2.02			.00.52	
1.2 Dead+1.0 Wind 270	172.29	-5.65	-0.04	128.23	563.17	-4.14
deg+1.0 Ice+1.0 Temp		0.00	0.01	120.25	0 00	
1.2 Dead+1.0 Wind 300	172.29	-5.03	-2.90	-181.00	493.55	-3.54
deg+1.0 Ice+1.0 Temp		0.00	2.70	101.00	1,21,00	5.5
1.2 Dead+1.0 Wind 330	172.29	-2.99	-5.13	-416.58	268.32	-1.18
deg+1.0 Ice+1.0 Temp	.,		0.15	770.00	200.52	
Dead+Wind 0 deg - Service	37.58	0.18	-10.38	-1060.59	-21.77	4.45
Dead+Wind 30 deg - Service	37.58	4.66	-7.86	-804.09	-492.18	10.48
Dead+Wind 60 deg - Service	37.58	8.23	-4.60	-467.70	-887.08	10.38
Dead+Wind 90 deg - Service	37.58	9.24	-0.04	17.30	-1008.97	7.11
Dead+Wind 120 deg - Service	37.58	9.43	5.05	548.89	-1016.12	6.20
Dead+Wind 150 deg - Service	37.58	5.09	8.63	935.34	-554.89	1.47
Dead+Wind 180 deg - Service	37.58	0.15	9.43	1010.97	-35.41	-4.17
Dead+Wind 210 deg - Service	37.58	-4.47	7.78	823.58	452.51	-9.03
Dead+Wind 240 deg - Service	37.58	-8.86	4.92	516.67	919.51	-8.65
Dead+Wind 270 deg - Service	37.58	-9.16	-0.15	-12.54	979.78	-6.06
Dead+Wind 300 deg - Service	37.58	-8.51	-4.90	-516.97	914.45	-6.31
Dead+Wind 330 deg - Service	37.58	-5.10	-4.90 -8.67	-905.75	541.66	-2.03

Solution Summary

	Sui	n of Applied Force.	S		Sum of Reaction	as	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-37.58	0.00	0.00	37.58	0.00	0.000%
2	1.05	-45.10	-61.32	-1.05	45.10	61.31	0.004%
3	1.05	-33.82	-61.32	-1.05	33.82	61.31	0.003%
4	27.53	-45.10	-46.39	-27.53	45.10	46.39	0.001%
5	27.53	-33.82	-46.39	-27.53	33.82	46.39	0.003%
6	48.60	-45.10	-27.18	-48.60	45.10	27.18	0.002%
7	48.60	-33.82	-27.18	-48.60	33.82	27.18	0.004%
8	54.55	-45.10	-0.23	-54.55	45.10	0.23	0.002%
9	54.55	-33.82	-0.23	-54.55	33.82	0.23	0.004%
10	55.78	-45.10	29.85	-55.78	45.10	-29.85	0.001%
11	55.78	-33.82	29.85	-55.78	33.82	-29.85	0.003%
12	30.05	-45.10	50.96	-30.05	45.10	-50.96	0.002%

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Aho - Viper	35 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

***************************************	Sui	Sum of Applied Forces			Sum of Reactions			
Load	PX	PY	PZ	PX	$\overset{\circ}{P}Y$	PZ	% Error	
Comb.	K	K	K	K	K	K		
13	30.05	-33.82	50.96	-30.05	33.82	-50.96	0.004%	
14	0.90	-45.10	55.70	-0.90	45.10	-55.70	0.002%	
15	0.90	-33.82	55.70	-0.90	33.82	-55.70	0.004%	
16	-26.41	-45.10	45.94	26.41	45.10	-45.94	0.001%	
17	-26.41	-33.82	45.94	26.41	33.82	-45.94	0.003%	
18	-52.37	-45.10	29.03	52.37	45.10	-29.03	0.001%	
19	-52.37	-33.82	29.03	52.37	33.82	-29.03	0.003%	
20	-54.05	-45.10	-0.90	54.05	45.10	0.90	0.001%	
21	-54.05	-33.82	-0.90	54.04	33.82	0.90	0.003%	
22	-50.29	-45.10	-28.94	50.28	45.10	28.94	0.002%	
23	-50.29	-33.82	-28.94	50.28	33.82	28.94	0.004%	
24	-30.13	-45.10	-51.20	30.13	45.10	51.20	0.001%	
25	-30.13	-33.82	-51.20	30.13	33.82	51.20	0.003%	
26	0.00	-172.29	0.00	0.00	172.29	0.00	0.000%	
27	0.05	-172.29	-5.96	-0.05	172.29	5.96	0.000%	
28	2.87	-172.29	-4.91	-2.87	172.29	4.91	0.000%	
29	4.94	-172.29	-2.81	-4.94	172.29	2.81	0.000%	
30	5.70	-172.29	-0.01	-5.70	172.29	0.01	0.000%	
31	5.24	-172.29	2.91	-5.24	172.29	-2.91	0.000%	
32	2.99	-172.29	5.12	-2.99	172.29	-5.12	0.000%	
33	0.04	-172.29	5.74	-0.04	172.29	-5.74	0.000%	
34	-2.80	-172.29	4.87	2.80	172.29	-4.87	0.000%	
35	-5.03	-172.29	2.85	5.03	172.29	-2.85	0.000%	
36	-5.65	-172.29	-0.04	5.65	172.29	0.04	0.000%	
37	-5.04	-172.29	-2.90	5.03	172.29	2.90	0.000%	
38	-2.99	-172.29	-5.13	2.99	172.29	5.13	0.000%	
39	0.18	-37.58	-10.38	-0.18	37.58	10.38	0.001%	
40	4.66	-37.58	-7.86	-4.66	37.58	7.86	0.001%	
41	8.23	-37.58	-4.60	-8.23	37.58	4.60	0.001%	
42	9.24	-37.58	-0.04	-9.24	37.58	0.04	0.001%	
43	9.43	-37.58	5.05	-9.43	37.58	-5.05	0.001%	
44	5.09	-37.58	8.63	-5.09	37.58	-8.63	0.001%	
45	0.15	-37.58	9.43	-0.15	37.58	-9.43	0.001%	
46	-4.47	-37.58	7.78	4.47	37.58	-7.78	0.001%	
47	-8.86	-37.58	4.92	8.86	37.58	-4.92	0.001%	
48	-9.16	-37.58	-0.15	9.16	37.58	0.15	0.001%	
49	-8.51	-37.58	-4.90	8.51	37.58	4.90	0.001%	
50	-5.10	-37.58	-8.67	5.10	37.58	8.67	0.001%	

Non-Linear Convergence Results

Load	Converged?	Number	Displacemeņt	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.0000001	10000000.0
2	Yes	10	0.00006273	0.00014951
3	Yes	10	0.0000001	0.00010948
4	Yes	11	0.0000001	0.00006310
5	Yes	10	0.0000001	0.00012036
6	Yes	11	0.00000001	0.00006751
7	Yes	10	0.00005437	0.00013085
8	Yes	11	0.0000001	0.00006547
9	Yes	10	0.00000001	0.00012575
10	Yes	11	10000000.0	0.00006049
11	Yes	10	0.00000001	0.00011355
12	Yes	11	0.00000001	0.00006392
13	Yes	10	0.00005039	0.00012192

tnxTower		Job		\ r	2025 08 05 BCC Mooting Page
<i></i>	± 0 / / O !		. An	o - Viper	36 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.		Project	ETS, PLLC Job N	Date 15:46:29 03/25/25	
Phone:	Phone: (919) 782-2710 FAX: 919-782-2710		Watauga County		Designed by hicham.anssar
14	Yes	11	0.00000001	0.00006704	
15	y es Yes	10	0.00000001	0.00006704	
16	Vas	11	0.0000001	0.00012307	

			*	
14	Yes	11	0.00000001	0.00006704
15	Yes	10	0.00000001	0.00012967
16	Yes	11	0.00000001	0.00006312
17	Yes	10	0.00000001	0.00012037
18	Yes	11	0.00000001	0.00005887
19	Yes	10	0.00000001	0.00010988
20	Yes	11	0.00000001	0.00006331
21	Yes	10	0.00000001	0.00012068
22	Yes	11	0.00000001	0.00006686
23	Yes	10	0.00005367	0.00012923
24	Yes	11	0.00000001	0.00006305
25	Yes	10	0.00000001	0.00012007
26	Yes	10	0.00000001	0.00014688
27	Yes	11	0.00000001	0.00011925
28	Yes	11	0.00000001	0.00013601
29	Yes	12	0.00000001	0.00006116
30	Yes	12	0.00000001	0.00006938
31	Yes	12	0.00000001	0.00007499
32	Yes	12	0.00000001	0.00007684
33	Yes	12	0.00000001	0.00007484
34	Yes	12	0.00000001	0.00007041
35	Yes	12	0.00000001	0.00006527
36	Yes	12	0.00000001	0.00005686
37	Yes	11	0.00000001	0.00013211
38	Yes	11	0.00000001	0.00011694
39	Yes	10	0.00000001	0.00012675
40	Yes	10	0.00000001	0.00012826
41	Yes	10	0.00000001	0.00013158
42	Yes	10	0.00000001	0.00013134
43	Yes	10	0.00000001	0.00012971
44	Yes	10	0.00000001	0.00013126
45	Yes	10	0.00000001	0.00013172
46	Yes	10	0.00000001	0.00012860
47	Yes	10	0.00000001	0.00012729
48	Yes	10	0.00000001	0.00012928
49	Yes	10	0.00000001	0.00013136
50	Yes	10	0.00000001	0.00012935

Maximum	TOWAR	Deflections	- Sarvica	Wind
IVIAXIIIIII		1 10011001:11111111	- 301 VIII 0	WWIIII

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	o
T1	199 - 184.025	4.864	43	0.22	0.10
T2	184.025 - 180	4.182	43	0.21	0.11
T3	180 - 160	3.995	43	0.21	0.09
T4	160 - 140	3.148	43	0.19	0.06
T5	140 - 120	2.392	43	0.16	0.05
T6	120 - 100	1.741	43	0.14	0.04
T7	100 - 80	1.199	43	0.11	0.03
T8	80 - 60	0.767	43	0.09	0.02
T9	60 - 40	0.438	43	0.06	0.01
T10	40 - 20	0.205	43	0.04	0.01
T11	20 - 0	0.059	43	0.02	0.00

Critical Deflections and Radius of Curvature - Service Wind

4	Job		Page
tnxTower		Aho - Viper	37 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	o	ft
199.00	5/8-in x 8-ft Lightning Rod	43	4.864	0.22	0.10	177414
198.00	Side Arm Mount [SO 303-1]	43	4.819	0.22	0.10	177414
196.00	Junction Box (9" x 6" x 5")	43	4.729	0.22	0.11	177414
188.00	Ice Shield 10'x7"	43	4.365	0.22	0.11	81356
183.00	PAD8-65AC1S1R	43	4.134	0.21	0.10	166152
175.00	HX6-6W-6WH	43	3.770	0.20	0.07	30392
160.00	Side Arm Mount [SO 303-1]	43	3.148	0.19	0.06	68182
155.00	Ice Shield 10'x7"	43	2.951	0.18	0.06	63156
150.00	PAD8-65AC1S1R	43	2.759	0.18	0.06	53897
130.00	PAD6-65B	43	2.053	0.15	0.05	43304
100.00	Side Arm Mount [SO 303-1]	43	1.199	0.11	0.03	42823
80.00	Pipe Mount [PM 601-1]	43	0.767	0.09	0.02	47631

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load	4	
	ft	in	Comb.		0
T1	199 - 184.025	28.365	10	1.27	0.60
T2	184.025 - 180	24.409	10	1.24	0.64
Т3	180 - 160	23.321	10	1.21	0.52
T4	160 - 140	18.398	10	1.09	0.39
T5	140 - 120	14.002	10	0.96	0.31
Т6	120 - 100	10.203	10	0.80	0.24
T7	100 - 80	7.033	10	0.65	0.17
T8	80 - 60	4.502	10	0.50	0.13
Т9	60 - 40	2.569	10	0.36	0.09
T10	40 - 20	1.207	10	0.23	0.05
T11	20 - 0	0.349	10	. 0.12	0.03

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in ·	o	0	ft ft
199.00	5/8-in x 8-ft Lightning Rod	10	28.365	1.27	0.60	27811
198.00	Side Arm Mount [SO 303-1]	10	28.104	1.27	0.62	27811
196.00	Junction Box (9" x 6" x 5")	10	27.582	1.27	0.65	27811
188.00	Ice Shield 10'x7"	10	25.475	1.25	0.69	12746
183.00	PAD8-65AC1S1R	10	24.131	1.23	0.61	34044
175.00	HX6-6W-6WH	10	22.016	1.18	0.42	5259
160.00	Side Arm Mount [SO 303-1]	10	18.398	1.09	0.39	12032
155.00	Ice Shield 10'x7"	10	17.254	1.06	0.37	11142
150.00	PAD8-65AC1S1R	10	16.137	1.03	0.35	9492
130.00	PAD6-65B	10	12.023	0.88	0.27	7563
100.00	Side Arm Mount [SO 303-1]	10	7.033	0.65	0.17	7353
80.00	Pipe Mount [PM 601-1]	10	4.502	0.50	0.13	8160

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page		
	Aho - Viper	38 of 44		
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25		
Client	Watauga County	Designed by hicham.anssar		

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	.Bolts	per Bolt K	per Bolt K	Allowable		
T2	184.025	Leg	A325X	0.7500	4	3.65	29.82	0.123	1	Bolt Tension
T3	180	Leg	A325X	1.0000	4	11.02	53.01	0.208	1	Bolt Tension
		Diagonal	A325X	0.6250	Ι	6.76	11.86	0.570	Ī	Member Block Shear
		Top Girt	A325X	0.6250	1	0.88	8.89	0.099	I	Member Block Shear
T4	160	Leg	A325X	1.0000	4	21.11	53.01	0.398	1	Bolt Tension
		Diagonal	A325X	0.6250	1	7.59	11.86	0.640	Ī	Member Block Shear
T5	140	Leg	A325X	1.0000	4	32.86	53.01	0.620	1	Bolt Tension
		Diagonal	A325X	0.6250	. 1	9.27	14.58	0.636	1	Member Block Shear
T6	120	Leg	A325X	1.0000	6	29.08	53.01	0.549	Ī	Bolt Tension
		Diagonal	A325X	0.7500	1	12.01	17.84	0.673	1	Member Bearin
		Horizontal	A325X	0.7500	1	3.97	10.16	0.390	1	Member Block Shear
T7	100	Leg	A325X	1.0000	6	36.91	53.01	0.696	1	Bolt Tension
		Diagonal	A325X	0.7500	1	11.41	17.84	0.640	1	Member Bearin
		Horizontal	A325X	0.7500	1	4.77	10.16	0.469	I	Member Block Shear
Т8	80	Leg	A325X>1'	1.2500	6	44.33	72.51	0.611	1	Bolt Tension
		Diagonal	A325X	0.7500	. 1	11.60	17.84	0.650	1	Member Bearin
		Horizontal	A325X	0.7500	1	5.47	10.16	0.538	1	Member Block Shear
Т9	60	Leg	A325X>1'	1.2500	6	51.47	72.51	0.710	1	Bolt Tension
		Diagonal	A325X	0.7500	1	12.21	17.84	0.685	1	Member Bearin
		Horizontal	A325X	0.7500	1	6.10	13.38	0.456	1	Member Bearin
T10	40	Leg	A325X>1'	1.2500	6	58.42	72.51	0.806	1	Bolt Tension
		Diagonal	A325X	0.7500	1	12.83	17.84	0.719	1	Member Bearing
T11	20	Horizontal	A325X	0.7500	1	6.95	13.38	0.520	1	Member Bearing
TII	20	Diagonal Horizontal	A325X A325X	0.7500 0.7500	1	10.13 7.65	17.84 17.84	0.568 0.429	1 1	Member Bearin Member Bearin

Compression Checks

Leg Design Data (Compression)

******************	•								Control Contro
Section	Elevation	Size	L	L_u	Kl/r	\boldsymbol{A}	P_u	ϕP_n	Ratio
No.								•	P_u
	ft		ft	ft		in²	K	K	ϕP_n
Tl	199 - 184.025	1 1/2	14.97	3.65	116.8	1.7672	-9.03	29.26	0.309 1
					K=1.00				
T2	184.025 - 180	1 1/2	4.02	3.65	116.8	1.7672	-14.74	29.26	0.504 1
					K=1.00				
T3	180 - 160	2 1/4	20.02	5.00	106.8	3.9761	-51.01	77.75	0.656 1
					K=1.00				

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		υ
Job		Page
	Aho - Viper	39 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	K	K	ϕP_n
T4	160 - 140	2 3/4	20.02	5.00	87.4 K=1.00	5.9396	-97.87	152.99	0.640 ¹
T5	140 - 120	3	20.02	5.00	80.1 K=1.00	7.0686	-150.19	199.04	0.755 1
T6	120 - 100	3 1/4	20.02	5.00	73.9 K=1.00	8.2958	-198.18	250.37	0.792 1
T7	100 - 80	3 1/2	20.02	5.00	68.6 K=1.00	9.6211	-251.02	306.80	0.818 1
T8	80 - 60	3 3/4	20.02	5.00	64.1 K=1.00	11.0447	-302.05	368.18	0.820 1
Т9	60 - 40	4	20.02	5.00	60.1 K=1.00	12.5664	-351.91	434.40	0.810 1
T10	40 - 20	4 1/4	20.02	5.00	56.5 K=1.00	14.1863	-401.10	505.39	0.794 1
T11	20 - 0	4 1/4	20.03	5.01	56.6 K=1.00	14.1863	-441.40	505.22	0.874 1

 $^{{}^{1}}P_{u}$ / ϕP_{n} controls

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T1	199 - 184.025	1	5.42	5.25	176.3 K=0.70	0.7854	-3.20	5.71	0.560 ¹
T2	184.025 - 180	SR 1" Ø + SR 1" Ø (Aho - Viper)	5.42	5.25	124.6 K=0.70	0.7854	-6.29	11.24	0.559 1
T3	180 - 160	L2x2x1/4	6.77	3.25	104.8 K=1.05	0.9380	-7.04	17.05	0.413 1
T4	160 - 140	L2x2x1/4	8.45	4.05	124.4 K=1.00	0.9380	-7.51	13.45	0.558 1
T5	140 - 120	L2 1/2x2 1/2x1/4	9.70	4.67	115.6 K=1.01	1.1900	-9.25	19.09	0.485 1
Т6	120 - 100	L3x3x1/4	7.07	6.55	132.7 K=1.00	1.4400	-11.77	18.46	0.637 1
T7	100 - 80	L3x3x1/4	7.62	7.09	143.8 K=1.00	1.4400	-11.75	15.73	0.747 1
T8	80 - 60	L3x3x1/4	8.20	7.67	155.5 K=1.00	1.4400	-12.23	13.46	0.909 1
Т9	60 - 40	L3 1/2 x 3 1/2 x 1/4	8.81	8.27	143.1 K=1.00	1.6875	-12.97	18.62	0.697 1
T10	40 - 20	L3 1/2 x 3 1/2 x 1/4	9.43	-8.89	153.8 K=1.00	1.6875	-13.84	16.11	0.859 1
T11	20 - 0	L3 1/2 x 3 1/2 x 1/4	10.30	9.76	168.9 K=1.00	1.6875	-10.80	13.37	0.808 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Horizontal Design Data (Compression)

Page Job *tnxTower* 40 of 44 Aho - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County hicham.anssar

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	K	K	ϕP_n
Tl	199 - 184.025	1	4.00	3.88	130.2 K=0.70	0.7854	-0.38	10.42	0.036 1
T2	184.025 - 180	1	4.00	3.88	130.2 K=0.70	0.7854	-2.47	10.42	0.237 1
T6	120 - 100	L2 1/2x2 1/2x3/16	9.63	9.35	96.1 K=0.67	0.9020	-3.97	17.98	0.221 1
T7	100 - 80	L2 1/2x2 1/2x3/16	11.13	10.83	101.8 K=0.61	0.9020	-4.77	16.94	0.281 1
T8	80 - 60	L2 1/2x2 1/2x3/16	12.63	12.31	107.5 K=0.57	0.9020	-5.47	15.91	0.344 1
Т9	60 - 40	L3x3x3/16	14.13	13.79	104.1 K=0.59	1.0900	-6.10	19.67	0.310 1
T10	40 - 20	L3x3x3/16	15.63	15.27	108.8 K=0.56	1.0900	-6.95	18.69	0.372 1
T11	20 - 0	L3 1/2 x 3 1/2 x 1/4	17.50	17.15	107.1 K=0.57	1.6875	-7.65	29.88	0.256 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

		Secondary H	orizon	tal De	esign	Data (Compre	ession)	
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	${\Phi P_n}$
T1	199 - 184.025	1	2.00	1.94	83.9 K=0.90	0.7854	-0.00	17.56	0.000 1
T2	184.025 - 180	1	2.00	1.94	83.9	0.7854	-0.00	17.56	0.000^{-1}

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	φP _n	Ratio P.,
	ft		ft	ft		in^2	K	K	$\frac{\Pi}{\phi P_n}$
TI	199 - 184.025	1 1/8	4.00	3.88	115.7 K=0.70	0.9940	-0.72	15.91	0.045 1
T3	180 - 160	L2x2x3/16	4.00	3.52	113.6 K=1.06	0.7150	-1.06	11.74	0.090 1

K=0.90

Bottom Girt Design Data (Compression)

¹ P_u / ϕP_n controls

0.547 1

0.550 1

0.601

565.49

638.38

638.38

Page Job tnxTower 41 of 44 Aho - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 **PLLC** 3227 Wellington Ct. Client Raleigh, NC 27615 Designed by Phone: (919) 782-2710 FAX: 919-782-2710 Watauga County hicham.anssar

Section	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	Ratio
No.								• "	P_u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
T2	184.025 - 180	1	4.00	3.88	130.2 K=0.70	0.7854	-2.21	10.42	0.212 1

¹ P_u / ϕP_n controls

Tension Checks

309.13

350.85

383.68

Leg Design Data (Tension) L Kl/r P_u Section Elevation Size L_u A ϕP_n Ratio P_u No. in^2 ft ft ft K ϕP_n TI 199 - 184.025 14.97 3.65 1.7672 8.16 79.52 1 1/2 116.8 0.103 T2 184.025 - 180 1 1/2 4.02 0.38 12.0 1.7672 14.62 79.52 0.184^{-1} 2 1/4 20.02 0.246 106.8 3.9761 44.09 178.92 180 - 160 5.00 T3 0.316 T4 160 - 140 2 3/4 20.02 5.00 87.4 5.9396 84.45 267.28 140 - 120 7.0686 131.44 318.09 0.413^{-1} T5 3 20.02 5.00 80.1 3 1/4 8.2958 373.31 0.468 20.02 T6 120 - 100 5.00 73.9 174.67 0.512 1 T7 100 - 80 3 1/2 20.02 5.00 68.6 9.6211 221.71 432.95 T8 80 - 60 11.0447 266.25 497.01 0.536 1 3 3/4 20.02 5.00 64.1

5.00

5.00

5.01

20.02

20.02

20.03

60.1

56.5

56.6

12.5664

14.1863

14.1863

60 - 40

40 - 20

20 - 0

Т9

T10

T11

Diagonal	Design	Data	(Tension)
•			**

4 1/4

4 1/4

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	K	K	$\overline{\phi P_n}$
T1	199 - 184.025	1	5.42	5.25	251.8	0.7854	3.03	25.45	0.119
T2	184.025 - 180	SR 1" Ø + SR 1" Ø (Aho -	5.42	5.25	178.0	0.7854	7.39	25.45	0.290 1
		Viper)							
T3	180 - 160	L2x2x1/4	6.77	3.25	66.9	0.5629	6.76	24.49	0.276
T4	160 - 140	L2x2x1/4	8.15	3.91	79.9	0.5629	7.59	24.49	0.310 1
T5	140 - 120	L2 1/2x2 1/2x1/4	9.38	4.51	72.7	0.7519	9.27	32.71	0.283 1
T6	120 - 100	L3x3x1/4	6.56	6.04	82.2	0.9159	12.01	39.84	0.301^{-1}
T7	100 - 80	L3x3x1/4	7.07	6.55	88.8	0.9159	11.41	39.84	0.286^{-1}
T8	80 - 60	L3x3x1/4	8.20	7.67	103.3	0.9159	11.60	39.84	0.291 1
T9	60 - 40	L3 1/2 x 3 1/2 x 1/4	8.81	8.27	94.6	1.1016	12.21	47.92	0.255^{-1}
T10	40 - 20	L3 1/2 x 3 1/2 x 1/4	9.43	8.89	101.4	1.1016	12.83	47.92	0.268^{-1}
T11	20 - 0	L3 1/2 x 3 1/2 x 1/4	9.86	9.33	106.2	1.1016	10.13	47.92	0.212^{-1}

 $^{{}^{1}}P_{u}$ / ${}_{0}P_{n}$ controls

¹ P_u / ϕP_n controls

Engineered Tower Solutions, PLLC 3227 Wellington Ct.

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Aho - Viper	42 of 44
Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Client	Watauga County	Designed by hicham.anssar

Horizontal	Design	Data	(Tension)
		_ ~~~	(

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft .	ft		in²	K	K	ϕP_n
T1	199 - 184.025	1	4.00	3.88	186.0	0.7854	0.38	25.45	0.015 1
T2	184.025 - 180	1	4.00	3.88	186.0	0.7854	2.05	25.45	0.081
T6	120 - 100	L2 1/2x2 1/2x3/16	9.63	9.35	72.1	0.5535	3.97	24.08	0.165
T 7	100 - 80	L2 1/2x2 1/2x3/16	11.13	10.83	83.5	0.5535	4.77	24.08	0.198^{-1}
T8	80 - 60	L2 1/2x2 1/2x3/16	12.63	12.31	95.0	0.5535	5.47	24.08	0.227^{-1}
T9	60 - 40	L3x3x3/16	14.13	13.79	88.1	0.6945	6.10	30.21	0.202^{-1}
T10	40 - 20	L3x3x3/16	15.63	15.27	97.6	0.6945	6.95	30.21	0.230^{-1}
T11	20 - 0	L3 1/2 x 3 1/2 x 1/4	17.50	17.15	94.3	1.1016	7.65	47.92	0.160 1

¹ P_u / ϕP_n controls

Secondar	y Horizontal	Design	Data	(Tension))

				,					
Section	Elevation	Size	L	L_u .	Kl/r	A	P_u	ϕP_n	Ratio
No.								•	P_u
	ft		ft	ft		in²	K	K	$\overline{\qquad}$ ϕP_n
T1	199 - 184.025	1	2.00	1.94	93.0	0.7854	0.00	25.45	0.000 1
T2	184.025 - 180	1	2.00	1.94	93.0	0.7854	0.00	25.45	0.000 1

 $^{{}^{1}}P_{u}/\phi P_{n}$ controls

Top Girt Design Data (Tension)

***************************************			***************************************			***************************************	***************************************	******************************	
Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.						_			P_u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
T1	199 - 184.025	1 1/8	4.00	3.88	165.3	0.9940	0.74	32.21	0.023 1
Т3	180 - 160	L2x2x3/16	4.00	3.52	74.1	0.4308	0.88	18.74	0.047 1

 $^{{}^{1}}P_{u}/\phi P_{n}$ controls

Bottom Girt Design Data (Tension)

			••••••	***************************************	***************************************			***************************************	
Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.								·	P_u
	ft		ft	ft		in ²	K	K	$\overline{\phi P_n}$
TO	184.025 - 180		4.00	3.88	186.0	0.7854		25.45	0.086

 $^{{}^{1}}P_{u}/\phi P_{n}$ controls

4T	Job	***	Page
tnxTower		Aho - Viper	43 of 44
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125019.STR.8180	Date 15:46:29 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Dection Capacity Table	Section	Capac	itv	Table
------------------------	---------	-------	-----	-------

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pas: Fait
T1	199 - 184.025	Leg	1 1/2	2	-9.03	29.26	30.9	Pass
T2	184.025 - 180	Leg	1 1/2	33	-14.74	29.26	50.4	Pass
T3	180 - 160	Leg	2 1/4	46	-51.01	77.75	65.6	Pass
T4	160 - 140	Leg	2 3/4	76	-97.87	152.99	64.0	Pas
T5	140 - 120	Leg	3	103	-150.19	199.04	75.5	Pas
T6	120 - 100	Leg	3 1/4	130	-198.18	250.37	79.2	Pas
T7	100 - 80	Leg	3 1/2	163	-251.02	306.80	81.8	Pas
T8	80 - 60	Leg	3 3/4	196	-302.05	368.18	82.0	Pas
T9	60 - 40	Leg	4	229	-351.91	434.40	81.0	Pas
T10	40 - 20	Leg	4 1/4	262	-401.10	505.39	79.4	Pas
110	40 - 20	Leg	7 1/4	202	-401.10	303.39	80.6 (b)	1 45
T11	20.0	T	4 1 /4	205	441.40	505.22		D
T11	20 - 0	Leg	4 1/4	295	-441.40	505.22	87.4	Pass
TI	199 - 184.025	Diagonal	I	. 8	-3.20	5.71	56.0	Pass
T2	184.025 - 180	Diagonal	SR 1" Ø + SR 1" Ø (Aho -	41	-6.29	11.24	55.9	Pass
			Viper)					
T3	180 - 160	Diagonal	L2x2x1/4	64	-7.04	17.05	41.3	Pass
		g					57.0 (b)	
T4	160 - 140	Diagonal	L2x2x1/4	. 79	-7.51	13.45	55.8	Pas
14	100 - 140	Diagonal	L2X2X1/4	. 19	-7.31	13.43		ras
							64.0 (b)	_
T5	140 - 120	Diagonal	L2 1/2x2 1/2x1/4	106	-9.25	19.09	48.5	Pass
							63.6 (b)	
T6	120 - 100	Diagonal	L3x3x1/4	134	-11.77	18.46	63.7	Pas
		Ü					67.3 (b)	
T7	100 - 80	Diagonal	L3x3x1/4	167	-11.75	15.73	74.7	Pas
T8	80 - 60		L3x3x1/4	200	-12.23	13.46	90.9	Pas
		Diagonal						
T9	60 - 40	Diagonal	L3 1/2 x 3 1/2 x 1/4	233	-12.97	18.62	69.7	Pas
T10	40 - 20	Diagonal	L3 1/2 x 3 1/2 x 1/4	266	-13.84	16.11	85.9	Pas
T11	20 - 0	Diagonal	L3 1/2 x 3 1/2 x 1/4	298	-10.80	13.37	80.8	Pas
T1	199 - 184.025	Horizontal	1	26	-0.38	10.42	3.6	Pas
T2	184.025 - 180	Horizontal	1	35	-2.47	10.42	23.7	Pas
T6	120 - 100	Horizontal	L2 1/2x2 1/2x3/16	132	-3.97	17.98	22.1	Pas
10	120 - 100	Horizontai	L2 1/2X2 1/2X3/10 ·	132	-3.91	17.90		I as
	400 00		*************************		4	1601	39.0 (b)	-
T7	100 - 80	Horizontal	L2 1/2x2 1/2x3/16	165	-4.77	16.94	28.1	Pass
							46.9 (b)	
T8	80 - 60	Horizontal	L2 1/2x2 1/2x3/16	198	-5.47	15.91	34.4	Pass
							53.8 (b)	
Т9	60 - 40	Horizontal	L3x3x3/16	231	-6.10	19.67	31.0	Pas
1,	00 10	Honzonai	ESASAS, TO	.231	0.10	13.07	45.6 (b)	2
T10	40. 20	111	1.2-2-2/17	264	6.05	19.60		Dan
T10	40 - 20	Horizontal	L3x3x3/16	264	-6.95	18.69	37.2	Pas
							52.0 (b)	
T11	20 - 0	Horizontal	L3 1/2 x 3 1/2 x 1/4	297	-7.65	29.88	25.6	Pas
				•			42.9 (b)	
T1	199 - 184.025	Secondary Horizontal	1 -	24	-0.00	17.56	0.1	Pass
T2	184.025 - 180	Secondary Horizontal	i	44	-0.00	17.56	0.1	Pas
T1	199 - 184.025	Top Girt	1 1/8	5	-0.72	15.91	4.5	Pas
T3	180 - 160	Top Girt	L2x2x3/16	48	-1.06	11.74	9.0	Pas
							9.9 (b)	
T2	184.025 - 180	Bottom Girt	1	40	-2.21	10.42	21.2	Pas
				•			Summary	
						Leg (T11)	87.4	Pas
						Diagonal	90.9	Pas
						_	70.7	1 45
						(T8)	53 0	_
						Horizontal	53.8	Pas
						(T8)		
						Secondary	0.1	Pas
						Horizontal		
			4			(T1)		
						Top Girt	9.9	Pass
						rop Out	7.7	ras

Page Job tnxTower 44 of 44 Aho - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125019.STR.8180 15:46:29 03/25/25 PLLC 3227 Wellington Ct. Raleigh, NC 27615 Client Designed by Phone: (919) 782-2710 FAX: 919-782-2710

Watauga County

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
						(T3) Bottom Girt (T2)	21.2	Pass
			*			Bolt Checks	80.6	Pass
***************************************				***************************************	***************************************	RATING =	90.9	Pass

hicham.anssar

Program Version 8.3.1.2 - 12/11/2024 File:C:/Users/hicham.anssar/OneDrive - Engineered Tower Solutions/Desktop/2024/125019_1018_Aho_Mapping SA/SE/8180_Tower Modification Drawings/Analysis/Tower/Aho - Viper.eri

March 26, 2025 Site Name: Aho - Viper Page 9

199.0 Ft Self Support Tower Modification Structural Analysis ETS, PLLC Job Number: 24125019.STR.8180_Rev. 1

APPENDIX B BASE LEVEL DRAWING

Feed Line Plan 20'

Section @ 20' (2) Step Pegs (5/8" SR) 7-in. w/ 30" Step, Climbing Rung: SR State (1) 27 next 8/12, (2) Ladder Rail: PL2x1/4 (2) Step Pegs (5/8" SR) 7-in. w/ 30" Step

Engineered Tower Solutions, PLLC	Aho - Viper		
3227 Wellington Ct.	Project: ETS, PLLC Job N	lo. 24125019.STR.8180	
Raleigh, NC 27615	Client: Watauga County	Drawn by: hicham.anssar	App'd:
Phone: (919) 782-2710	Code: TIA-222-G	Date: 03/25/25	Scale: NTS
	Path:	12502 CILL for Pincon 2414 With Low Work and Daywolf or Associate Associate	Dwg No. E-7

March 26, 2025 Site Name: Aho - Viper Page 10

199.0 Ft Self Support Tower Modification Structural Analysis ETS, PLLC Job Number: 24125019.STR.8180_Rev. 1

APPENDIX C ADDITIONAL CALCULATIONS

	Bolt-On Diagonal Bracing Design
Tower Section	180-184 ft
Pu	6.29 kip This calculator follows the procedures
Code	H Document # ENG-MAP-10254. The int
ø Factor	an existing bracing member by develop
Allowable Stress Increase	which would increase it's tension capacity
F _y	36 ksi
F _u	58 ksi ,
E	29,000 ksi
Effective Length Factor, "Keff"	

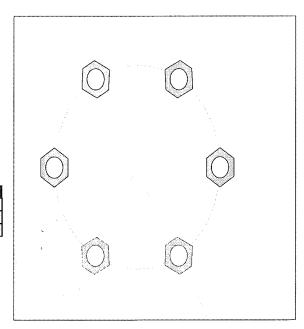
Notes

This calculator follows the procedures and guidelines provided by the Crown Castle Solid Rod Reinforcement Document # ENG-MAP-10254. The intention of this modification is to increase the compression capacity of an existing bracing member by developing a modified radius of gyration, but not allowing an increase in area which would increase it's tension capacity.

Member Type	Member	Area (in²)	Moment of Inertia (in ⁴)	Radius of Gyration (in)	Unbraced Length (in)	$^{\mathrm{KL}}I_{\mathrm{r}}$	$^{\text{Sc}}I_{\min(\text{re. rp})} \leq ^{\text{KmLu}}I_{\text{rm}}$
Original Member	SR1"Ø	0.7854	0.0491	0.250	63,00	176.38	ala e
Additional Member	SR 1" Ø	0.7854	0.0491	0.250	12.00	33.60	Sc, max = 31.18 in
Built-Up Member	SR1"Ø+SR1"Ø	0.7854	0.0982	0.354	63.00	124.72	Sufficient

Bolted-On Diago	onal Capacity			
Γ _m	0.354 in			
K.mL.u/r.m	124.72			
λ.	1.40			
F _{orm}	15.87 ksi			
øPn	11.22 kip			
Compression Capacity 56.1%				

Self Support Anchor Rod Capacity


Site Info	
Site #	HP-1382
Site Name	Aho - Viper
ETS, PLLC#	24125019.STR.8180

Analysis Considerations	
TIA-222 Revision	G
Grout Considered:	No
l _{ar} (in)	1.25
Eta Factor, η	0.5

Applied Loads		1124.
	Comp.	Uplift
Axial Force (kips)	449.00	390.00
Shear Force (kips)	39.00	34.00

Considered Eccentricity	San A
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000

^{*}Anchor Rod Eccentricity Applied

Connection Properties	· 撤 4.6售	###\$ - re	Analysis Results	Maria de Aria (Aria) de la composición del composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la compo
Anchor Rod Data		Anchor Rod Summary		(units of kips, kip-in)
(6) 1-1/4" ø bolts (F1554-105 N; Fy=105 ksi, Fu=125 ksi)		Pu_c = 74.83	φPn_t = 96.9	Stress Rating
l _{ar} (in): 1.25		Vu = 6.5	φVn = n/a	90.6%
- · ·		Mu = n/a	φMn = n/a	Pass

SST Unit Base Foundation

Site # : HP-1382 Site Name: Aho - Viper ETS, PLLC #: 24125019.STR.8180

TIA-222 Revision:

Top & Bot. Pad Rein. Different?:	
Tower Centroid Offset?:	÷ 🔲
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis	Reactions	······································
Global Moment, M:	6776	ft-kips
Global Axial, P:	45	kips
Global Shear, V:	63	kips
Leg Compression, P _{comp} :	449	kips
Leg Comp. Shear, V _{u_comp} :	39	kips
Leg Uplift, Puplift:		kips
Leg Uplift. Shear, V u_uplift:	34	kips
Tower Height, H:	199	ft
Base Face Width, BW :	18	ft
BP Dist. Above Fdn, bp dist:	3	in

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	200.28	63.00	31.5%	Pass
Bearing Pressure (ksf)	5.63	2.63	46.7%	Pass
Overturning (kip*ft)	9033.54	7232.75	80.1%	Pass
Pier Flexure (Comp.) (kip*ft)	1884.03	204.75	10.9%	Pass
Pier Flexure (Tension) (kip*ft)	848.84	178.50	21.0%	Pass
Pier Compression (kip)	8998.02	460.88	5.1%	Pass
- Pad Flexure (kip*ft)	3113.06	2237.73	71.9%	Pass
Pad Shear - 1-way (kips)	602.46	401.89	66.7%	Pass
Pad Shear - Comp 2-way (ksi)	0.201	0.128	63.9%	Pass

	Pier Properties		
	Pier Shape:	Circular	
	Pier Diameter, dpier:	4.0	ft
	Ext. Above Grade, E:	1.35	ft
-	Pier Rebar Size, Sc:	8	
Pie	r Rebar Quantity, mc :	20	
Р	er Tie/Spiral Size, St:	4	
Pier T	ie/Spiral Quantity, mt:	9	
Pier	Reinforcement Type:	Tie	
Pi	er Clear Cover, cc _{pier} :	3	in

Structural Rating:	71.9%
Soil Rating:	80.1%

Pad Properties		
Depth, D:	5.65	ft
Pad Width, W ₁:	31.00	ft
Pad Thickness, T:	1.75	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	10	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	36	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties			
Rebar Grade, Fy:	60	ksi	
Concrete Compressive Strength, F'c:	4,5	ksi .	
Dry Concrete Density, $\delta \mathbf{c}$:	150	pcf	

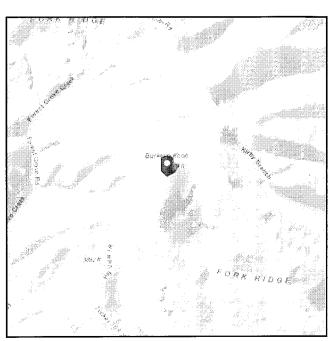
Soil Properties		
Total Soil Unit Weight, γ:	100	pcf
Ultimate Gross Bearing, Qult:	7.500	ksf
Cohesion, Cu :	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	26	degrees
SPT Blow Count, N _{blows} :	6	
Base Friction, μ :	0.3	
Neglected Depth, N:	2.0	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw :	N/A	ft

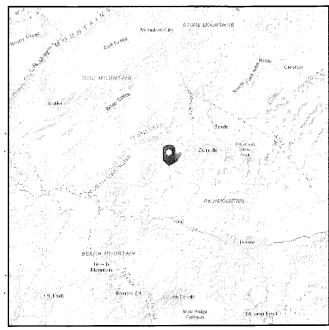
Address:

No Address at This Location

ASCE Hazards Report

ASCE/SEI 7-10 Standard:


Risk Category: IV


Soil Class: D - Stiff Soil Latitude: 36.31608

Longitude: -81.79151

Elevation: 4364.061870703125 ft

(NAVD 88)

Wind

Results:

Wind Speed 10-year MRI 25-year MRI

50-year MRI

100-year MRI

Special

120 Vmph

76 Vmph 84 Vmph

90 Vmph

96 Vmph

Special Wind Region -- Mountainous terrain, gorges, and special wind regions shown in Fig. 26.5-1 shall be examined for unusual wind conditions. The Authority Having Jurisdiction shall, if necessary, adjust the values given in Fig. 26.5-1 to account for higher local wind speeds. Such adjustment shall be based on meteorological information and an estimate of the basic wind speed obtained

140 Vmph for elevations between 3500 ft and 4500 ft,

Topographic effects do not need to be considered with the required wind speeds per Jurisdiction guidances.

in accordance with the provisions in Section 26.5.3.

Data Source:

ASCE/SEI 7-10, Fig. 26.5-1B and Figs. CC-1-CC-4, and Section 26.5.2,

Date Accessed:

incorporating estata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2.

Site Soil Class	:	D - Stiff Soi	I							
Results:										
S _s :		0.272		S_{D1} :		0.157				
S_1 :		0.098		T_L :		12				
F _a :		1.582		PGA:		0.145				
F _v :		2.4		PGA _M :		0.219				
S _{MS} :		0.431		F _{PGA} :		1.51				
S _{M1} :		0.236		l _e :		1.5				
$S_{ extsf{DS}}$:		0.287		-						
Seismic Design	n Category: 10	nse Spectrum		0.30	E	Design Respo	nse S	pectrum		
0.40				0.25						
0.35				•	!					
0.30				0.20						
0.25				0.15						
0.20										
0.15				0.10						
0.10				0.05						
0.05	1						Jan			
0 <u>// 2</u>	S _a (g) vs T(s)	8 10	12 1	0 - 12,222 1 . 0	² s	S _a (g) vs T(s)	8	10	12	14

Data Accessed:

Tue Mar 25 2025

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.79

0.75 in.

Concurrent Temperature:

15 F

Gust Speed

30 mph

Data Source:

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed:

Tue Mar 25 2025

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

In the Appalachian Mountains, ice thicknesses may vary significantly over short distances.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

March 26, 2025 Site Name: Aho - Viper Page 11

199.0 Ft Self Support Tower Modification Structural Analysis ETS, PLLC Job Number: 24125019.STR.8180_Rev. 1

APPENDIX D MODIFICATION DESIGN DRAWINGS

TOWER MODIFICATION DRAWINGS

100	SITE INFORMATION
SITE NAME	AHC - VIPER
SITE NUMBER	HP-1382
SITE ADDRESS	1385 SAMPSON ROAD BODNE, NC 28807 WATAUGA COUNTY
LAT, / LONG.	N 36,154419*, W 81.602800*
ETS JOB#:	24125019.STR.8180
TOWER MANUFACTURER	WORLD TOWER COMPANY
TOWER TYPE	SELF SUPPORT TOWER
TOWER HEIGHT	199.0 FT

DRI	VIN	G D	IRE	СП	10	IS
· · · · · · · · · · · · · · · · · · ·		. 200	50.00		_	

XXXX	PROJECT CONTACTS	100
1.	CLIENT REPRESENTATIVE	
	MARTY RANDALL	
	10-16 CONSULTING MOBILE (828) 527-2416	
	MARTY:RANDALL® 1818CONSULTING.COM	
2,	CONSTRUCTION MANAGER TBD	
3.	ENGINEER OF RECORD (EOR)	
	J, SCOTT HILGOE, P.E.	
	3227 WELLINGTON CT. RALEIGH, NC 27615 OFFICE (819) 782-2710	
	SCOTT, HILGOE@ETS-PLLC.COM	

ETS OFFERS REVIEW OF CONTRACTOR-PREPARED CLASS IV RIGGING PLANS FOR A FEE. CONTACT RIGGING@ETS-PLLC,COM FOR PRICING AT TIMELINE.

NOTE FOR CONTRACTOR

SUPPLIED DETAILS ARE PROVIDED FOR AN EFFECTIVE AND CONSTRUCTIES DESIGN MARRISO DAY THE AVAILABLE PROFUNCTION AND CONSTRUCTIES DESIGN MARRISO DAY THE AVAILABLE PROFUNDATION AND THE AVAILA

INSPECTION DETICIENTIES.
NOTE ETS MAY WITHHOLD RESOLUTION OF CONTRACTOR / FIELD
DUESTIONS PENDING PAYMENT OR POW FOR PAYMENT OF THE \$90
EOR CONSULTING FEE.

	CODE COMPLIANCE
THIS REINFORCEMENT DESIGN IS ANTENNA TO	BASED ON THE REQUIREMENTS OF TIA STRUCTURAL STANDARDS FOR STEEL OWERS AND ANTENNA SUPPORTING STRUCTURES USING.
TIA CODE	TIA-222-G
BUILDING CODE	2018 NORTH CAROLINA STATE BUILDING CODE (2015 IBC)
NOMINAL WIND SPEED	108 MPH (AS REQUIRED BY WATAUGA COUNTY)
ICE THICKNESS	1.00 IN
WIND SPEED WITH ICE	30 MPH
SERVICE LOAD WIND SPEED	60 MPH
EXPOSURE CATEGORY	С
STRUCTURE CLASS	III
TOPOGRAPHIC CATEGORY	1
SPECIAL NOTES	

	T			
SHEET #	REV. (DATE)	DESCRIPTION		
T-1	0-03/25/2025	TITLE PAGE		
N-1	0-03/25/2025	MODIFICATION INSPECTION CHECKLIST		
N-2	0-03/25/2025	PROJECT NOTES		
вм	0-03/25/2025	BILL OF MATERIALS		
S-1	0-03/25/2025	TOWER ELEVATION AND MODIFICATION SCHEDULE		
S-2	0 - 03/25/2025	DIAGONAL REINFORGEMENT DETAILS		
P-1	0-03/25/2025	PHOTOS		
•				
		-		
		-		
		-		
· ·				
-				
	T -			
	· -	-		

	ENGINEERED TOWER SOLUTIONS			
	3227 WELLINGTON COURT RALEIGH, NC 27815 o: 919-782-2710, f; 919-435-0631 www.ets-pile.com			
EEL.	PREPARED FOR			
	SITE NAME			
-	AHO - VIPER			
	SITE NUMBER HP-1382 SITE ADDRESS			
	1388 SAMPSON ROAD BOONE, NC 28607 LATITUDE/LONGITUDE			
	N 36.154419', W 81.602800' SEAL NITTINIA NC #P-1016			
	CAROLLESSIO Z			
	SEAL 2			
	1 Amala			
	11/1/11/11/11/11/03/25/2025			
	REV DATE DETAILS D 03/25/2025 FOR CONSTRUCTION			
	2			
_	4 5			
	6 7 6			
	9 10			
	11 12			
	13 14 CHECKED BY HA			
\dashv	SHEET YITLE			
	TITLE PAGE			

		MI CHECKLIST
REQUIRED	REPORT ITEM	BRIEF DESCRIPTION
		PRE-CONSTRUCTION
N/A	EOR APPROVED SHOP DRAWINGS	ONCE THE PRE-MODIFICATION MAPPING IS COMPLETE AND PRIOR TO FASRICATION. THE CONTRACTOR SHALL PROVIDE DETAILED ASSEMBLY CRAMMANDIDS SHOP DRAWINGS ALONG WITH EOR RPI FORM DETAILING ANY CHANGES FROM THE ORIGINAL DESIGN TO THE EOR FOR REVIEW AND APPROVIAL.
N/A	FABRICATION INSPECTION	A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THE CONTRACT DOCUMENTS, SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	FABRICATOR CERTIFIED WELD INSPECTION	A CM SHALL INSPECT ALL WELDING PERFORMED ON STRUCTURAL MEMBERS DURING FABRICATION, A WRITTEN REPORT SHALL BE PROVIDED TO THIM INSPECTOR FOR INCLUSION IN THE MI REPORT.
x	MATERIAL TEST REPORTS (MTR)	MATERIAL TEST REPORTS SHALL BE PROVIDED FOR MATERIAL USED. MTRS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT,
N/A	FABRICATOR NDE INSPECTION REPORT	CRITICAL SHOP WELDS THAT REQUIRE TESTING ARE NOTED ON THESE CONTRACT DRAWINGS. A CERTIFIED NOT INSPECTOR SHALL PERFORM NON-DESTRUCTIVE EXAMINATION AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	NOE OF MONOPOLE BASE PLATE	A NDE OF THE POLE TO BASE PLATE CONNECTION IS REQUIRED AND A WAITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION THE MI REPORT,
x	PACKING SLIPS	PACKING/SHIPPING LIST FOR ALL MATERIAL USED DURING CONSTRUCTION OF THE MODIFICATION.
DITIONAL TE	STING AND INSPECTIONS:	
N/A		
	1	CONSTRUCTION
N/A	FOUNDATION INSPECTIONS	A VISUAL DISSERVATION OF THE EXCAVATION AND REBAR SHALL BE PERFORMED BEFORE PLACING THE CONCRETE. A VISUAL DISSERVATION OF THI REBAR SHALL BE PERFORMED BEFORE PLACING THE EPOXY. A SEALED WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION THE MI REPORT.
N/A	CONCRETE COMP. STRENGTH AND SLUMP TEST	THE CONCRETE MIX DESIGN, SLUMP TEST, AND COMPRESSIVE STRENGTH TESTS SHALL BE PROVIDED AS PART OF THE FOUNDATION REPORT.
NVA	EARTHWORK SOIL COMPACTION	FOUNDATION SCIL COMPACTION SHALL BE INSPECTED AND APPROVED BY AN APPROVED FOUNDATION INSPECTOR AND RESULTS INCLUDED AS PAR OF THE FOUNDATION REPORT.
N/A	EARTHWORK: BEARING CAPACITY	FOUNDATION SUB-GRADES SHALL BE INSPECTED AND APPROVED BY AN APPROVED FOUNDATION INSPECTOR AND RESULTS INCLUDED AS PART OF FOUNDATION REPORT.
NVA	MICROPILE/ROCK ANCHOR	MICROPILES/ROCK ANCHORS SHALL BE INSPECTED BY THE FOUNDATION INSPECTION VENDOR AND SHALL BE INCLUDED AS PART OF THE FOUNDATIONSPECTION REPORT, ADDITIONAL TESTING ANDIOR INSPECTION REQUIREMENTS ARE NOTED IN THE PROJECT NOTES.
N/A	POST-INSTALLED ANCHOR ROD VERIFICATION	POST INSTALLED ANCHOR ROD VERIFICATION SHALL BE PERFORMED IN ACCORDANCE WITH REQUIREMENTS AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	BASE PLATE GROUT VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR THAT CERTIFIES THAT THE GROUT WAS REMOVED AND/OR INSTALLED IN ACCORDANCE WITH APPLICABLE REQUIREMENTS FOR INCLUSION IN THE MI REPORT.
N/A	FIELD CERTIFIED WELD INSPECTION	A CERTIFIED WELD INSPECTOR SHALL INSPECT AND TEST FIELD WELDS PER THE WELDING NOTES ON SHEET N.Z. A REPORT SHALL BE PROVIDED. NO FIELD WELD SHALL BE PERFORMED AS REQUIRED BY APPLICABLE STANDARDS AND CONTRACT DOCUMENTS, THE NDE REPORT SHALL BE INCLUDED IN THE CM REPORT.
N/A	FIELD NDE	A NDE OF THE FIELD WELDS AND ANY ADDITIONAL NDE REQUIREMENTS NOTED IN THESE DESIGN DOCUMENTS.
×	ON-SITE COLD GALVANIZING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE WRITTEN AND PHOTOGRAPHIC DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY ON-SITE COLD GALVANIZING WAS APPLIED PER MANUFACTURER SPECIFICATIONS AND APPLICABLE STANDARDS.
N/A	TENSION TWIST AND PLUMB	THE GENERAL CONTRACTOR SHALL PROVIDE A REPORT IN ACCORDANCE WITH APPLICABLE STANDARDS DOCUMENTING TENSION TWIST AND PLUM
N/A	TOWER FLUMB DELIVERABLES	THE CONTRACTOR SHALL PROVIDE WRITTEN AND PHOTOGRAPHIC DOCUMENTATION TO THE MI INSPECTOR VERIFYING THE TOWER PLUMB CONDITION.
N/A	CANISTER DRAWINGS	THE CONTRACTOR SHALL SUBMIT A LEGIBLE COPY OF ANY FINAL FABRICATION OR PARTS DRAWINGS PROVIDED BY THE CANISTER VENDOR.
×	GC AS-BUILT DRAWINGS	THE GENERAL CONTRACTOR SHALL SUBMIT A LEGIBLE COPY OF THE ORIGINAL DESIGN DRAWINGS BITHER STATING TINSTALLED AS DESIGNED' OR NOTING ANY CHANGES THAT WERE REQUIRED AND APPROVED BY THE ENGINEER OF RECORD, EDRARF FORMS APPROVING ALL CHANGES SHALL BE SUBMITTED.
DITIONAL TE	STING AND INSPECTIONS:	
N/A		
		POST-CONSTRUCTION .
×	CONSTRUCTION COMPLIANCE LETTER	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AT THESE CONTRACT DRAWINGS.
N/A	POST-INSTALLED ANCHOR ROD PULL TESTS	POST-INSTALLED ANCHOR RODS SHALL BE TESTED BY AN APPROVED PULL TEST INSPECTOR AND A REPORT SHALL BE PROVIDED INDICATING TESTI RESULTS.
х	PHOTOGRAPHS	PHOTOGRAPHS SHALL BE SUBMITTED TO THE MILPHOTOS SHALL DOCUMENT ALL PHASES OF THE CONSTRUCTION. THE PHOTOS SHALL BE ORGANI IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO.
N/A	BOLT HOLE INSTALLATION VERIFICATION REPORT	THE MINSPECTOR SHALL VERIFY THE HOLE SIZE AND CONDITION OF 10% OF ALL NON PRE-TENSIONED BOLTS INSTALLED AS PART OF THE MODIFICATION. THE MIXEPORT SHALL CONTAIN THE COMPLETED BOLT INSTALLATION VERIFICATION REPORT, INCLUDING THE SUPPORTING PHOTOGRAPHS.
х	PUNCH LIST DEVELOPMENT AND CORRECTION DOCUMENTATION	FINAL PUNCH LIST INDICATING ALL NONCONFORMANCE(S) IDENTIFIED AND THE FINAL RESOLUTION/APPROVAL.
×	MI INSPECTOR RECORD DRAWING(5)	THE MINISPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTOR'S REDLINE DRAWING AND THE ACTUAL COMPLETED INSTALLATION.
	STING AND INSPECTIONS:	
N/A		

MODIFICATION INSPECTION NOTES

GENERAL

THE MILE AN ONLETTE VIEWAL AND HANDS ON INSPECTION OF TOWER MODIFICATIONS MULLIPRICA REVIEW OF CONSTRUCTION REPORTS WAS GOOD GOOD TOWN. PER THIND TO DICKMENT ATION PROVIDED BY THE GENERAL CONTRACTOR (IGC), AS WELL AS ANY RESECTION DOCUMENTS PROVIDED BY WIS PLAYN THE SPECTIONS. THE MIS TO GISURE DICKMENT SERVICES OF WIS PLAYN THE SPECTIONS. THE MIS TO GISURE DICKMENTS, MARBLY THE WORDFRATION DISAMANGS, IN ACCORDANGE WITH APPLICABLE STANDARDS. AND SEGRINGED THE RENINGER OF RECORD [IGR].

NO DOCUMENT, CODE OR POLICY CAN ANTICIPATE EVERY SITUATION THAT MAY ARISE. ACCORDINGLY, THIS CHECKLIST IS INTENDED TO SERVE AS A SOURCE OF GUIDING PRINCIPLES IN ESTABLISHING GUIDELINES FOR MODIFICATION INSPECTION.

THE MILE TO CONTRIVING STALLATION CONFIDENTION AND VIGINALMENT ONLY AND IS A RECEIVED THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE NAME OF THE STRUCTURAL NAME OF THE N

TO ENSURE IN THE REQUIREMENTS OF THEM ARE HET. IT IS VITAL THAT THE GENERAL CONTRACTOR (CC) AND THE MINISPECTOR REGION COMMUNICATING AND COORDINATED AND CONTRACTOR REGION AND CONTRACTOR REGION AND CONTRACTOR REGION AND CONTRACTOR REGION AND CONTRACTOR REGIONAL CONTRACTOR REGIONAL CONTRACTOR REGIONAL CONTRACTOR REGIONAL CONTRACTOR REGIONAL CONTRACTOR REGIONAL CONTRACTOR REGIONAL CONTRACTOR REGIONAL CONTRACTOR POOL.

SERVICE LEVEL COMMITMENT

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MI REPORT:

REQUIRED PHOTOS

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

- ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT.

 PRECONSTRUCTION GENERAL SITE CONDITION

 PRIOTICISAN SITE CONDITION

 PRIOTICISAN SITE OF THE SITE OF TH

PHOTOS OF ELEVATED MODIFICATIONS TAKEN ONLY FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

Ш	REV	DATE	DETAILS		
Ш	0	03/25/2025	FOR CONSTRUCTION		
Ш	1				
Ш	2				
Ш	3				
Ш	4				
Ш	5				
Ш	8				
Ш	7				
Ш	8				
Ш	9				
Ш	10				
Ш	11				
Ш	12				
Ш	13				
Ш	14				
l	DRAWN BY: EDR CHECKED BY: HA				
h	SHEET TITLE				
	MODIFICATION				

INSPECTION CHECKLIST SHEET N-1 CURRENT REV # 0 ETS #: 24125019.STR.8180

GENERAL NOTES:

- ALL REFERENCES TO THE OWNER IN THESE DOCUMENTS SHALL BE CONSIDERED WATAUGA COUNTY OR ITS DESIGNATED REPRESENTATIVE.
- ITS DESIGNATED REPRESENTATIVE.

 ALL WORK PRESENTED ON THESE DEMANDS MUST BE COURLETED BY THE CONTRACTOR UNLESS NOTED OF HERMORE. HE CONTRACTOR MUST HAVE CONSIDERABLE EMPERIESCE IN PERFORMANCE OF WORK TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE WORK TO BE PERFORMED AND THAT HE IS PROPERTY ILCENSED AND PROPERTY REGISTERED TO DO THAY WORK IN THE STATE OF PORTHY ACADIMA.
- I THIS THAT HE SHALE UP INDIVIDED HARDUMA. WHEN THE 2018 NORTH CAROLINA STATE BUILDING CODE (2015 BIGE). WHEN SHALE BOY BUILDING CODE (2015 BIGE). WHILE SHOWN OR NOTED OTHERWISE ON THE CONTRACT DRAWNING, OR IN THE SPECIFICATIONS, THE FOLLOWING NOTES SHALL APPLY TO THE MATERIALS LISTED HERBIY, AND TO THE PROCEDURES TO BE USEDON THIS ROJECT.
- LISED ON THIS PROJECT.

 ALL HARROWARE ASSEMBLY MANUFACTURER'S INSTRUCTIONS SHALL BE FOLLOWED EXACTLY AND SHALL SUPERREDE ANY CORPLICTION ROTES ENCLOSED HERBIN. IT IS THE CONTRACTOR'S SIGH RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE TO INSURE THE SHAPETY OF THE STRUCTURE AND TIS COMPONENT PARTS GUIRNOE BECTION ANDOR TO RED MODIFICATIONS. THEN INCLUDES BUT IS NOT LIMITED TO. THE ADDITION OF TEMPORARY BRACHO, OUTS ON THE DOWNER THAT WAS SERVICED AND SHALL REMAIN AND THE DOWNER THAT WAS SERVICED AND SHALL REMAIN AND THE DOWNER THAT WAS SERVICED AND SHALL REMAIN AND THE DOWNER THAT WAS SERVICED AND SHALL REMAIN AND THE PROPERTY OF THE PART OF THE PROTECTION OF THE PART O
- THE PROMENT OF THE CONTRACTOR AFTER THE COMPETION OF THE PROJECT.

 ALL DIMENSORS, EVENTIONS, AND ESTIMA CONTRINORS SHOWN ON THE FORMINGS SHALL BE FIELD VERHELD BY THE CONTRACTOR PRICE TO BEGINNING MAY MATERIALS SORDERING, FABRICATION OR CONSTRUCTION WARKON ON THE PROJECT. CONTRACTOR SHALL NOT SCALE CONTRACTOR SHOWN ON THE PROJECT. CONTRACTOR SHALL NOT SCALE CONTRACTOR SHOWN ON THE CONTRACTOR SHALL SHOWN ON THE CONTRACTOR SHALL SHOWN ON THE CONTRACTOR SHALL S
- INCLUDE INSPECTION OF THE PROTECTIVE MEASURES ON THE PROCEDULES.

 ALL MATERIALS AND EXCURNANT FURNISHED SHALL BE NOWN AND OF GOOD QUARTY. FREE FROM FAULTS AND DEFECTS AND IN CONFORMANCE WITH THE CONTRACT DOCUMENTS, ANY AND ALL SUBSTITUTIONS MANY SEPROPRIOR AND AUTORIQUED IN WRITING BY THE OWNER MON CHANGES PROVIDED IN STALLARD IN THE CONTRACTOR SHALL FUNNESS IN STAFFACTION? EVENENCE AS TO THE KIND AND THE CONTRACTOR SHALL FUNNESS IN STAFFACTION? EVENENCE AS TO THE KIND AND THE CONTRACTOR SHALL SHAPE WITH A CONTRACTOR SHALL SHAPE WITH A CONTRACTOR SHAPE

- ALL PERMITS THAT MUST BE OBTAINED ARE THE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE RESPONSIBLE FOR ABIDING BY ALL CONDITIONS AND REQUIREMENTS OF THE
- PERMIS.

 IF APPLICABLE, ALL CONCRETE WORK SHALL COMPLY TO LOCAL CODES AND THE ACI 318-19, "BUILDING REQUIREMENTS FOR STRUCTURAL CONCRETE".
- 24 HOURS PRIOR TO THE BEGINNING OF ANY CONSTRUCTION, THE CONTRACTOR MUST NOTIFY THE APPLICABLE JURISDICTIONAL (STATE, COUNTY OR CITY) ENGINEER.

WELDING NOTES:

- ALL WELDING SHALL BE IN ACCORDANCE WITH THE AWS 01,1/01,1M 2015 "STRUCTURAL WELDING CODE-STEEL".
- ALL WELDING SHALL BE PERFORMED BY AWS CERTIFIED WELDERS,
- ALL MELDING SHALL BET PREFORMED BY ANY CERTIFIED WELDERS.
 CONTRACTOR SHALL RETAIN AN ANY CERTIFIED WELD INSPECTION TO PERFORM VISUAL INSPECTIONS ON FIELD MELDS. A LETTER AND REPORT SHALL BE ISSUED TO THE CONTRACTOR. CONTRACTOR SHALL S

- WHOS.
 FOR HAL WELDING, USE ETROX ELECTRODES,
 AFTER THAN, IMPRECTION, THE AREA, OF THE WELDS, THE INSTALLATION AND ALL SURFACES DAMAGED BY
 AREALONG OR GRINDOWS SHALL, RECEIVE A COLD-DALIVANIZED COATING, THIS COATING SHALL BE APPLIED
 BY BRUSH. THE GALVANEZING COMPOUND SHALL CONTAIN A MINIMUM OF 56% & PURE ZINC, THE FRUSHED
 COATING SHALL BE A MINIMUM THEORYSISS OF 3 MILS.

STRUCTURAL STEEL NOTES:

- THE FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE MISC SPECIFICATION FOR MANUAL OF STEEL CONSTRUCTION, LOAD AND RESISTANCE FACTOR DESIGN, 15TH EDITION, UNLESS OTHERWISE NOTED, ALL STRUCTURAL ELEMENTS SHALL CONFORM TO THE FOLLOWING RECOUREMENTS.
- GUIRGMENTS
 STRUCTURAL STEEL:

 ANGLE ASTM ASM
 PIPETURE ASTM ASG GR. 8 ;FY = 42 KSj)
 PLATE ASTM ASG GR. 8 ;FY = 62 KSj)
 PLATE ASTM ASG GR. 8 ;FY = 62 KSJ)
 PLATE ASTM ASG GR. 9 ;FY = 62 KSJ)

- PLATE ASTM AST286 (MONOPOLE)
 GUYEO WIRES ASTM ANS (BUS CABLES)
 GUYEO WIRES ASTM ASS OR ASSI (RINDIGE STRAND)
 ALL BOLTS, ASTM ASST ORF LOS AVANEED HIGH STRENGTH BOLTS.
 ALL LOGLTS, ASTM ASS CARROR BY
 ALL NUTS, ASTM ASS CARROR AND ALLOY STEEL, NUTS.
 ALL WASHERS, ASTM F438 HARDERED STEEL MASHERS.
- ALL CONNECTIONS NOT PILLY METABLID ON THISE FAMES SHALL BE EFFALED BY THE STREE FARRICATOR AN ACCOMMENSE WITH A REC. SERVICE WITH A REC. SERVICE WITH A RES. SERVICE FACTOR DESIGN, 15TH EDITION, 10TH ANNAL OF STEEL CONSTRUCTION, LOAD AND RESISTANCE FACTOR DESIGN, 15TH EDITION, 10TH ANNAL OF STEEL CONSTRUCTION, LOAD AND AND ANNAL OF STREET, 10TH ANNAL

- GALWARIDMO ASTAN AT 22. ASTAN, ATSOLATISMO RA RISTAN RESPANSAN, GOB, AS APPLICABLE.

 REPARR DAMAGED SURFACES WITH A GALWARIDMO REPARK ARTHOO AND PARIN COPROPERBING TO ASTAN AT 30 OR BY APPLICATION OF STEDO OR THE PARINED AND REMOVE SLAF FROM PETER COPY.

 REPARRIED AND REPARRIED AND REMOVE SLAF FROM PETER COPY. REPARKS TO GALWARIDMO. CIDEN ARDS AT 50 SEPARRIED AND REMOVE SLAF FROM PETER TO BE COLORED AND WEST OF STEDO FOR STED OR STED

- FROM THE SHEAR FUNIE.

 ALL PROPOSED ADIOR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT BE AT LEAST FLUSH WITH THE FACE OF THE NUT, IT IS NOT PERMITTED FOR THE BOLT END TO BE BELLOWTHE FACE OF THE NUT ATERT TROHTENIOS LOCAPICATED.

 GALVANIZED ASTAM A325 BOLTS SHALL NOT BE REUSED.

BOLT TIGHTENING PROCEDURE:

- CONNECTION BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIGHTENEO AS PER SECTION A 2 OF THE AIRS. SPECIFICATION FOR STRUCTURAL JOINTS USING ALSO OF AND BOLTS, LOCATED IN THE AIRS CHAINING, OF STREET CONSTRUCTION, THE INSTALLATION PROCEDURE IS PRAPAPHASED AS POLLOWS FASTENIES SHALL BE INSTALLED IN PROPERTY AUGNED HOLES AND TIGHTENED BY ONE OF THE METHODS DESCRIBED IN SUBJECTION AS IT TROUGH EAST.

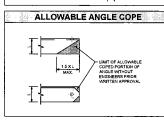
METHODS DESCRIBED IN SUBSECTION 4.2.1 THROUGH 4.2.4.
£2.1 TURN-OF-THE-MUT TOTHERMING
BOLTS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND BROUGHT TO A SHALD TIGHT AND THE
CONSTRICT AS DEPENDENT OF SECTION ALL HOLES ON A SHALD TIGHT AND THE
CONSTRICT AS DEPENDENT OF SECTION ALL HIS BOLTS ARE SMALL PAREDUS, Y SHALD TIGHT AND THE
SHALL BE TENT BROOT PARTIES BY THE APPLICABLE AMOUNT OF ROTATION SPECIFIED ABOVE
THE TIGHTERMO OPERATION THERE SHALL BE NOT ROTATION OF THE PART NOT TURNED BY THE WEBSICH.
TIGHTERMO OPERATION THERE SHALL BE NOT ROTATION OF THE PART NOT TURNED BY THE WEBSICH.
TIGHTERMO SHALL PROGRESS SYSTEMATICALLY FROM THE MOST ROID PART OF THE AIGHT IN THAT
THAT MILL MANIBURE RELAVATION OF PREVIOUSLY PRETENDINGED BOLTS.

TIGHTEN CONNECTION BOLTS BY AISC. "TURN OF THE NUT" METHOD, USING THE CHART BELOW. BOLT LENGTHS UP TO AND INCLUDING FOUR DIA.

75"	BOLTS UP TO AND INCLUDING 2.0 INCH LENGTH	+X TURN BEYOND SNUG TIG
% "	BOLTS UP TO AND INCLUDING 2.5 INCH LENGTH	+X TURN SEYOND SNUG TIG
**	BOLTS UP TO AND INCLUDING 3,0 INCH LENGTH	+X TURN BEYOND SNUG TIG
36"	BOLTS UP TO AND INCLUDING 3.5 INCH LENGTH	+X TURN BEYOND SNUG TIG
1"	BOLTS UP TO AND INCLUDING 4.0 INCH LENGTH	+X TURN BEYOND SHUG TIG
BOLT L	ENGYHS OVER FOUR DIA. BUT NOT EXCEEDING EIGHT DIA.	
1/2-	BOLTS 2,25 TO 4,0 INCH LENGTH	+½ TURN BEYOND SNUG TIG
% -	BOLTS 2.75 TO 5.0 INCH LENGTH	+¾ TURN BEYOND SNUG TIG
¾-	BOLTS 3,25 TO 6.0 INCH LENGTH	+X TURN BEYOND SNUG TIG

7. BULIS 3.2 TO COINCH LENGTH 7. THE REPORT SONG TIGHT

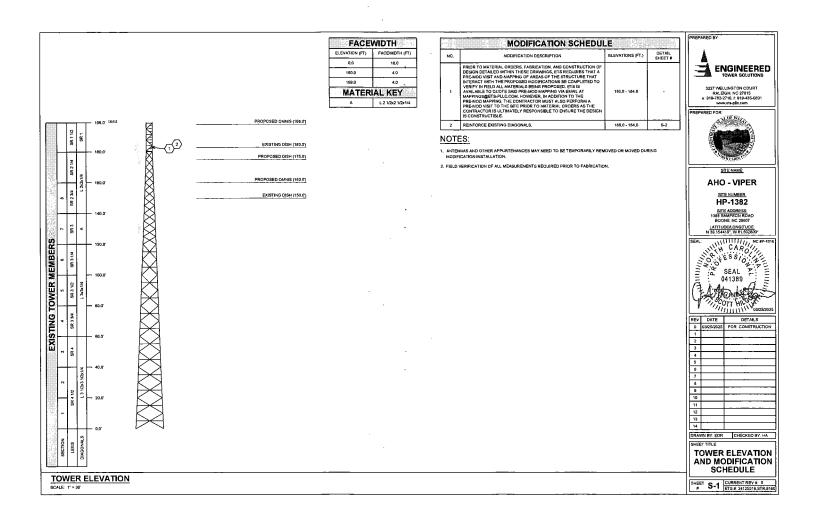
1. BULIS 3.7 TO 7.0 THE LENGTH 7. THE REPORT SONG TIGHT

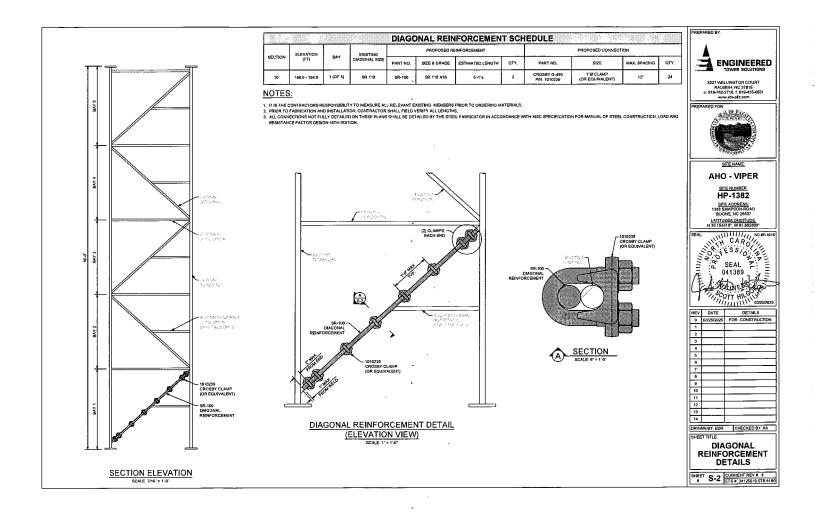

1. ALL OTHER BOLTED CONNECTIONS SHALL BE BROUGHT TO A SHUG TIGHT CONDITION AS DEFINED IN SECTIONS 1.0 THE SECTIONS

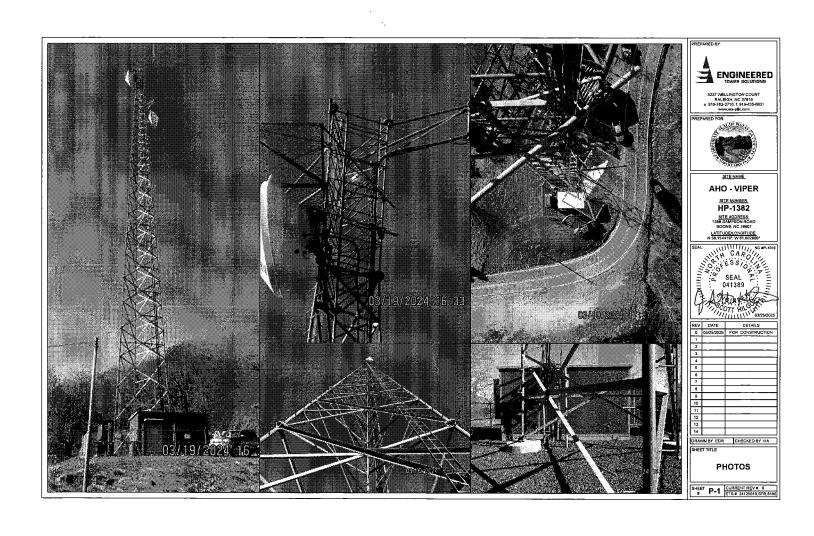
NOMINAL HOLE DIMENSIONS				
BOLT DIAMETER	STANDARD HOLE	SHORT SLOT		
Y ₂	У.,	%4 × 1%4		
*	У4.	'% ₄ × %		
*	13/16	1% × 1		
*	15/14	19 ₇₄ × 13 ₅		
1	1X4	1/4 × 1%		

BOLT EDGE AND SPACING					
BOLT DIAMETER	MIN EDGE	SPACING			
Ж	%	11/4	- I I MIN.		
%	1%	1%	EDGE		
*	124	21/4	1 HH		
%	13,	2%	SPACING		
1	1%	3	1		

٧	VORKABLE	GAGES
LEG LENGTH	GAGE	
4	2%	
3%	2	GAGE
3	11%	حج ا
2/5	1%	
2	1%	
1%	1	






LATITUDEA ONGITUDE N 36.154419*, W 61.602800

				BILL OF M	ATERIALS	146			PREPARED BY:
ANTITY REQUIRED	MANUFACTURER	PART NUMBER	DESCRIPTION	LENGTH	DETAIL SHEET #	PART WEIGHT (LB)	TOTAL WEIGHT (LB)	NOTES	🛕
			DIAGONAL, REINFORCEMENT MATERIALS & HARDWARE						ENGINEER TOWER SOLUTION
3		SR-100	SR 17Ø A38	5'-1"±	5-2	13,59	40,77		
24	CROSBY	1010239	179 G-450 CLAMP	·	S-2 -	2,52	60,48		3227 WELLINGTON COURT RALEIGH, NC 27615
									o: 919-782-2710, f: 919-435-06 www.ets-pilic.com
				 	-				PREPARED FOR
					-				40000
									
				1	 				
				.	1		-		O THE CONTROL OF
									SITE NAME
									AHO - VIPER
									SITE NUMBER
						,			HP-1382
									SITE ADDRESS. 1388 SAMPSON ROAD BOONE, NC 28607
			<u> </u>						BOONE, NC 28607 LATITUDEA.ONGITUDE N 38,1544191, W 81,8028001
									N 36,154419*, W 81.602800*
									SEAL CAROLL
									30 ESS/01/2
									E & GEAL F.
					-				SEAL CAROLINA SEAL SEAL SEAL SEAL SEAL SEAL SEAL SEA
				-					E to shame sent
		-							
		-		-	+				7//////////////////////////////////////
									REV DATE DETAILS 0 03/25/2025 FOR CONSTRU
				-	-		-		1
				<u> </u>	+	<u> </u>			3
					†				4
					1				5 6
		1		-	 		-		7
									8
			"			-			10
									11 12
									13
									DRAWN BY: EDR CHECKED BY
									SHEET TITLE:
									BILL OF MATERIA
					1				
						TOTAL WEIGHT (LB):	101.25	PAGE 1 OF 1	SHEET BM CURRENT REV #.

K-Co Enterprises, Inc.

613 Hurricane Creek Rd

Piedmont, SC 29673

Bid for: Buckeye Tower Modification – Watauga County, NC

814 W King St.

Boone, NC 28607

Please give Ernie Rood a call at 864-947-8704 with any questions.

Fairfield, Ohio

POWER OF ATTORNEY

KNOW ALL MEN BY THESE PRESENTS: That THE CINCINNATI INSURANCE COMPANY and THE CINCINNATI CASUALTY COMPANY, corporations organized under the laws of the State of Ohio, and having their principal offices in the City of Fairfield, Ohio (herein collectively called the "Companies"), do hereby constitute and appoint

Brooks M Keys, Jr., J. DuPre Keys, John B Ross, John B Ross, Jr., James G Culwell

of Belton, SC

their true and legal Attorney(s)-in-Fact, each in their separate capacity if more than one is named above, to sign, execute, seal and deliver on behalf of the Companies as Surety, any and all bonds, policies, undertakings or other like instruments, as follows:

Five Million Dollars and 00/100 (\$5,000,000.00)

This appointment is made under and by authority of the following resolutions adopted by the Boards of Directors of The Cincinnati Insurance Company and The Cincinnati Casualty Company, which resolutions are now in full force and effect, reading as follows:

RESOLVED, that the President or any Senior Vice President be hereby authorized, and empowered to appoint Attorneys-in-Fact of the Company to execute any and all bonds, policies, undertakings, or other like instruments on behalf of the Corporation, and may authorize any officer or any such Attorney-in-Fact to affix the corporate seal; and may with or without cause modify or revoke any such appointment or authority. Any such writings so executed by such Attorneys-in-Fact shall be binding upon the Company as if they had been duly executed and acknowledged by the regularly elected officers of the Company.

RESOLVED, that the signature of the President or any Senior Vice President and the seal of the Company may be affixed by facsimile on any power of attorney granted, and the signature of the Secretary or Assistant Vice-President and the Seal of the Company may be affixed by facsimile to any certificate of any such power and any such power of certificate bearing such facsimile signature and seal shall be valid and binding on the Company. Any such power so executed and sealed and certified by certificate so executed and sealed shall, with respect to any bond or undertaking to which it is attached, continue to be valid and binding on the Company.

IN WITNESS WHEREOF, the Companies have caused these presents to be sealed with their corporate seals, duly attested by their President or any Senior Vice President this 16th day of March, 2021.

STATE OF OHIO COUNTY OF BUTLER

THE CINCINNATI INSURANCE COMPANY
THE CINCINNATI CASUALTY COMPANY

Stephen & Vertre

On this 16th day of March, 2021 before me came the above-named President or Senior Vice President of The Cincinnati Insurance Company and The Cincinnati Casualty Company, to me personally known to be the officer described herein, and acknowledged that the seals affixed to the preceding instrument are the corporate seals of said Companies and the corporate seals and the signature of the officer were duly affixed and subscribed to said instrument by the authority and direction of said corporations.

Keith Collett, Attorney at Law Notary Public - State of Ohio

My commission has no expiration date. Section 147.03 O.R.C.

I, the undersigned Secretary or Assistant Vice-President of The Cincinnati Insurance Company and The Cincinnati Casualty Company, hereby certify that the above is the Original Power of Attorney issued by said Companies, and do hereby further certify that the said Power of Attorney is still in full force and effect.

Given under my hand and seal of said Companies at Fairfield, Ohio, this

)SS:

day of

BN-1457 (3/21)

THE CINCINNATI INSURANCE COMPANY

Bid Bond

CONTRACTOR (Name, legal status and address):

SURETY (Name, legal status and principal place of business):

K-Co Enterprises, Inc.613 Hurricane Creek Rd

THE CINCINNATI INSURANCE COMPANY 6200 S. GILMORE ROAD FAIRFIELD, OHIO 45014-5141

Piedmont, SC 29673

OWNER (Name, legal status and address):

Watauga County

814 King Street Boone, NC 28607

BOND AMOUNT:

5% of bid

This document has important legal consequences, Consultation with an attorney is encouraged with respect to its completion or modification.

Any singular reference to Contractor, Surety, Owner or other party shall be considered plural where applicable.

PROJECT (Name, location or address, and Project number, if any):

provide steel and labor to install on tower upgrade

The Contractor and Surety are bound to the Owner in the amount set forth above, for the payment of which the Contractor and Surety bind themselves, their heirs, executors, administrators, successors and assigns, jointly and severally, as provided herein. The conditions of this Bond are such that if the Owner accepts the bid of the Contractor within the time specified in the bid documents, or within such time period as may be agreed to by the Owner and Contractor, and the Contractor either (1) enters into a contract with the Owner in accordance with the terms of such bid, and gives such bond or bonds as may be specified in the bidding or Contract Documents, with a surety admitted in the jurisdiction of the Project and otherwise acceptable to the Owner, for the faithful performance of such Contract and for the prompt payment of labor and material furnished in the prosecution thereof; or (2) pays to the Owner the difference, not to exceed the amount of this Bond, between the amount specified in said bid and such larger amount for which the Owner may in good faith contract with another party to perform the work covered by said bid, then this obligation shall be null and void, otherwise to remain in full force and effect. The Surety hereby waives any notice of an agreement between the Owner and Contractor to extend the time in which the Owner may accept the bid. Waiver of notice by the Surety shall not apply to any extension exceeding sixty (60) days in the aggregate beyond the time for acceptance of bids specified in the bid documents, and the Owner and Contractor shall obtain the Surety's consent for an extension beyond the sixty (60) days.

If this Bond is issued in connection with a subcontractor's bid to a Contractor, the term Contractor in this Bond shall be deemed to be Subcontractor and the term Owner shall be deemed to be Contractor.

When this Bond has been furnished to comply with a statutory or other legal requirement in the location of the Project, any provision in this Bond conflicting with said statutory or legal requirement shall be deemed deleted herefrom and provisions conforming to such statutory or other legal requirements shall be deemed incorporated herein. When so furnished, the intent is that this Bond shall be construed as a statutory bond and not as a common law bond.

Signed and sealed this 13	day of June, 2025		
(Witness)		K-Co Enterprises, Inc. (Principal) (Title)	(Seal)
Quella E Ko (Witness)	bulenvshi	THE CINCINNATI INSURA (Surety)	ANCE COMPANY (Seal)
		(Title)	

The Company executing this bond vouches that this document conforms to American Institute of Architects Document A310, 2010 Edition. S-2000-AIA (11/10) PUBLIC

Page: 5

Watauga County

BIDDER: K-Co Enterprises, Inc.

TOWER MOD BREAKDOWN:

1. Total cost of tower modification materials only

1690.00

2. Total cost of tower modification labor only

10,542.00

3. Total cost of tower modification

12,232.00

Page: 1 Watauga County

BIDDER: K-Co Enterprises, Inc.

WATAUGA COUNTY, NC	INVITATION FOR BIDS – Buckeye MtViper		
<u>BID #</u>	Bids will be publicly opened: June 13th, 2025 at 3:00pm		
	Questions Due by: June 2 nd , 2025		
Refer <u>ALL</u> Inquiries to: Marty Randall Telephone No. 828-527-2416	Commodity: Install tower modifications on an existing tower (HP-1343, Buckeye MtViper) located at 2542 Forest Grove Road, Vilas, NC 28698.		
E-Mail: marty.randall@1018consulting.com	Using Agency Name: HP-1343, Buckeye MtViper		
(See page 2 for mailing instructions.)	1		

NOTICE TO BIDDERS

Sealed bids, subject to the conditions made a part hereof, will be received at **814 W. King Street, Boone NC 28607 until 3:00 PM** on the day of opening and then opened, for furnishing and delivering the commodity as described herein. Refer to page 2 for proper mailing instructions.

Bids submitted via e-mail or facsimile (FAX) machine in response to this Invitation for Bids will not be acceptable. Bids are subject to rejection unless submitted on this form.

EXECUTION

In compliance with this Invitation for Bids, and subject to all the conditions herein, the undersigned offers and agrees to furnish and deliver any or all items upon which prices are bid, at the prices set opposite each item within the time specified herein. By executing this bid, I certify that this bid is submitted competitively and without collusion (G.S. 143-54).

Failure to execute/sign bid prior to submittal shall render bid invalid.

Late bids are not acceptable.

BIDDER:		FEDERAL ID OR SOCIAL	FEDERAL ID OR SOCIAL SECURITY NO.	
K-Co Enterprises, Inc.	26-1278195	26-1278195		
STREET ADDRESS:		P.O. BOX:	ZIP:	
613 Hurricane Creek Rd.				
CITY & STATE & ZIP:		TELEPHONE NUMBER:	TOLL FREE TEL. NO	
Piedmont, SC 29673		864-947-8704	(800)	
PRINCIPAL PLACE OF BUSINESS ADDRESS IF DIFFERENT F	ROM ABOVE (SEE IN	STRUCTIONS TO BIDDERS ITE	M #21):	
TYPE OR PRINT NAME & TITLE OF PERSON SIGNING:		FAX NUMBER:		
Ernest Rood, Project Manager	864-947-8204	864-947-8204		
AUTHORIZED SIGNATURE:	DATE: 6-11-25	E-MAIL:		
Ernest Rood	0-11-25	bids@kcoenterprises.co	m	

Offer valid for 120 days from date of bid opening unless otherwise stated here: days

ACCEPTANCE OF BID

If any or all parts of this bid are accepted by Watauga County, NC, an authorized representative of Watauga County, NC shall affix their signature hereto and this document and the provisions of the Instructions to Bidders, special terms and conditions specific to this Invitation for Bids, the specifications, and the North Carolina General Contract Terms and Conditions shall then constitute the written agreement between the parties. A copy of this acceptance will be forwarded to the successful bidder(s).

FOR Watauga County, NC USE ONLY		
Offer accepted and contract awarded this	day of	, 20 , as indicated on attached certification,
by		(Authorized representative of Watauga County, NC).

Page: 2	
Watauga	County

Vatauga County	BIDDER:	K-Co Enterprises, Inc.
----------------	---------	------------------------

In an effort to support the sustainability efforts of Watauga County, North Carolina we solicit your cooperation in this effort.

It is desirable that all responses meet the following requirements:

- All copies should be printed double sided.
- All submittals and copies should be printed on recycled paper with a minimum post-consumer content of 30% and indicate this information accordingly on the response.
- Unless absolutely necessary, all bids and copies should minimize or eliminate use of non-recyclable or non reusable materials such as plastic report covers, plastic dividers, vinyl sleeves, and GBC binding. Three-ringed binders, glued materials, paper clips, and staples are acceptable.
- Materials should be submitted in a format which allows for easy removal and recycling of paper materials.

MAILING INSTRUCTIONS: Send two fully executed bid documents. Address envelope and insert bid name as shown below. It is the responsibility of the bidder to have the bid in this office by the specified time and date of opening.

DELIVERED BY US POSTAL SERVICE	DELIVERED BY ANY OTHER MEANS
,	SEND SUCH AS FEDX, UPS, ETC. FOR NEXT DAY
814 W. King Street Boone NC 28607	814 W. King Street Boone NC 28607

Watauga County, NC Tower Construction Project

Watauga County, North Carolina

Scope of Work - Watauga County, NC proposes to modify an existing communications tower site per the attached 3-25-2025 ETS Structural Modification Drawings 24125017.STR.8177 REV 0. All work shall comply with applicable North Carolina Building Codes and ANSI/TIA/EIA Standards. If the following Specification calls for a condition that is greater than the TIA/EIA Standards or North Carolina Building Codes, use the specifications shown in this document. All work shall be coordinated with Watauga County, NC. The modifications and all appurtenances shall be installed and affixed with the highest quality of workmanship. The selected Contractor will advise Watauga County, NC's Contracting Officer and Marty Randall (10-18 Consulting 828-527-2416 marty.randall@1018consulting.com) two weeks in advance of the date the work will start. The contractor will provide Marty Randall weekly project progress reports and immediately report any abnormal conditions encountered during construction.

COMPLETION DEADLINE: Work should be completed with weather days.	thin 90 days of receipt	of materials, not co	unting bad
If the above time is not possible, state completion	on time in days from c	ontract issue.	<u>Days</u>
Understand all requirements in the Scope of Work	Yes <u>X</u>	No	

Page: 3 Watauga County BIDDER: K-Co	Enterprises, Inc.	
CONTRACTING OFFICER		
This project will be under contract with Watauga County, NC Contracting Officer will be:	and will be under t	the direction of the Contracting Officer. T
Will Holt Watauga, NC Office:828-264-4235 Cell: 828-434-3491		
NOTE: Any questions prior to issue of a contract sh marty.randall@1018consulting.com as stated on page		
Understand the Contact information as listed above	Yes_X_	No
 CONTRACTOR REQUIREMENTS The Contractor shall submit the following items with their bid: 1. Each bid must be accompanied by a bid bond, for an amount time the bid is filed with the City. No bid shall be consider Bid bonds may be submitted in any form allowed under the certified check or surety issued bid bond. 2. Performance and payment bonds are required once bid is 	ed if the bond is note laws of North Co	ot received simultaneously with the bid.
	ı	
Watauga County reserves the right to accept or reject any or		
Two complete copies of your bid response must be sub listed items will forfeit your bid.	mitted with your	package. Failure to submit the above
Understand Contractor Requirements Process Yes	X No_	
BIDDING INSTRUCTIONS Contractors bidding on this project must fully acquaint themse Invitation for Bid, and conditions at the Designated Construction fully understand any potential obstacles that would prevent any portion of the work or interpretation of documents should Understand Bidding Instructions Yes X No	on Site (DCS). Th speedy completio	e contractor is encouraged to visit the DO n of this project. Any questions concerni
Understand Bidding Instructions Yes X No_		
COORDINATION OF THE WORK The Tower Contractor shall notify Marty Randall and the Contractor weeks prior to the desired construction time. Failure to Failure to give advanced notice may result in the Contractor's	give advance noti	ce may result in delay of the starting date
Understand the Coordination Requirement	Yes_X_	No
MICROWAVE REALIGNMENT The Tower Contractor shall notify Marty Randall and the Conbe moved during construction. The Tower Contractor shall be original RSL.		
Understand the Microwave Realignment Requirement	Yes_X_	No
PERMITS .		
The contractor is responsible for obtaining permits and sched exempt from permits.	uling inspections v	vith the permitting office. The County is n
Understand the Permit Process	Yes_X_	No

EXPEDITE CONSTRUCTION

It is expected that the contractor will expedite completion of the project, taking full advantage of the weather and other

2025-08-05 BCC Meeting

Page: 4 Watauga County BIDE	DER: K-Co	Enterprises, Inc.	2023 00 03 B	
favorable working conditions.				
Understand Expedite Construction Process		Yes_X_	No	
POST CONSTRUCTION INSPECTION (PCI) Upon completion of the tower modification the Toy Solutions ("ETS") to conduct the Post Construct the findings of the Inspection. (Watauga Count Watauga County, NC for all initial inspection documents are at the contractor's expense. Ideviation from the Tower Modification Drawings Contractor shall provide to the Contracting Offic documents each deviation along with Engineer or	ction Inspection ty, NC has a lons. Addition For schedulin and Specificacer, a red-line	n ("PCI"), and to contract to pronal inspections ing, email: modificions is found dued copy of each	generate a complete reporting this service. Fees to due to non-conformity ications@ets-pllc.com. In a ring, or as a result of the Drawing and/or Specifica	ort documenting will be paid by with contract in the event any PCI, the Tower
Understand Final Inspection Process		Yes_X_	No	
The Tower Contractor, and/or the subcontractor of be licensed to operate a contracting business in the NC General Contractors License Number 66 The Contractor installing the tower modifications Climbing rules that were adopted in February 200 Understand Requirements for Contractor License Contra	the State of No 585 must comply v 05 and any foll	orth Carolina as re with the North Car owing revisions.	equired under NCGS 87. rolina Department of Labor	
CONSTRUCTION & MATERIALS Tower Contractor must ensure that the tower and Tower Contractor is responsible for restroom facility. All components of the tower modification but no minimum, be hot-dipped galvanized.	d compound al	ways remain sect	ure.	, etc. shall, at a
EROSION CONTROL The Contractor will be responsible for Erosion Co Understand Erosion Control Methods and res	•	s and any fines le	vied if not practiced.	

TOWER MODIFICATION DRAWINGS (SOW)

3-25-2025 ETS Structural Modification Drawings 24125017.STR.8177 REV 0

Base Product

1.8m | 6ft ValuLine® High Performance, High XPD Antenna, dualpolarized, 5.925 – 7.125 GHz

Pr	od	uct	Class	sifica	ation
Γ	υu	ULL	CI02:	$\sum_{i=1}^{n} (i) = i$	JUULI

Product Type Microwave antenna

Product Brand ValuLine®

General Specifications

Antenna Type HX - ValuLine® High Performance, High XPD

Antenna, dual-polarized

39.9 dBi

7376

Polarization Dual

Side Struts, Included

Side Struts, Optional

Dimensions

Diameter, nominal 1.8 m | 6 ft

Electrical Specifications

Radiation Pattern Envelope Reference (RPE)

Operating Frequency Band 5.925 - 7.125 GHz

38.3 dBi Gain, Low Band

Gain, Mid Band 39.1 dBi

Gain, Top Band

Boresite Cross Polarization Discrimination (XPD) 33 dB

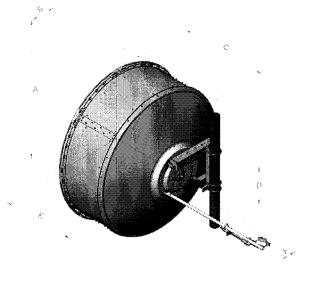
70 dB Front-to-Back Ratio

1.8° Beamwidth, Horizontal

Beamwidth, Vertical 1.8°

Return Loss 26 dB

VSWR 1.1


Electrical Compliance ACMA FX03_6b, 6p7b | ETSI 302 217 Class

3 | IC 3059A | IC 3064A | US FCC Part 101A

Page 1 of 7

EN 302217 XPD Category 2
– 5.850 GHz
dBi
nm-120 mm 4.5 in-4.7 in
m/h 124.274 mph
m/h 124.274 mph

Antenna Dimensions and Mounting Information

Antenna size, ft (m)	A	В	c c	D	Ε	F
6 (1.8)	74.8 (1899)	13.4 (340)	47.5 (1206)	20.9 (530)	39.4 (1001)	8.4 (214)

Wind Forces at Wind Velocity Survival Rating

Axial Force (FA)

Angle α for MT Max

Side Force (FS)

Twisting Moment (MT)

Force on Inboard Strut Side

Zcg without Ice

Zcg with 1/2 in (12 mm) Radial Ice

Weight with 1/2 in (12 mm) Radial Ice

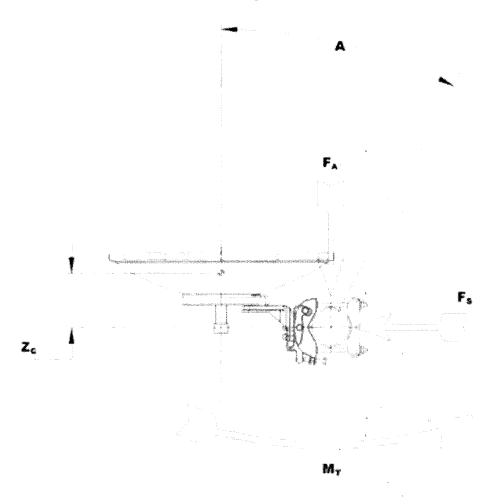
6960 N J 1,564.671 lbf

-130°

1566 N | 352.051 lbf

3923 N-m | 34,721.477 in lb

4075 N | 916.097 lbf


363 mm | 14.291 in

541 mm | 21.299 in

237 kg | 522.495 lb

Page 3 of 7

Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Weight, net 85 kg | 187.393 lb

Regulatory Compliance/Certifications

Agency

Classification

ISO 9001:2015

Designed, manufactured and/or distributed under this quality management system

* Footnotes

Operating Frequency Band

Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

Page 5 of 7

Gain, Mid Band

For a given frequency band, gain is primarily a function of antenna size. The gain of Andrew antennas is determined by either gain by comparison or by computer integration of the measured antenna patterns.

Boresite Cross Polarization Discrimination (XPD)

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

Front-to-Back Ratio

Denotes highest radiation relative to the main beam, at 180° $\pm 40^{\circ}$, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise.

Return Loss

The figure that indicates the proportion of radio waves incident upon the antenna that are rejected as a ratio of those that are accepted.

VSWR

Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band.

Radiation Pattern Envelope Reference (RPE)

Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of +/-1° throughout

Cross Polarization Discrimination (XPD) Electrical Compliance

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

Wind Speed, operational

For VHLP(X), SHP(X), HX and USX antennas, the wind speed where the maximum antenna deflection is 0.3 x the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than 0.1 degrees.

Wind Speed, survival

The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without permanent deformation. Realignment may be required. This wind speed is applicable to antenna with the specified amount of radial ice.

Axial Force (FA)

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Side Force (FS)

Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this

Page 6 of 7

Twisting Moment (MT)

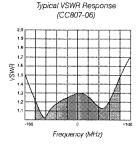
parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

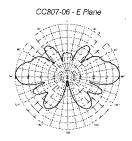
Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

800 MHz Corporate Collinear Antennas 746-870 MHz

000070

CC807 Series


These industry leading PIM and PIP rated collinear arrays allow site operators to combine, with complete integrity, a large number of communications services into a single, low profile collinear antenna array.


The true corporate feed of these arrays maintains total pattern integrity over a very broad operating and width, similar to that previously available only in exposed dipole configurations. This is now achieved in the preferred from factor of a fully enclosed fiberglass radome. The corporate collinears employ a unique corporate phasing system enabling precision control of the element placements ensuring phase purity resulting in exceptional bandwidth and electrical performance.

Gain is maximised and side lobes reduced dramatically. In a patented design approach the individual dipole elements are soldered to a brass support tube which is directly connected to the mounting tube and the lightning spike at the top of the antenna.

Features:

- 500W Continuous Power rating for CC807-11, CC807-08, CC807-06
- -150dBc Passive Intermodulation (PIM) rating
- 25 kW Peak Instantaneous (PIP) rating
- Extraordinary bandwidth characteristics with superior pattern control
- DC grounding on all elements for the ultimate in lightning protection and dissipation of static noise.

Electrical Specifications

Model Number	CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P
Nominal Gain dBd (dBi)	3 (5.1)	6 (8.1)	8 (10.1)	10.5 (12.6)
Frequency MHz		746	- 870	***************************************
Tuned Bandwidth MHz		Full	Band	
VSWR (Return Loss)		<	1.5:1	
Downtilt ^{e (1)}	Not Offered	0 °Std, -3°,-5°	0 °Std, -	1°, -2°, -3°, -4°, -5°
Vertical Beamwidth°	28	17	9	4.5
Horizontal Beamwidth®		Omni -	-/- 0.5dB	
Input Power W	250		500	
Passive IM 3rd order (2x20W) dBc			150	
Peak Instantaneous Power kW		······································	25	

Mechanical

Model Number		CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P
Construction			Sky blue fibro	eglass radome	
Length mm (inches)		1203 (47)	1741 (69)	2817 (111)	5219 (205)
Radome Diameter mm (inches)			76	S (3)	
Weight kg (lbs)		4 (9)	7 (16)	12(27)	22 (49)
Shipping Weight kg (lbs)		8 (18)	11 (25)	18 (40)	30 (66)
	Н		115	(4.5)	
Shipping Dimensions mm (inches)	W		115	(4.5)	
(L	1400 (55)	1900 (75)	3000 (118)	5600 (220)
Termination			4.3-10 fb	ked female	
Suggested Clamps (not included)		2×L	JC-114	
Invertible Mounting		100	Ye.	s (1)	757 757 757 757 757 757
Projected area cm² (ft²)	No Ice	806 (0.9)	1268 (1.4)	2320 (2.5)	4560 (4.9)
riojected area cm (n.)	With Ice	1048 (1.2)	1571 (1.7)	2880 (3.1)	5760 (6.2)
Lateral Thrust @160km/h N (100	mph lbs)	96 (22)	150 (34)	276 (62)	540 (121)
Wind Gust Rating km/h (mph)	No Ice		>240	(>150)	
Torque @ 160km/h Nm (100mph ft-lbs)		20 (15)	73 (54)	278 (205)	1032 (761)

⁽¹⁾ To order pre-set downfill versions available, simply add a -T2 or -T4, etc towards the end of the part number to denote the downfill model required. For eg. CC807-11-T2-P to order a CC807-11-P with 2 deg of downfill. Please note: Models with downfill are NOT field invertible.

Date: March 25, 2025

Marty Randall 10-18 Consulting Cell: 828-527-2416

marty.randall@1018consulting.com

Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

Subject:

Structural Modification Analysis Report

Carrier Designation:

Watauga County Reconfiguration

Carrier Site Name:

Buckeye Mt. - Viper

Tower Owner Designation:

NCSHP Site Number:

HP-1343

NCSHP Site Name:

Buckeye Mt. - Viper

Engineering Firm Designation:

ETS, PLLC Job Number:

24125017.STR.8177

Site Data:

2542 Forest Grove Road, Vilas, Watauga County, NC 28698

Latitude *N* 36° 18′ 57.89″, Longitude *W* 81° 47′ 29.44″

150.0 Foot - Self Support Tower

Dear Marty Randall,

Engineered Tower Solutions, PLLC is pleased to submit this "Structural Modification Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

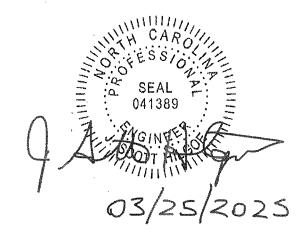
Modified Structure W/ Final Equipment Configuration:

Tower:

85.9% Sufficient Capacity

Foundation:

60.3% Sufficient Capacity


This analysis utilizes an ultimate 3-second gust wind speed of 140 mph (converted to an equivalent 108 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222 G) as required by the 2018 North Carolina State Building Code (2015 IBC). Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by:

Hicham Anssar Structural Engineer I

Respectfully submitted by:

J. Scott Hilgoe, PE Structural Engineering Manager NC License #P-1016

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity

- 4.1) Recommendations
- 4.2) Dish Antenna Deflection Results

APPENDIX A

tnxTower Output

APPENDIX B

Base Level Drawing

APPENDIX C

Additional Calculations

APPENDIX D

Modification Design Drawings

March 25,2025

150.0 Ft Self Support Structural Modification Analysis

Site Name: Buckeye Mt. - Viper
ETS, PLLC Job Number: 24125017.STR.8177

Page 3

1) INTRODUCTION

This tower is a 150-ft self-supporting tower designed by Valmont in July of 2010. This tower was originally designed for a nominal 3-second gust wind speed of 90 mph per ANSI/TIA-222-G.

2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-G

Structure Class:

111

Nominal Wind Speed:

108 mph (As required by Watauga County)

Exposure Category:

С

Topographic Factor:

1 (Topographic effects do not need to be considered with the required

special wind speeds as required by Watauga County)

Ice Thickness:

1 0 in

Wind Speed with Ice:

30 mph

Service Wind Speed:

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft) Number of Antenna Manufacturer		Line Of Antenna Antenna Model Elevation Antennas Manufacturer		Number of Feed Lines	Feed Line Size (in)
147.0 (Watauga County)	156.2	1	RFI	CC807-11 (Mounted to the existing Side Arm)	1	7/8"
117.0 (Watauga County)	126.2	1	RFI	CC807-11 (Mounted to the existing Side Arm)	1	1-5/8"
85.0		1	Commscope	HX6-6W-6WH		
(Watauga County)	85.0	1	Tower Mount	4.5"ø x 5-ft Dish Pipe Mount	1	EU63

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	155.0	1	Unknow	15-ft Omni		
447.0	150.0	1	Unknow	4-ft Omni	2	7/8"
147.0 (NCSHP)		1	Unknow	Junction Box (9" x 6" x 6")		
(1100111)	147.0	3	Tower Mounts	Horizontal Mount Pipe/Stabilizer	1	1/2"
		3	Tower Mounts	6-ft Side Arm Mount		
	125.0 1 Unkr		Unknow	15-ft Omni		
117.0	120.0	1	Unknow	4-ft Omni	1	1-5/8"
(NCSHP)	117.0	2	Tower Mounts	Horizontal Mount Pipe/Stabilizer	1	7/8"
		2	Tower Mounts	6-ft Side Arm Mount		110
117.0	123.0	1	Unknow	10-ft Dipole *		
(Watauga	117.0	1	Tower Mount	Horizontal Mount Pipe/Stabilizer	1	1/2" *
County)	117.0	1	Tower Mount	6-ft Side Arm Mount	*****	
80.0	92.0	1	Unknown	6-ft Dish Ice Shield**	-	-
(Watauga	90.0	1	Tower Mount	5-ft Dish Pipe Mount ***		FW60 ***
County)	nty) 80.0		Commscope	PL6-65-PXA ***	1	EW63 ***
80.0 (Unknown)	80.0	1	Tower Mount	5-ft Empty Pipe Mount	-	-
70.0	86.0	1	Unknown	8-ft Ice Shield	-	-
79.0 (NCSHP)	70.0	1	Tower Mount	5-ft Dish Pipe Mount	1	E\M60
(NCSHP)	79.0	1	Commscope	PL6-65-PXA	-	EW63

^{*}Existing Dipole at 117-ft to be removed.

** Existing Ice Shield at B Leg to be relocated from 90-ft to 92-ft.

***Existing Equipment on B Leg to be removed.

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Tower Modification Drawings	ETS, PLLC (Job No. 24125017.STR.8177)	03/25/2025	Appendix D
Previous Structural Analysis Report	ETS, PLLC (Job No. 24125017.STR.9095)	02/24/2025	On File
Maintenance And Condition Assessment	ETS, PLLC (Job No. 24129454.IE.1439)	11/06/2024	On File
Geotechnical Investigation Report	ETS, PLLC (Job No. 24125017)	05/02/2024	On File
Tower Mapping Report	ETS, PLLC (Job No. 24125017.EI.1178)	03/26/2024	On File
Foundation Mapping Report	ETS, PLLC (Job No. 24125017.EI.1177)	03/25/2024	On File
Previous Structural Analysis Report	Tower Engineering Professionals (Project No. 090571)	05/28/2012	NCSHP
Original Foundation Design Drawings	Valmont (Drawing No. 231923)	07/23/2010	NCSHP
Original Tower Design Drawings	Valmont (Archive No. F-1013277)	07/23/2010	NCSHP

3.1) Analysis Method

tnxTower (version 8.3.1.2), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the reinforced leg sections. These calculations are presented in Appendix C.

3.2) Assumptions

- 1) Tower and structures were built and have been maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) Existing Member steel grades have been assumed as follows: Tower Legs (A500-50), Bracing (A36), and Anchor Bolts (F1554-55).

This analysis may be affected if any assumptions are not valid or have been made in error. Engineered Tower Solutions, PLLC should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	150 - 140	Leg	P2.5x.203 (2.875 OD)	1	-4.64	57.19	8.1	Pass
T2	140 - 120	Leg	P2.5x.203 (2.875 OD)	21	-24.42	57.19	42.7	Pass
Т3	120 - 100	Leg	P4x.237 (4.50 [,] OD)	48	-60.47	116.32	52.0	Pass
T4	100 - 80	Leg	P5x.258 (5.563 OD)	69	-87.24	169.37	51.5	Pass
T5	80 - 60	Leg	P5x.258 (5.563 OD)	90	-120.69	169.37	71.3	Pass
T6	60 - 40	Leg	P6x.28 (6.625 OD)	111	-151.51	228.83	66.2	Pass
T7	40 - 20	Leg	Pipe 8.625"ODx0.322"	132	-177.66	334.42	53.1	Pass
T8	20 - 0	Leg	Pipe 8.625"ODx0.322"	147	-205.00	334.42	61.3	Pass
T1	150 - 140	Diagonal	L2x2x1/8	8	-1.43	8.83	16.2 29.8 (b)	Pass
T2	140 - 120	Diagonal	L2x2x1/8 ⁻	23	-2.73	8.83	31.0 58.3 (b)	Pass
T3	120 - 100	Diagonal	L2x2x3/16	50	-6.12	12.23	50.1 74.1 (b)	Pass
T4	100 - 80	Diagonal	L2x2x3/16	70	-4.42	8.65	51.2 60.6 (b)	Pass
T5	80 - 60	Diagonal	L2x2x3/16	92	-5.43	6.32	85.9	Pass
T6	60 - 40	Diagonal	L2 1/2x2 1/2x3/16	113	-5.39	9.55	56.5 60.5 (b)	Pass
T7	40 - 20	Diagonal	L3x3x3/16	134	-6.88	10.25	67.1	Pass
T8	20 - 0	Diagonal	L3x3x5/16	149	-7.81	13.38	58.3	Pass
T1	150 - 140	Top Girt	L2x2x3/16	4	-0.08	8.72	0.9 1.1 (b)	Pass
	****						Summary	
						Leg (T5)	71.3	Pass
						Diagonal (T5)	85.9	Pass
***************************************	***************************************				,	Top Girt (T1)	1.1	Pass
			;			Bolt Checks	81.9	Pass
						Rating =	85.9	Pass

Site Name: Buckeye Mt. - Viper Page 7

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Component Elevation (ft)		Pass / Fail
1	Anchor Rods	0	75.5	Pass
1	Base Foundation (Structural)	0	42.6	Pass
1	Base Foundation (Soil Interaction)	0	60.3	Pass

Structure Rating (max from all components) = 85.9%	Structure Rating (max from all components) =	85.9%
--	--	-------

Notes:

4.1) Recommendations

The tower and its foundations have sufficient capacity to carry the final load configuration once the proposed modifications are installed (see Appendix D).

The loading modification, as follows, must be completed for the results of this analysis to be valid:

Loading Changes:

- 1- Existing Dipole on B Leg at 117-ft to be removed.
- 2- Existing Ice Shield at B Leg to be relocated from 90-ft to 92-ft.
- 3- Existing Equipment on B Leg at 80-ft to be removed.

4.2) Dish Antenna Deflection Results

The results of the tilt and twist values for a 60 mph 3-second gust service wind speed per the TIA-222-G standard are given below:

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load	•			Curvature
ft		Comb.	in	0	0	ft
85.00	HX6-6W-6WH	44	0.894	0.11	0.03	33414
80.00	PL6-65-PXA	44	0.781	0.10	0.03	35799
79.00	PL6-65-PXA	44	0.759	0.10	0.03	35910

See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

150,0 ft L2x2x3/16 9.0 P2,5x,203 (2,875 OD) 140.0 ft L2x2x1/8 6@5 A36 120.0 ft 00 A572-50 P4x.237 (4.50 100.0 ft 7 P5x,258 (5,563 OD) 12 @ 6.66667 80.0 ft A500-50 Ä, 2 60.0 ft P6x.28 (6.625 OD) L2 1/2x2 1/2x3/16 A36 40.0 ft 2.4 Pipe 8.625"ODx0.322" 20.0 ft 4 @ 6 18 3.0 0.0 ft Face Width (ft) Diagonal Grade # Panels @ (ft) Weight (K) Top Girts Legs

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
5/8-in x 4-ft Lightning Rod	x 4-ft Lightning Rod 159		117	
20'x3" pipe	149	Pipe/Stabilizer		
Side Arm Mount [SO 303-3]	147	10' x 2,375" Horizontal Mount	117	
10' x 2.375" Horizontal Mount	147	Pipe/Stabilizer		
Pipe/Stabilizer		3" x 4' Omni	117	
10' x 2.375" Horizontal Mount	147	3" dia x 15-ft Omni Antenna	117	
Pipe/Stabilizer		CC807-11	117	
10' x 2.375" Horizontal Mount	147	6' Dish Ice Shield	92	
Pipe/Stabilizer		8' Dish Ice Shield	86	
3" x 4' Omni	147	4.5" x 5-ft Dish Pipe Mount	85	
3" dia x 15-ft Omni Antenna	147	HX6-6W-6WH	85	
CC807-11	147	4.5" x 5-ft Dish Pipe Mount	80	
Junction Box (9" x 6" x 6")	147	4.5" x 5-ft Dish Pipe Mount	80	
Side Arm Mount [SO 303-3]	117	PL6-65-PXA	80	
10' x 2.375" Horizontal Mount	117	PL6-65-PXA	79	
Pipe/Stabilizer	<u> </u>	4.5" x 5-ft Dish Pipe Mount	79	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu				
A500-50	50 ksi	62 ksi	A572-50	50 ksi	65 ksi				
A36 °	36 ksi	58 ksi							

TOWER DESIGN NOTES

- Tower designed for Exposure C to the TIA-222-G Standard.
 Tower designed for a 108 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 30 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind.
- Tower Structure Class III.
- 6. Topographic Category 1 with Crest Height of 0.00 ft 7. TOWER RATING: 85.9%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 212 K SHEAR: 22 K

UPLIFT: -185 K SHEAR: 19 K

AXIAL 98 K SHEAR MOMENT 4K / 366 kip-ft

TORQUE 4 kip-ft 30 mph WIND - 1.0000 in ICE

AXIAL 21 K SHEAR MOMENT 2670 kip-ft

TORQUE 27 kip-ft REACTIONS - 108 mph WIND

Buckeye Mt. - Viper Engineered Tower Solutions, PLLC Project: ETS, PLLC Job No. 24125017.STR.8177 3227 Wellington Ct. ^{Client:} Watauga County Drawn by: hicham.anssar App'd: Raleigh, NC 27615 Scale: NTS Code: TIA-222-G Date: 03/25/25 Phone: (919) 782-2710 Dwg No. E-1 FAX: 919-782-2710

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	Buckeye Mt Viper	Page 1 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 150.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 15.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 108 mph.

Structure Class III.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 30 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

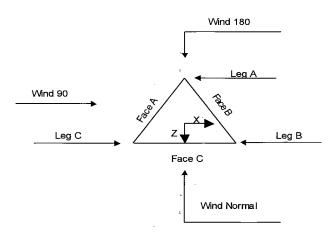
Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Kz In Exposure D Hurricane Region
- √ Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Use Special Wind Profile

- Assume Legs Pinned
- √ Assume Rigid Index Plate
 √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurtenances Alternative Appurt. EPA Calculation Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules


- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside And Inside Corner Radii Are Known

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2023-00-03 DCC Mccting
Job	== -	Page
	Buckeye Mt Viper	2 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Triangular Tower

Tower Section Geometry

То	wer	Tower	Assembly	Description	Section	Number	Section
Sec	ction	Elevation	Database		Width	of	Length
						Sections	
		ft			ft		ft
7	Γ1	150.00-140.00			5.00	I	10.00
7	Γ2	140.00-120.00			5.00	1	20.00
7	Γ3	120.00-100.00			5.00	1	20.00
7	Γ4	100.00-80.00			5.00	1	20.00
7	Γ5	80.00-60.00			7.00	1	20.00
7	Γ6	60.00-40.00		•	9.00	1	20.00
1	۲7	40.00-20.00		•	11.00	1	20.00
7	r8	20.00-0.00		E	13.00	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	150.00-140.00	5.00	X Brace	٠No	No	0.0000	0.0000
T2	140.00-120.00	5.00	X Brace	No	No	0.0000	0.0000
T3	120.00-100.00	6.67	X Brace	No	No	0.0000	0.0000
T4	100.00-80.00	6.67	X Brace	No	No	0.0000	0.0000
T5	80.00-60.00	6.67	X Brace	No ·	No	0.0000	0.0000
Т6	60.00-40.00	6.67	X Brace	No	No	0.0000	0.0000
T7	40.00-20.00	10.00	X Brace	No	No	0.0000	0.0000

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Buckeye Mt Viper	3 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

***************************************	***************************************	***************************************			***************************************		***************************************
Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace . End	Horizontals	Offset	Offset
	ft	ft		Panels		in	in
Т8	20.00-0.00	10.00	X Brace	` No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Type	Size	Grade	Туре	Size	Grade
T1 150.00-140.00	Pipe	P2.5x.203 (2.875 OD)	A500-50 (50 ksi)	Equal Angle	L2x2x1/8	A36 (36 ksi)
T2 140.00-120.00	Pipe	P2.5x.203 (2.875 OD)	A500-50 (50 ksi)	Equal Angle	L2x2x1/8	A36 (36 ksi)
T3 120.00-100.00	Pipe	P4x.237 (4.50 OD)	À500-50 (50 ksi)	Equal Angle	L2x2x3/16	À572-50 (50 ksi)
T4 100.00-80.00	Pipe	P5x.258 (5.563 OD)	À500-50 (50 ksi)	Equal Angle	L2x2x3/16	A36 (36 ksi)
T5 80.00-60.00	Pipe	P5x.258 (5.563 OD)	À500-50 (50 ksi)	Equal Angle	L2x2x3/16	A36 (36 ksi)
T6 60.00-40.00	Pipe	P6x.28 (6.625 OD)	À500-50 (50 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	A36 (36 ksi)
T7 40.00-20.00	Pipe	Pipe 8.625"ODx0.322"	À500-50 (50 ksi)	Equal Angle	L3x3x3/16	A36 (36 ksi)
T8 20.00-0.00	Pipe	Pipe 8.625"ODx0.322"	A500-50 (50 ksi)	Equal Angle	L3x3x5/16	A36 (36 ksi)

Tower Section Geometry (cont'd)

***************************************	••••		***************************************	***************************************	***************************************	
Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Type	Size	Grade
ft						
T1 150.00-140.00	Equal Angle	L2x2x3/16	A36	Solid Round		A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft²	in					in	in	in
T1	0.00	0.2500	A36	1	1	1	36.0000	36.0000	36.0000
150.00-140.00			(36 ksi)						
T2	0.00	0.2500	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T3	0.00	0.2500	A36	1	I	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T4	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						

trans Toronom	Job		Page
tnxTower		4 of 33	
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

**	Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
	Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
		(per face)				A_r		Spacing	Spacing	Spacing
		2						Diagonals	Horizontals	Redundants
	ft	ft ²	in					in	in	in
- 7	Г5 80.00-60.00	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
				(36 ksi)						
-	Г6 60.00-40.00	0.00	0.3750	A36	1	. 1	1	36.0000	36.0000	36.0000
				(36 ksi)						
-	Γ7 40.00-20.00	0.00	0.3750	A36	1	· 1	1	36.0000	36.0000	36.0000
				(36 ksi)						
	T8 20.00-0.00	0.00	0.3750	`A36 ´	1	1	1	36.0000	36.0000	36.0000
				(36 ksi)						

Tower Section Geometry (cont'd)

					-	K Fa	ctors i			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	. Y	Y	Y	Y	Y
T1	Yes	No	1	1	1	1	1	1	1	1
150.00-140.00				1	I	1	1	1	1	1
T2	Yes	No	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T3	Yes	No	1	1	1	1	1	1	1	1
120.00-100.00				1	1	. 1	1	1	1	1
T4	Yes	No	1	1	1 .	1	1	1	1	1
100.00-80.00				1	1 .	1	1	1	1	1
T5	Yes	No	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T6	Yes	No	1	1	1	1	1	1	1	1
60.00-40.00				1	1	. 1	1	1	1	1
T7	Yes	No	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T8 20.00-0.00	Yes	No	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg	***************************************	Diago	nal	Top G	irt	Botton	ı Girt	Mid (Girt	Long Ho	rizontal	Short Ho	rizontal
·	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 150.00-140.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 140.00-120.00	0.0000	I	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 120.00-100.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		2025 08 05 DCC Meeting Page
300	Buckeye Mt Viper	5 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Elevation ft	Leg	-		_		_		-		Diagonal		Top Girt		Bottom Girt		Girt	Long Ho	rizontal	Short Ho	rizontal
·	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U						
T4 100.00-80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75						
T5 80.00-60.00		I	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75						
T6 60.00-40.00 T7 40.00-20.00		1	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75						
T8 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75						

Tower Elevation ft	Redun Horiza		Reduna Diago		Redund Sub-Diag		Redur Sub-Ho		Redundan	t Vertical	Reduna	lant Hip		lant Hip zonal
,,	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 150.00-140.00	'	0.75 (1)		0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
		0.75 (2)		0.75 (2)			,				0.0000	0.75 (2)	0.0000	0.75 (2)
		0.75 (3)		0.75 (3)							0.0000	0.75 (3)	0.0000	0.75 (3)
		0.75 (4)		0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)
T2 140.00-120.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75(1)	0.0000	0.75(1)
	0.0000	0.75 (2)	0.0000	0.75 (2)		•					0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)
T3 120.00-100.00	0.0000	0.75 (1)	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75(1)	0.0000	0.75(1)
	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75							0.0000	0.75(3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T4 100.00-80.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75(1)	0.0000	0.75(1)
100.00-80.00	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3)							0.0000	0.75 (4)	0.0000	0.75 (4)
T5 80.00-60.00	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75	***************************************						0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75 (4)	***************************************						0.0000	0.75 (4)	0.0000	0.75 (4)

2025-08-05 BCC Meeting Job Page 6 of 33 Buckeye Mt. - Viper Project Date ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 Client Designed by Watauga County

Engineered Tower Solutions, **PLLC**

tnxTower

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Tower Elevation ft	Redur Horiz		Reduna Diago		Reduna Sub-Diag		Redur Sub-Ho		Redundan	t Vertical	Redund	lant Hip		lant Hip gonal
	Net Width Deduct in	h U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T6 60.00-40.00		0.75 (1) 0.75 (2)		0.75 (1) 0.75 (2)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1) 0.75 (2)	0.0000	0.75 (1) 0.75 (2)
		0.75 (3) 0.75 (4)		0.75 (3) 0.75 (4)					***************************************		0.0000	0.75 (3) 0.75 (4)	0.0000	0.75 (3) 0.75 (4)
T7 40.00-20.00		0.75 (1) 0.75 (2)		0.75 (1) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1) 0.75 (2)	0.0000	0.75 (1) 0.75 (2)
		0.75 (3) 0.75 (4)		(2) 0.75 (3) 0.75	44441 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444		٠		***************************************	***************************************	0.0000	0.75 (3) 0.75 (4)	0.0000	0.75 (3) 0.75 (4)
T8 20.00-0.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75 (2)	0.0000	0.75 (2)	***************************************		80003300000000000000000000000000000000		***************************************	***************************************	0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75	***************************************		٠		***************************************	отестолого	0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75 (4)			commentered from the second se		***************************************	***************************************	0.0000	0.75 (4)	0.0000	0.75 (4)

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	Leg		Diagor	ıal	Top. G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hor	izontal
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1	Flange	0.7500	4	0.7500	1	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
150.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	0.7500	4	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T4	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 80.00-60.00	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 60.00-40.00	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

hicham.anssar

tnxTower	Job	Buckeye Mt Viper	2025-0 Pag BCC Meeting 7 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower Elevation ft	Leg Connection Type	Leg	0.000.00000000 000	Diagon	al	Top G	irt	Bottom (Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
-		Bolt Size	No.	Bolt Size	No.	Bolt Size	Ņо.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in .		in		in		in		in	
T7 40.00-20.00	Flange	1.0000	8	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	•	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 20.00-0.00	Flange	0.7500	0	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	pp	A325N		A325N	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A325N	••••	A325N		A325N		A325N	***************************************	A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
***			Calculation						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Step Pegs (5/8" SR) 7-in. w/ 30" Step	Α	No	No	Ar (CaAa)	80.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49
Step Pegs (5/8" SR) 7-in. w/ 30" Step	В	No	No	Ar (CaAa)	80.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49
Step Pegs (5/8" SR) 7-in. w/ 30" Step	С	No	No	Ar (CaAa)	150.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49
Ladder Rail: PL3x1/4	C	No	No	Af (CaAa)	150.00 - 0.00	0.0000	0	2	2	12.0420 3.0000	3.0000		3.83
Climbing Rung: SR 5/8" (12" Step)	С	No	No	Ar (CaAa)	150.00 - 0.00	0.0000	0	1	1	0.6250	0.6250		1.04
Safety Line 3/8 ***	С	No	No	Ar (CaAa)	150.00 - 0.00	0.0000	0	1	1	0.3750	0.3750		0.22
Feedline Ladder (Af)	Α	No	No	Af (CaAa)	150.00 - 0.00	0.0000	-0.32	1	1	3.0000	3.5000		8.40
1 5/8	A	No	No	Ar (CaAa)	117.00 - 10.00	0.0000	-0.4	1	1	1.9800	1.9800		1.04
7/8	A	No	No	Ar (CaAa)	147.00 - 10.00	0.0000	-0.38	1	1	1.1100	1.1100		0.54
1/2	Α	No	No	Ar (CaAa)	147.00 - 10.00	0.0000	-0.36	1	1	0.5800	0.5800		0.25
EW63	A	No	No	Ar (CaAa)	80.00 - 10.00	0.0000	-0.34	1	1	1.5742	1.5742		0.51
7/8	Α	No	No	Ar (CaAa)	147.00 - 117.00	0.0000	-0.31	1	1	1.1100	1.1100		0.54
7/8	Α	No	No	Ar (CaAa)	117.00 - 10.00	0.0000	-0.31	2	2	0.5000 1.1100	1.1100		0.54
EW63	Α	No	No	Ar (CaAa)	79.00 - 10.00	0.0000	-0.26	1	1	1.5742	1.5742		0.51

7/8	Α	No	No	Ar (CaAa)	147.00 - 10.00	0.0000	-0.22	1	I	1.1100	1.1100		0.54
EU 63	A	No	No	Ar (CaAa)	85.00 - 10.00	0.0000	-0.2	1	1	2.0300	2.0300		0.56
***								000000000000000000000000000000000000000					

4	Job		Page
tnxTower		Buckeye Mt Viper	8 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

		Fee	<u>d Line</u>	<u>/Linear</u>	Appurte	enances -	Entered As	s Area
Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number	$C_A A_A$	Weight
	Leg	Smera	Torque Calculation	31	ft	Timioci	ft²/ft	plf

Tower Section	Tower Elevation	Face	A_R	A_F	$C_A A_A$ In Face	C_AA_A Out Face	Weight
	ft		ft²	ft²	ft²	ft²	K
T1 15	50.00-140.00	A	0.000	0.000	8.570	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	11.700	0.000	0.10
T2 14	10.00-120.00	Α	0.000	0.000	19.487	0.000	0.21
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	23.400	0.000	0.20
T3 12	00.001-00.00	Α	0.000	0.000	24.740	0.000	0.23
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	23.400	0.000	0.20
T4 1	00.08-00.00	Α	0.000	0.000	26.682	0.000	0.24
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	23.400	0.000	0.20
T5 8	30.00-60.00	Α	0.000	0.000	37.266	0.000	0.29
		В	0.000	0.000	1.400	0.000	0.02
		C	0.000	0.000	23.400	0.000	0.20
T6 6	50.00-40.00	Α	0.000	0.000	37.424	0.000	0.29
		В	0.000	0.000	1.400	0.000	0.02
		C	0.000	0.000	23.400	0.000	0.20
T7 4	0.00-20.00	Α	0.000	0.000	37.424	0.000	0.29
		В	0.000	0.000	1.400	0.000	0.02
		C	0.000	0.000	23.400	0.000	0.20
T8 :	20.00-0.00	Α	0.000	0.000	25.245	0.000	0.24
		В	0.000	0.000	1.400	0.000	0.02
		C	0.000	0.000	23,400.	0.000	0.20

	Fee	d Lin	e/Linea	r Appur	tenance	es Section	on Areas	s - With Ice
Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft²	ft²	ft²	ft²	K
T1	150.00-140.00	A	2.899	0.000	0.000	30.602	0.000	0.69
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	45.694	0.000	0.87
T2	140.00-120.00	Α	2.867	0.000	0.000	76.834	0.000	1.69
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	90.662	0.000	1.71
T3	120.00-100.00	Α	2.820	0.000	0.000	100.195	0.000	2.02
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	89.566	0.000	1.67
T4	100.00-80.00	Α	2.764	0.000	0.000	106.750	0.000	2.11
		В		0.000	0.000	0.000	0.000	0.00

Page Job tnxTower Buckeye Mt. - Viper 9 of 33 Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Project ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 Client Designed by Watauga County

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C₁A₁ In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft^2	<i>'ft</i> 2	ft²	ft²	K
		C		0.000	0.000	88.274	0.000	1.62
T5	80.00-60.00	Α	2.695	0.000	0.000	164.689	0.000	3.10
		В		0.000	0.000	21.569	0.000	0.25
		C		0.000	0.000	86.693	0.000	1.56
T6	60.00-40.00	Α	2.606	0.000	0.000	161.275	0.000	2.96
		В		0.000	0.000	20.939	0.000	0.24
		C		0.000	0.000	84.636	0.000	1.48
T7	40.00-20.00	Α	2.476	0.000	0.000	155.295	0.000	2.75
		В		0.000	0.000	20.023	0.000	0.22
		C		0.000	0.000	81.644	0.000	1.38
T8	20.00-0.00	Α	2.219	0.000	0.000	91.085	0.000	1.49
		В		0.000	0.000	18.205	0.000	0.18
		C		0.000	0.000	75.704	0.000	1.18

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	150.00-140.00	-2.3951	2.0192	4.7432	3.9421
T2	140.00-120.00	-3.0693	2.3062	6.4135	4.7847
T3	120.00-100.00	-4.1168	2.7296	-7.4678	5.1546
T4	100.00-80.00	-5.0308	3.1161	-9.3871	6.2366
T5	80.00-60.00	-7.6857	3.7206	-12.3949	6.6827
T6	60.00-40.00	-8.1562	3.9395	-14.3158	7.7366
T7	40.00-20.00	-8.9146	4.2694	-16.4331	8.8937
T8	20.00-0.00	-5.6635	3.4317	-11.2104	8.1297

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	4	Step Pegs (5/8" SR) 7-in. w/	140.00 -	0.6000	0.3876
		30" Step	150.00		
T1	5	Ladder Rail; PL3x1/4	140.00 -	0.6000	0.3876
			150.00		
T1	6	Climbing Rung: SR 5/8" (12"	140.00 -	0.6000	0.3876
		Step)	150.00		
T1	7	Safety Line 3/8	140.00 -	0.6000	0.3876
			150.00		
T1	9	Feedline Ladder (Af)	140.00 -	0.6000	0.3876
			150.00		
T1	11	7/8	140.00 -	0.6000	0.3876
			147.00		
T1	12	1/2	140.00 -	0.6000	0.3876
			147.00		
T1	14	7/8	140.00 -	0.6000	0.3876
			147.00		
T1	19	7/8	140.00 -	0.6000	0.3876
			147.00		
T2	4	Step Pegs (5/8" SR) 7-in. w/	120.00 -	0.6000	0.4454

hicham.anssar

4	Job		Page
tnxTower		Buckeye Mt Viper	10 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower	Feed Line	Description	Feed Line	Ka	v
Section	Record No.	Description	Segment Elev.	No Ice	K _a Ice
Bection	Record IVO.	30" Step		140 100	766
T2	5	Ladder Rail: PL3x1/4	120.00 -	0.6000	0.4454
12		Ladder Rail: 1 L5X 1/4	140.00	0.0000	0.4454
T2	6	Climbing Rung: SR 5/8" (12"	120.00 -	0.6000	0.4454
.~	J	Step)	140.00	0.0000	0.1151
T2	7	Safety Line 3/8	120.00 -	0.6000	0.4454
		,	140.00		
Т2	9	Feedline Ladder (Af)	120.00 -	. 0.6000	0.4454
			140.00		
T2	11	7/8	120.00 -	0.6000	0.4454
			140.00		
T2	12	1/2	120.00 -	0.6000	0.4454
	1.4	7.0	140.00	0.6000	0.4454
T2	14	7/8	120.00 -	0.6000	0.4454
T2	19	7/8	140.00	0.6000	0.4454
12	19	//6	120.00 - 140.00	0.8000	0.4434
Т3	4	Step Pegs (5/8" SR) 7-in. w/	100.00 -	0.6000	0.4590
'3	7	30" Step	120.00	. 0.0000	0.7370
Т3	5	Ladder Rail: PL3x1/4	100.00 -	0.6000	0.4590
		······································	120.00	,	
T3	6	Climbing Rung: SR 5/8" (12"	100.00 -	0.6000	0.4590
		Step)	120.00		
T3	7	Safety Line 3/8	100.00 -	0.6000	0.4590
			120.00		
T3	9	Feedline Ladder (Af)	100.00 -	0.6000	0.4590
			120.00		
T3	10	1 5/8	100.00 -	0.6000	0.4590
T-2		7/0	117.00	0.6000	0.4500
T3	11	7/8	100.00 -	0.6000	0.4590
Т3	12	1/2	120.00	0.6000	0.4590
13	12	1/2	100.00 - 120.00	, 0.6000	0.4390
Т3	14	7/8	117.00 -	0.6000	0.4590
"	• •	,,,	120.00	0.0000	0.4370
T3	15	7/8	100.00 -	0.6000	0.4590
			117.00		
T3	19	7/8	100.00 -	0.6000	0.4590
			120.00		
T4	4	Step Pegs (5/8" SR) 7-in. w/	80.00 - 100.00	0.6000	0.5075
		30" Step			
T4	5	Ladder Rail: PL3x1/4		0.6000	0.5075
T4	6	Climbing Rung: SR 5/8" (12"	80.00 - 100.00	- 0.6000	0.5075
	آ_	Step)	100 00	, , , , , ,	0.5075
T4	7	Safety Line 3/8		0.6000	0.5075
T4 T4	9	Feedline Ladder (Af) 1 5/8		0.6000 0.6000	0.5075
T4	10 11			0.6000	0.5075 0.5075
T4	12	1/2		0.6000	0.5075
T4	15	7/8	80.00 - 100.00	0.6000	0.5075
T4	19	7/8	80.00 - 100.00	0.6000	0.5075
T4	21	EU 63	80.00 - 85.00	0.6000	0.5075
T5	2	Step Pegs (5/8" SR) 7-in, w/	60.00 - 80.00	0.6000	0.5914
		30" Step		. [·
T5	3	Step Pegs (5/8" SR) 7-in. w/	60.00 - 80.00	- 0.6000	0.5914
		30" Step		ا ،	
T5	4	Step Pegs (5/8" SR) 7-in. w/	60.00 - 80.00	0.6000	0.5914
	i	30" Step			•
T5	5	Ladder Rail: PL3x1/4	60.00 - 80.00	0.6000	0.5914
T5	6	Climbing Rung: SR 5/8" (12"	60.00 - 80.00	0.6000	0.5914
	آءِ ا	Step)	60.00 00.00	0.000	0.501.1
T5	7	Safety Line 3/8	60.00 - 80.00	0.6000	0.5914

tnxTower	Job	Buckeye Mt Viper	2023-05-03-05-05-05-05-05-05-05-05-05-05-05-05-05-
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 F4Y: 010-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T5	9	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.5914
T5	10	1 5/8	60.00 - 80.00	- 0.6000	0.5914
T5	11	7/8	60.00 - 80.00	0.6000	0.5914
T5	12	1/2	60.00 - 80.00	0.6000	0.5914
T5	13	EW63	60.00 - 80.00	0.6000	0.5914
T5	15	7/8	60.00 - 80.00	0.6000	0.5914
T5	17	EW63	60.00 - 79.00	0.6000	0.5914
T5	19	7/8	60.00 - 80.00	0.6000	0.5914
T5	21	EU 63	60.00 - 80.00	0.6000	0.5914
Т6	2	Step Pegs (5/8" SR) 7-in. w/ 30" Step	40.00 - 60.00	0.6000	0.6000
Т6	3	Step Pegs (5/8" SR) 7-in. w/ 30" Step	40.00 - 60.00	0.6000	0.6000
. Т6	4	Step Pegs (5/8" SR) 7-in. w/ 30" Step	40.00 - 60.00	- 0.6000	0.6000
Т6	5	Ladder Rail: PL3x1/4	40.00 - 60.00	0.6000	0.6000
Т6	6	Climbing Rung: SR 5/8" (12" Step)	40.00 - 60.00	0.6000	0.6000
T6	7	Safety Line 3/8	40.00 - 60.00	0.6000	0.6000
T6	9	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
T6	10	1 5/8	40.00 - 60.00	0.6000	0.6000
T6	11 12	7/8	40.00 - 60.00	0.6000 0.6000	0.6000
T6	12	1/2	40.00 - 60.00		0.6000
T6 T6	15	EW63 7/8	40.00 - 60.00 40.00 - 60.00	0.6000	0.6000 0.6000
T6	17	EW63	40.00 - 60.00	. 0.6000	0.6000
T6	17	7/8	40.00 - 60.00	0.6000	0.6000
T6	21	EU 63	40.00 - 60.00	0.6000	0.6000
T7	2	Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
T7	3	30" Step Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
Т7	4	30" Step Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
Т7	5	30" Step Ladder Rail: PL3x1/4	20.00 - 40.00	0.6000	0.6000
T71	6	Climbing Rung: SR 5/8" (12" Step)	20.00 - 40.00	0.6000	0.6000
T7	7	Safety Line 3/8	20.00 - 40.00	. 0.6000	0.6000
T7	9	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T7	10	1 5/8	20.00 - 40.00	0.6000	0.6000
T7	11	7/8	20.00 - 40.00	0.6000	0.6000
T7	12	1/2	20.00 - 40.00	0.6000	0.6000
T7	13	EW63	20.00 - 40.00	0.6000	0.6000
T7	15	7/8	20.00 - 40.00	0.6000	0.6000
T7	17	EW63	20.00 - 40.00	0.6000	0.6000
T7	19	7/8	20.00 - 40.00	0.6000	0.6000
T7 T8	21 2	EU 63 Step Pegs (5/8" SR) 7-in. w/ 30" Step	20.00 - 40.00 0.00 - 20.00	0.6000 0.6000	0.6000 0.6000
Т8	3	30" Step Step Pegs (5/8" SR) 7-in. w/ 30" Step	0.00 - 20.00	0.6000	0.6000
Т8	4	Step Pegs (5/8" SR) 7-in. w/ 30" Step	0.00 - 20.00	0.6000	0.6000
Т8	5	Ladder Rail: PL3x1/4	0.00 - 20.00	0.6000	0.6000
Т8	6	Climbing Rung: SR 5/8" (12" Step)	0.00 - 20.00	0.6000	0.6000
Т8	7	Safety Line 3/8	0.00 - 20.00	0.6000	0.6000
Т8	9	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
Т8	10	1 5/8	10.00 - 20.00	0.6000	0.6000
Т8	11	7/8	10.00 - 20.00	0.6000	0.6000
Т8	12	1/2	10.00 - 20.00		
T8	13	EW63	10.00 - 20.00	0.6000	0.6000

tnxTower	Job		Page
inxiower		Buckeye Mt Viper	12 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower	Feed Line	Description	Feed Line	K _u	K _u
Section	Record No.		Segment Elev.	No Ice	Ice
T8	15	7/8	10.00 - 20.00	0.6000	0.6000
Т8	17	EW63	10.00 - 20.00	0.6000	0.6000
T8	19	7/8	10.00 - 20.00	0.6000	0.6000
T8	21	EU 63	10.00 - 20.00	0.6000	0.6000

Discrete Tower Loads										
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement	***************************************	C_AA_A Front	C _A A _A Side	Weight	
			ft ft ft	0 -	ft		ft²	ft²	K	
***		***************************************			***************************************	***************************************	***************************************			
20'x3" pipe	Α	From Centroid-Le	2.25 0.00 10.00	0.00	149.00	No Ice 1/2" Ice 1" Ice	5.65 8.03 10.08	5.65 8.03 10.08	0.05 0.09 0.15	
5/8-in x 4-ft Lightning Rod	Α	g From Centroid-Le	2.50 0.00	0.00	159.00	No Ice 1/2" Ice	0.25 0.66	0.25 0.66	0.00 0.01	
***		g	1.00			1" Ice	0.97	0.97	0.01	
Side Arm Mount [SO 303-3]	В	None		0.00	147.00	No Ice 1/2" Ice	7.67 11.04	7.67 11.04	0.34 0.48	
10' x 2.375" Horizontal	A	From Leg	0.00	0.00	147.00	1" Ice No Ice	14.57 2.38	14.57 0.06	0.65 0.04	
Mount Pipe/Stabilizer			0.00	•		1/2" Ice 1" Ice	3.40 4.45	0.12 0.21	0.06 0.08	
10' x 2.375" Horizontal Mount Pipe/Stabilizer	В	From Leg	0.00 0.00	0.00	147.00	No Ice 1/2" Ice	2.38 3.40	0.06 0.12	0.04 0.06	
10' x 2.375" Horizontal Mount Pipe/Stabilizer	C	From Leg	0.00 0.00 0.00	0.00	147.00	1" Ice No Ice 1/2" Ice	4.45 2.38 3.40	0.21 0.06 0.12	0.08 0.04 0.06	
3" x 4' Omni	Α	From Leg	0.00 6.00	0.00	147.00	1" Ice No Ice	4.45 1.04	0.21 1.04	0.08 0.04	
			0.00 3.00		•	1/2" Ice 1" Ice	1.44 1.68	1.44 1.68	0.05 0.06	
3" dia x 15-ft Omni Antenna	В	From Leg	6.00 0.00 8.00	0.00	147.00	No Ice 1/2" Ice 1" Ice	4.25 6.03 7.58	4.25 6.03 7.58	0.04 0.07 0.11	
CC807-11	C	From Leg	6.00 0.00	0.00	147.00	No Ice 1/2" Ice	4.86 7.63	4.86 7.63	0.11 0.05 0.09	
Junction Box (9" x 6" x 6")	Α	From Face	9.20 0.50 0.00	0.00	147.00	1" Ice No Ice 1/2" Ice	9.40 0.83 0.95	9.40 0.50 0.59	0.14 0.03 0.03	
			0.00			1" Ice	1.07	0.59	0.03	

Side Arm Mount [SO 303-3]	В	None		0.00	117.00	No Ice 1/2" Ice I" Ice	7.67 11.04 14.57	7.67 11.04 14.57	0.34 0.48 0.65	
10' x 2.375" Horizontal Mount Pipe/Stabilizer	A	From Leg	0.00 0.00 0.00	0.00	117.00	No Ice 1/2" Ice 1" Ice	2.38 3.40 4.45	0.06 0.12 0.21	0.04 0.06 0.08	
10' x 2.375" Horizontal Mount Pipe/Stabilizer	В	From Leg	0.00	0.00	117.00	No Ice 1/2" Ice	2.38 3.40	0.06 0.12	0.04 0.06	

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		-0025 00 05 DCCM -:
Job		Page
	Buckeye Mt Viper	13 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

	or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
			ft ft ft ft	o .	ft		ft²	ft²	K
			0.00			l" Ice	4.45	0.21	0.08
10' x 2.375" Horizontal	С	From Leg	0.00	0.00	117.00	No Ice	2.38	0.06	0.04
Mount Pipe/Stabilizer	•		0.00	, 5.55		1/2" Ice	3.40	0.12	0.06
			0.00			1" Ice	4.45	0.21	0.08
3" x 4' Omni	Α	From Leg	6.00	0.00	117.00	No Ice	1.04	1.04	0.04
			0.00			1/2" Ice	1.44	1.44	0.05
			3.00		•	1" Ice	1.68	1.68	0.06
3" dia x 15-ft Omni Antenna	C	From Leg	6.00	0.00	117.00	No Ice	4.35	4.35	0.04
		J	0.00			1/2" Ice	6.03	6.03	0.07
			8.00			l" Ice	7.58	7.58	0.11
CC807-11	В	From Leg	6.00	0.00	117.00	No Ice	4.98	4.98	0.05
		Ū	0.00			1/2" Ice	7.63	7.63	0.09
			9.20			I" Ice	9.40	9.40	0.14

4.5" x 5-ft Dish Pipe Mount	В	From Leg	1.33	0.00	80.00	No Ice	1.43	1.43	0.05
			0.00	*		1/2" Ice	2.08	2.08	0.07
			0.00			1" Ice	2.40	2.40	0.09
6' Dish Ice Shield	В	From Leg	3.00	0.00	92.00	No Ice	7.72	7.72	0.31
			0.00			1/2" Ice	11.08	11.08	0.53
			0.00	*		1" Ice	14.44	14.41	0.78
4.5" x 5-ft Dish Pipe Mount	В	From Leg	1.33	0.00	85.00	No Ice	1.43	1.43	0.05
			0.00	*		1/2" Ice	2.08	2.08	0.07
			0.00			1" Ice	2.40	2.40	0.09

4.5" x 5-ft Dish Pipe Mount	С	From Leg	1.33	0.00	79.00	No Ice	1.43	1.43	0.05
			0.00			1/2" Ice	2.08	2.08	0.07
			0.00			1" Ice	2.40	2.40	0.09
8' Dish Ice Shield	C	From Leg	3.00	0.00	86.00	No Ice	8.67	8.67	0.38
			0.00			1/2" Ice	11.10	11.10	0.66
			0.00			1" Ice	13.32	13.53	0.97

4.5" x 5-ft Dish Pipe Mount	Α	From Leg	1.33	0.00	80.00	No Ice	1.43	1.43	0.05
			0.00	-		1/2" Ice	2.08	2.08	0.07
			0.00			1" Ice	2.40	2.40	0.09

	Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter	ESSENCE COMMUNICATION OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF THE SECOND OF T	Aperture Area	Weight	
***************************************				ft	0	0	ft	ft		ft²	K	
*** PL6-65-PXA ***	В	Paraboloid w/Radome	From Leg	2.00 0.00 0.00	50.00		80.00	6.36	No Ice 1/2" Ice 1" Ice	31.75 32.59 33.43	0.16 0.33 0.50	
PL6-65-PXA	С	Paraboloid w/Radome	From Leg	2.00 0.00 0.00	10.00		79.00	6.36	No Ice 1/2" Ice 1" Ice	31.75 32.59 33.43	0.16 0.33 0.50	

			Zoze oo oe Bee meening
4T	Job		Page
tnxTower		Buckeye Mt Viper	14 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
***	······································		······	Vert ft	0	0	fi	ft		ft²	K
HX6-6W-6WH	В	Paraboloid w/Shroud (HP)	From Leg	2.00 0.00 0.00	48.00		85.00	6.23	No Ice 1/2" Ice 1" Ice	30.48 31.30 32.13	0.19 0.35 0.51
***				****						225	0.01

Tower Pressures - No Ice

 $G_H = 0.850$

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_{\Lambda}A_{\Lambda}$	$C_A A_A$
Elevation					а		. '		%	In	Out
					c		,			Face	Face
ft	ft		psf	ft^2	е	ft²	· ft²	ft²		ft^2	ft²
T1	145.00	1.369	40	52.396	Α	5.282	4.792	4.792	47.57	8.570	0.000
150.00-140.00					В	5.282	4.792		47.57	0.000	0.000
					С	5.282	4.792		47.57	11.700	0.000
T2	130.00	1.337	39	104.792	Α	8.976	9.583	9.583	51.64	19.487	0.000
140.00-120.00					В	8.976	9.583		51.64	0.000	0.000
					C	8.976	9.583		51.64	23.400	0.000
T3	110.00	1.291	38	107.500	Α	7.708	15.000	15.000	66.06	24.740	0.000
120.00-100.00					В	7.708	15.000		66.06	0.000	0.000
					С	7.708	15.000		66.06	23.400	0.000
T4	90.00	1.238	36	129.283	Α	8.284	18.574	18.574	69.16	26.682	0.000
100.00-80.00					В	8.284	18.574		69.16	0.000	0.000
					C	8.284	18.574		69.16	23.400	0.000
T5 80.00-60.00	70.00	1.174	34	169.283	Α	9.816	18.574	18.574	65.42	37.266	0.000
					В	9.816	18.574		65.42	1.400	0.000
					С	9.816	18.574		65.42	23.400	0.000
T6 60.00-40.00	50.00	1.094	32	211.055	Α	14.199	22.120	22.120	60.90	37.424	0.000
					В	14.199	22.120		60.90	1.400	0.000
					C	14.199	22.120		60.90	23.400	0.000
T7 40.00-20.00	30.00	0.982	29	254.393	Α	14.690	28.798	28.798	66.22	37.424	0.000
					В	14.690	28.798	i	66.22	1.400	0.000
					C	14.690	28.798		66.22	23.400	0.000
T8 20.00-0.00	10.00	0.850	25	294.393	Α	16.326	28.798	28.798	63.82	25.245	0.000
					В	16.326	28.798		63.82	1.400	0.000
					C	16.326	28.798		63.82	23.400	0.000

Tower Pressure - With Ice

 $G_H = 0.850$

Section Elevation	z	Kz	q_z	t_Z	A_G	F a	A_F	A_R	A_{leg}	Leg %	C_AA_A In	C _A A _A Out
ft	ft		psf ⁻	in	ft²	c e	· ft²	ft²	ft²	70	Face ft²	Face ft ²
T1	145.00	1.369		2.8988	57.227	Α	5.282	29.765	14.454	41.24	30.602	0.000
150.00-140.00						В	5.282	29.765		41.24	0.000	0.000
j						C	5.282	29.765		41.24	45.694	0.000
T2	130.00	1.337	3	2.8674	114.350	Α	8.976	54.438	28.699	45.26	76.834	0.000
140.00-120.00						В	8.976	54.438	1	45.26	0.000	0.000

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		2023-03-BCC Meeting
	Buckeye Mt Viper	15 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	z	K_Z	q_z	t_Z	A_G	F	A_{F}	A_R	A_{leg}	Leg	C_AA_A	$C_A A_A$
Elevation						a	,			%	In	Out
				į į	- 1	c					Face	Face
ft	ft		psf	in	ft^2	е	- ft²	ft ²	ft^2		ft^2	ft^2
						С	8.976	54.438		45.26	90.662	0.000
T3	110.00	1.291	3	2.8199	116.900	Α	7.708	55.536	33.799	53.44	100.195	0.000
120.00-100.00						В	7.708	55.536		53.44	0.000	0.000
						C	7.708	55.536		53.44	89.566	0.000
T4 100.00-80.00	90.00	1.238	2	2.7638	138.508	Α	8.284	59.925	37.030	54.29	106.750	0.000
						В	8.284	59.925		54.29	0.000	0.000
						C	8.284	59.925		54.29	88.274	0.000
T5 80.00-60.00	70.00	1.174	. 2	2.6952	178.279	Α	9.816	63.030	36.572	50.20	164.689	0.000
1						В	9.816	63.030		50.20	21.569	0.000
						C	9.816	63.030		50.20	86.693	0.000
T6 60.00-40.00	50.00	1.094	2	2.6061	219.753	Α	14.199	69.127	39.523	47.43	161.275	0.000
						В	14.199	69.127		47.43	20.939	0.000
ļ						C	14.199	69.127		47.43	84.636	0.000
T7 40.00-20.00	30.00	0.982	2	2.4763	262.658	Α	14.690	69.585	45.334	53.79	155.295	0.000
						В	14.690	69.585		53.79	20.023	0.000
	•					C	14.690	69.585		53.79	81.644	0.000
T8 20.00-0.00	10.00	0.850	2	2.2186	301.798	Α	16.326	67.761	43.614	51.87	91.085	0.000
					·	В	16.326	67.761		51.87	18.205	0.000
						C	16.326	67.761		51.87	75.704	0.000

Tower Pressure - Service

 $G_H = 0.850$

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					с					Face	Face
ft	ft		psf	ft^2	е	ft²	ft²	ft²		ft²	ft^2
T1	145.00	1.369	11	52.396	Α	5.282	4.792	4.792	47.57	8.570	0.000
150.00-140.00					В	5.282	4.792		47.57	0.000	0.000
					C	5.282	4.792		47.57	11.700	0.000
T2	130.00	1.337	10	104.792	Α	8.976	9.583	9.583	51.64	19.487	0.000
140.00-120.00					В	8.976	9.583		51.64	0.000	0.000
					C	8.976	9.583		51.64	23.400	0.000
T3	110.00	1.291	10	107.500	Α	7.708	15.000	15.000	66.06	24.740	0.000
120.00-100.00					В	7.708	15.000		66.06	0.000	0.000
					C	7.708	15.000		66.06	23.400	0.000
T4	90.00	1.238	10	129.283	Α	8.284	18.574	18.574	69.16	26.682	0.000
100.00-80.00					В	8.284	18.574		69.16	0.000	0.000
					С	8.284	18.574		69.16	23.400	0.000
T5 80.00-60.00	70.00	1.174	9	169.283	Α	9.816	18.574	18.574	65.42	37.266	0.000
					В	9.816	18.574		65.42	1.400	0.000
					C	9.816	18.574		65.42	23.400	0.000
T6 60.00-40.00	50.00	1.094	9	211.055	Α	14.199	22.120	22.120	60.90	37.424	0.000
					В	14.199	22.120		60.90	1.400	0.000
					С	14.199	22.120		60.90	23.400	0.000
T7 40.00-20.00	30.00	0.982	8	254.393	Α	14.690	28.798	28.798	66.22	37.424	0.000
					В	14.690	28.798		66.22	1.400	0.000
					C	14.690	28.798		66.22	23.400	0.000
T8 20.00-0.00	10.00	0.850	7	294.393	Α	16.326	28.798	28.798	63.82	25.245	0.000
					В	16.326	28.798		63.82	1.400	0.000
					С	16.326	28.798		63.82	23.400	0.000

trave Torman	Job		Page
tnxTower		Buckeye Mt Viper	16 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c	i .		psf						
ft	K	K	е						ft²	K	plf	İ
T1	0.20	0.35	Α	0.192	2.622	40	. 1	1	8.019	1.04	103.51	С
150.00-140.00			В	0.192	2.622		. 1	1	8.019			
			С	0.192	2.622		1	1	8.019			
T2	0.40	0.63	Α	0.177	2.674	39	· 1	1	14.443	1.96	97.81	С
140.00-120.00			В	0.177	2.674		1	1	14.443			
			C	0.177	2.674		1	1	14.443			
T3	0.43	1.01	Α	0.211	2.559	38	1	1	15.346	2.00	99.97	С
120.00-100.00			В	0.211	2.559		1	1	15.346			
			С	0.211	2.559		1	1	15.346			
T4	0.44	1.27	Α	0.208	2.57	36	1	1	16.957	2.08	104.16	C
100.00-80.00			В	0.208	2.57		1	1	16.957			
			С	0.208	2.57		1	1	16.957			
T5	0.50	1.34	Α	0.168	2.707	34	. 1	1	18.243	2.35	117.57	С
80.00-60.00	i		В	0.168	2.707		. 1	1	18.243			
			С	0.168	2.707		1	1	18.243			
Т6	0.51	1.81	Α	0.172	2.692	32	' 1	1	23.717	2.59	129.26	С
60.00-40.00			В	0.172	2.692		1	1	23.717			
			С	0.172	2.692		1	1	23.717			
T7	0.51	2.41	Α	0.171	2.696	29	1	1	27.063	2.54	127.19	C
40.00-20.00			В	0.171	2.696		1	1	27.063	ł		
			C	0.171	2.696		1	· 1	27.063			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	25	1	1	28.432	2.17	108.37	С
			В	0.153	2.759		1	1	28.432			
			С	0.153	2.759		1	1	28.432			
Sum Weight:	3.44	11.79						OTM	1203.66	16.72		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf ⁻						
ft	K	K	е						ft ²	K	plf	
T1	0.20	0.35	Α	0.192	2.622	40	0.8	1	6.963	0.94	94.11	A
150.00-140.00			В	0.192	2.622		0.8	1	6.963			
			C	0.192	2.622		0.8	1	6.963			
T2	0.40	0.63	Α	0.177	2.674	39	0.8	1	12.648	1.80	89.84	A
140.00-120.00			В	0.177	2.674		0.8	1	12.648			
			C	0.177	2.674		0.8	1	12.648			
T3	0.43	1.01	Α	0.211	2.559	38	0.8	1	13.804	1.87	93.65	A
120.00-100.00			В	0.211	2.559		0.8	1	13.804			
			C	0.211	2.559		0.8	1	13.804	ĺ		
T4	0.44	1.27	Α	0.208	2.57	36	0.8	1	15.301	1.95	97.62	Α
100.00-80.00			В	0.208	2.57		0.8	1	15.301			
			C	0.208	2.57		- 0.8	1	15.301			
T5	0.50	1.34	Α	0.168	2.707	34	0.8	1	16.280	2.20	109.83	Α
80.00-60.00			В	0.168	2.707		0.8	1	16.280			
			C	0.168	2.707		0.8	1	16.280			
T6	0.51	1.81	Α	0.172	2.692	32	0.8	1	20.877	2.38	118.89	A
60.00-40.00			В	0.172	2.692		0.8	1	20.877			
			C	0.172	2.692		0.8	1	20.877			

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	<u> </u>	Page
	Buckeye Mt Viper	17 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	е	C_F	q_z	D_F .	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				,					Face
			c			psf						
ft	K	K	е				,		ft^2	Κ .	plf	
T7	0.51	2.41	Α	0.171	2.696	29	0.8	1	24.125	2.35	117.54	Α
40.00-20.00			В	0.171	2.696		0.8	1	24.125			
			C	0.171	2.696		0.8	1	24.125			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	25	0.8	1	25.166	1.98	98.87	Α
			В	0.153	2.759		0.8	1	25.166			
			C	0.153	2.759		0.8	1	25.166			
Sum Weight:	3.44	11.79						OTM	1114.74	15.47		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self"	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.20	0.35	Α	0.192	2.622	40	0.85	1	7.227	1.01	100.60	В
150.00-140.00			В	0.192	2.622		0.85	1	7.227	-		
			С	0.192	2.622		0.85	1	7.227			
T2	0.40	0.63	Α	0.177	2.674	39	0.85	1	13.097	1.92	95.88	В
140.00-120.00			В	0.177	2.674		0.85	1	13.097			
			С	0.177	2.674		0.85	1	13.097			
T3	0.43	1.01	Α	0.211	2.559	38	0.85	1	14.189	1.99	99.67	В
120.00-100.00			В	0.211	2.559		0.85	1	14.189			
			С	0.211	2.559		0.85	1	14.189			
T4	0.44	1.27	Α	0.208	2.57	- 36	0.85	1	15.715	2.07	103.61	В
100.00-80.00			В	0.208	2.57		0.85	1	15.715			
			С	0.208	2.57		0.85	1	15.715			
T5	0.50	1.34	Α	0.168	2.707	34	0.85	1	16.771	2.31	115.58	В
80.00-60.00			В	0.168	2.707		0.85	1	16.771			
			C	0.168	2.707		0.85	1	16.771			
T6	0.51	1.81	Α	0.172	2.692	32	0.85	1	21.587	2.50	125.04	В
60.00-40.00			В	0.172	2.692		0.85	1	21.587			
			С	0.172	2.692		0.85	1	21.587			
T7	0.51	2.41	Α	0.171	2.696	29	0.85	1	24.859	2.46	123.15	В
40.00-20.00			В	0.171	2.696		0.85	1	24.859			
			С	0.171	2.696		0.85	1	24.859	1		
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	25	0.85	1	25.983	2.08	103.80	В
			В	0.153	2.759		0.85	1	25.983			
			С	0.153	2.759		0.85	1	25.983			
Sum Weight:	3.44	11.79						ОТМ	1182.42	16.34		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

ſ	Section	Add	Self	F	е	$\overline{C_F}$	q_z	D_F	D_R	A_E	F	w	Ctrl.
ı	Elevation	Weight	Weight	а			-						Face
١				c			psf						
1	ft	K	K	е						ft²	K	plf	
Γ	T1	1.56	2.99	A	0.612	1.797	3	1	1	27.655	0.18	17.53	С

tnxTower	Job	Buckeye Mt Viper	Page 18 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	e	C_F	q _z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			_						Face
	_		c			psf						i
ft	K	K	e						ft²	K	plf	
150.00-140.00			В	0.612	1.797		1	1	27.655			
			C	0.612	1.797		1	1	27.655			
T2	3.40	5.22	A	0.555	1.839	3	1	I	47.949	0.35	17.53	C
140.00-120.00			В	0.555	1.839		. 1	1	47.949			
			С	0.555	1.839		. 1	1	47.949			
T3	3.69	5.44	Α	0.541	1.852	3	1	1	47.026	0.36	17.76	С
120.00-100.00			В	0.541	1.852		' 1,	1	47.026			
			С	0.541	1.852		1	1	47.026			
T4	3.73	6.01	Α	0.492	1.91	2	1	1	49.090	0.38	18.77	C
100.00-80.00			В	0.492	1.91		1	1	49.090			
			С	0.492	1.91		1	1	49.090			
T5	4.91	6.38	Α	0.409	2.047	2	1	1	50.156	0.48	23.84	C
80.00-60.00			В	0.409	2.047		1	1	50.156			
			C	0.409	2.047		1	1	50.156			
Т6	4.68	7.80	Α	0.379	2.107	2	1	1	57.575	0.48	23.79	C
60.00-40.00			В	0.379	2.107		. 1	1	57.575			
			C	0.379	2.107		. 1	1	57.575			
T7	4.35	8.24	Α	0.321	2.242	2	1	1	56.837	0.43	21.43	С
40.00-20.00			В	0.321	2.242		٠ 1	1	56.837			
			С	0.321	2.242	,	1	1	56.837			
T8 20.00-0.00	2.85	8.35	Α	0.279	2.354	2	1	1	56.478	0.32	16.12	C
			В	0.279	2.354		1	1	56.478			
			С	0.279	2.354		1	1	56.478			
Sum Weight:	29.19	50.45						OTM	217.11	2.96		
									kip-ft			

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a				•				i	Face
			c			psf		-				
ft	K	K	е						ft ²	K	plf	
T1	1.56	2.99	Α	0.612	1.797	3	0.8	1	26.599	0.17	17.10	Α
150.00-140.00			В	0.612	1.797		0.8	1	26.599			
			C	0.612	1.797		0.8	1	26.599			
T2	3.40	5.22	Α	0.555	1.839	3	- 0.8	1	46.154	0.34	17.16	A
140.00-120.00			В	0.555	1.839		0.8	1	46.154			
			C	0.555	1.839		0.8	1	46.154			
T3	3.69	5.44	Α	0.541	1.852	. 3	0.8	1	45.484	0.35	17.45	Α
120.00-100.00			В	0.541	1.852		0.8	1	45.484			
			C	0.541	1.852		0.8	1	45.484			
T4	3.73	6.01	Α	0.492	1.91	2	0.8	1	47.433	0.37	18.45	Α
100.00-80.00			В	0.492	1.91		0.8	1	47.433			
·			C	0.492	1.91		0.8	1	47.433			
T5	4.91	6.38	Α	0.409	2.047	2	0.8	1	48.193	0.47	23.45	Α
80.00-60.00			В	0.409	2.047		0.8	1	48.193			
İ			C	0.409	2.047		0.8	1	48.193			
Т6	4.68	7.80	Α	0.379	2.107	2	- 0.8	1	54.735	0.46	23.25	Α
60.00-40.00			В	0.379	2.107		0.8	1	54.735			
			C	0.379	2.107		6.0	1	54.735			
Т7	4.35	8.24	Α	0.321	2.242	. 2	0.8	1	53.899	0.42	20.89	Α
40.00-20.00			В	0.321	2.242		0.8	1	53.899			
			С	0.321	2.242		0.8	1	53.899			
T8 20.00-0.00	2.85	8.35	Α	0.279	2.354	2	0.8	1	53.213	0.31	15.58	Α

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		2023-08-03 BCC Weeting Page
	Buckeye Mt Viper	19 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				,					Face
			с			psf						i I
ft	K	K	е				Ì		ft ²	K	plf	
			В	0.279	2.354		0.8	1	53.213			
			C	0.279	2.354	ŀ	0.8	1	53.213			1 1
Sum Weight:	29.19	50.45				l		OTM	212.73	2.90		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf -				l		
ft	K	K	e						ft ²	K	plf	
T1	1.56	2.99	Α	0.612	1.797	3	0.85	1	26.863	0.17	17.36	В
150.00-140.00			В	0.612	1.797		0.85	1	26.863			
			С	0.612	1.797		0.85	1	26.863			
T2	3.40	5.22	Α	0.555	1.839	3	0.85	1	46.602	0.35	17.43	В
140.00-120.00			В	0.555	1.839		0.85	1	46.602			
			C	0.555	1.839		0.85	1	46.602			
T3	3.69	5.44	Α	0.541	1.852	3	0.85	1	45.870	0.36	17.79	В
120.00-100.00			В	0.541	1.852		0.85	1	45.870			
			С	0.541	1.852		0.85	1	45.870			
T4	3.73	6.01	Α	0.492	1.91	2	0.85	1	47.847	0.38	18.83	В
100.00-80.00			В	0.492	1.91		0.85	1	47.847			
			С	0.492	1.91		0.85	1	47.847			
T5	4.91	6.38	Α	0.409	2.047	. 2	0.85	1	48.684	0.48	23.90	В
80.00-60.00			В	0.409	2.047		0.85	1	48.684			
			С	0.409	2.047		0.85	1	48.684			
T6	4.68	7.80	Α	0.379	2.107	2	0.85	1	55.445	0.47	23.72	В
60.00-40.00			В	0.379	2.107		0.85	1	55.445			
			С	0.379	2.107		0.85	1	55.445			
T7	4.35	8.24	Α	0.321	2,242	2	0.85	1	54.634	0.43	21.32	В
40.00-20.00			В	0.321	2.242		0.85	1	54.634			
			С	0.321	2.242		0.85	1	54.634			
T8 20.00-0.00	2.85	8.35	Α	0.279	2.354	2	0.85	1	54.030	0.32	15.93	В
			В	0.279	2.354		0.85	1	54.030			
			С	0.279	2.354		0.85	1	54.030			
Sum Weight:	29.19	50.45					_	OTM	216.68	2.95		
J						-			kip-ft			

Tower Forces - Service - Wind Normal To Face

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
ft	K	K	c e			psf			ft²	K	plf	
T1	0.20	0.35	Α	0.192	2.622	11	1	1	8.028	0.28	27.80	С
150.00-140.00			В	0.192	2.622		1	1	8.028			
			C	0.192	2.622		1	1	8.028			
T2	0.40	0.63	Α	0.177	2.674	10	1	1	14.447	0.53	26.25	С
140.00-120.00			В	0.177	2.674		1	1	14.447			

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Buckeye Mt Viper	20 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft²	K	plf	
			С	0.177	2.674		1	1	14.447			
T3	0.43	1.01	Α	0.211	2.559	10	1	1	16.356	0.56	27.94	С
120.00-100.00			В	0.211	2.559		1	1	16.356			
			C	0.211	2.559		.1	1	16.356			
T4	0.44	1.27	Α	0.208	2.57	10	[1	1	18.980	0.60	30.10	C
100.00-80.00			В	0.208	2.57		1	1	18.980			
			C	0.208	2.57		· 1	1	18.980			
T5	0.50	1.34	Α	0.168	2.707	9	1	1	20.396	0.68	33.83	C
80.00-60.00			В	0.168	2.707		1	1	20.396			
			C	0.168	2.707		1	1	20.396			
Т6	0.51	1.81	Α	0.172	2.692	9	1	1	26.556	0.75	37.48	C
60.00-40.00			В	0.172	2.692		1	1	26.556			
1			С	0.172	2.692		1	1	26.556			
T7	0.51	2.41	Α	0.171	2.696	8	1	1	29.748	0.73	36.50	C
40.00-20.00			В	0.171	2.696		1	1	29.748			
			С	0.171	2.696		1	1	29.748			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	7	1	1	31.650	0.63	31.60	С
			В	0.153	2.759		1	1	31.650			
			C	0.153	2.759		٠ 1	1	31.650			
Sum Weight:	3.44	11.79						OTM	337.28	4.75		
									kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self [*]	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				¢ .					Face
ŀ	_	_	С			psf						
ft	K	K	е						ft ²	K	plf	
T1	0.20	0.35	Α	0.192	2.622	11	0.8	1	6.972	0.25	25.28	A
150.00-140.00			В	0.192	2.622		0.8	1	6.972			
			С	0.192	2.622		0.8	. 1	6.972			
T2	0.40	0.63	Α	0.177	2.674	10	0.8	1	12.652	0.48	24.12	A
140.00-120.00			В	0.177	2.674		0.8	1	12.652			
			С	0.177	2.674		0.8	1	12.652			
T3	0.43	1.01	Α	0.211	2.559	10	0,.8	1	14.815	0.52	26.25	A
120.00-100.00			В	0.211	2.559		. 0.8	1	14.815			
			С	0.211	2.559		0.8	1	14.815			
T4	0.44	1.27	Α	0.208	2.57	10	' 0.8	1	17.323	0.57	28.34	Α
100.00-80.00			В	0.208	2.57		0.8	1	17.323			
			С	0.208	2.57		0.8	1	17.323			
T5	0.50	1.34	Α	0.168	2.707	9	0.8	1	18.433	0.64	31.75	Α
80.00-60.00			В	0.168	2,707		0.8	1	18.433			
			C	0.168	2.707		0.8	. 1	18.433	1		
Т6	0.51	1.81	Α	0.172	2.692	9	0.8	1	23.716	0.69	34.69	Α
60.00-40.00			В	0.172	2.692		0.8	1	23.716			
			С	0.172	2.692		0.8	1	23.716			
T7	0.51	2.41	Α	0.171	2.696	8	0.8	1	26.810	0.68	33.91	Α
40.00-20.00			В	0.171	2.696		0.8	1	26,810			
			С	0.171	2.696		0.8	1	26,810			
T8 20.00-0.00	0.46	2.97	Ā	0.153	2.759	7	. 0.8	1	28.384	0.58	29.05	Α
			В	0.153	2.759		0.8	1	28.384			
			Ĉ	0.153	2.759		0.8	1	28.384			
Sum Weight:	3.44	11.79						OTM	313.42	4.42		
									kip-ft			

Page Job tnxTower Buckeye Mt. - Viper 21 of 33 Project Engineered Tower Solutions, ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 Client

Watauga County

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Tower Forces - Service - Wind 90 To Face

Section	Add	Self [*]	F	е	C_F	· q _z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а						_			Face
	-	Ü	с			psf						
ft	K	K	е						ft ²	K	plf	
T1	0.20	0.35	Α	0.192	2.622	11	0.85	1	7.236	0.27	27.02	В
150.00-140.00			В	0.192	2.622		. 0.85	1	7.236			
			С	0.192	2.622		0.85	1	7.236			
T2	0.40	0.63	Α	0.177	2.674	10	0.85	1	13.101	0.51	25.74	В
140.00-120.00			В	0.177	2.674	· ·	0.85	1	13.101			
			C	0.177	2.674		0.85	1	13.101			
T3	0.43	1.01	Α	0.211	2.559	10	0.85	1	15.200	0.56	27.86	В
120.00-100.00			В	0.211	2.559		0.85	1	15.200			
			C	0.211	2.559		0.85	1	15.200			
T4	0.44	1.27	Α	0.208	2.57	- 10	0.85	1	17.738	0.60	29.95	В
100.00-80.00			В	0.208	2.57		0.85	1	17.738			
			С	0.208	2.57		0.85	1	17.738			
T5	0.50	1.34	Α	0.168	2.707	9	0.85	1	18.923	0.67	33.30	В
80.00-60.00			В	0.168	2.707		. 0.85	1	18.923			
			С	0.168	2.707		0.85	1	18.923			
T6	0.51	. 1.81	Α	0.172	2.692	9	0.85	1	24.426	0.73	36.34	В
60.00-40.00			В	0.172	2.692	· ·	0.85	1	24.426			
	1		С	0.172	2.692		0.85	1	24.426			
T7	0.51	2.41	Α	0.171	2.696	8	0.85	1	27.545	0.71	35.42	В
40.00-20.00			В	0.171	2.696		0.85	1	27.545			
			С	0.171	2.696		0.85	1	27.545			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	. 7	0.85	1	29.201	0.61	30.37	В
ļ			В	0.153	2.759		0.85	1	29.201			
]			С	0.153	2.759		0.85	1	29.201			
Sum Weight:	3.44	11.79						OTM	331.59	4.65		
									kip-ft			

Force Totals

	· · · · · · · · · · · · · · · · · · ·			,		
Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M _z	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	7.51					
Bracing Weight	4.28					
Total Member Self-Weight	11.79			9.17	5.84	
Total Weight	17.90			9.17	5.84	
Wind 0 deg - No Ice		-0.01	-21.38	-1664.70	7.75	-2.08
Wind 30 deg - No Ice		9.60	-17.65	-1380.09	-746.09	7.21
Wind 60 deg - No Ice		15.80	-9.70	-753.99	-1231.38	12.33
Wind 90 deg - No Ice		17.80	0.14	21.38	-1384.64	12.80
Wind 120 deg - No Ice		17.63	10.60	839.04	-1369.34	16.85
Wind 150 deg - No Ice		10.22	17.72	1403.11	-796.84	13.68
Wind 180 deg - No Ice		0.12	19.53	1545.57	-4.46	3.60
Wind 210 deg - No Ice		-9.31	16.92	1339.72	734.84	-5.91
Wind 240 deg - No Ice		-16.72	9.95	785.65	1307.45	-11.15

Designed by

hicham.anssar

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2023-08-03 BCC Meeting
Job		Page
	Buckeye Mt Viper	22 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
İ		X	Z	Moments, M_x	Moments, M _z	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 270 deg - No Ice		-17.64	-0.36	-20.55	1383.50	-11.36
Wind 300 deg - No Ice		-16.53	-10.27	-801.43	1303.87	-13.45
Wind 330 deg - No Ice		-10.15	-18.20	-1424.33	803.49	-10.54
Member Ice	38.66					
Total Weight Ice	94.30		•	63.46	54.84	
Wind 0 deg - Ice		-0.00	-3.62	-227.58	54.99	-2.17
Wind 30 deg - Ice		1.74	-3.09	-185.92	-85.37	-0.36
Wind 60 deg - Ice		2.91	-1.73	-75.94	-180.26	1.33
Wind 90 deg - Ice		3.35	0.01	64.38	-215.28	2.60
Wind 120 deg - Ice		3.02	1.78	206.47	-188.18	3.60
Wind 150 deg - Ice		1.78	3.09	312.37	-88.70	3.57
Wind 180 deg - Ice		0.01	3.51	346.51	54.07	2.29
Wind 210 deg - Ice		-1.72	3.04	308.45	193.34	0.46
Wind 240 deg - Ice		-2.96	1.73	202.72	292.80	-1.24
Wind 270 deg - Ice		-3.34	-0.03	61.24	324.01	-2.50
Wind 300 deg - Ice		-2.97	-1.77	-79.25	294.08	-3.35
Wind 330 deg - Ice		-1.78	-3.13	-188.41	198.02	-3.34
Total Weight	17.90			9.17	5.84	
Wind 0 deg - Service		-0.00	-6.02	-462.57	-0.09	-0.56
Wind 30 deg - Service		2.72	-4.98	-383.89	-211.00	1.97
Wind 60 deg - Service		4.49	-2.75	-209.57	-347.53	3.37
Wind 90 deg - Service		5.06	0.04	7.12	-390.96	3.50
Wind 120 deg - Service		4.98	2.99	235.15	-384.55	4.58
Wind 150 deg - Service		2.88	5.00	392.82	-224.62	3.71
Wind 180 deg - Service		0.03	5.53	433.35	-3.37	0.97
Wind 210 deg - Service		-2.64	4.79	375.80	203.63	-1.62
Wind 240 deg - Service		-4.73	2.81	220.82	363.59	-3.05
Wind 270 deg - Service		-5.02	-0.10	-4.14	386.30	-3.12
Wind 300 deg - Service		-4.68	-2:90	-222.30	362.63	-3.67
Wind 330 deg - Service		-2.87	`-5.13	-395.76	222.06	-2.87

Load Combinations

Comb.		Description
No.		·
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	•
3	0.9 Dead+1.6 Wind 0 deg - No Ice	•
4	1.2 Dead+1.6 Wind 30 deg - No Ice	4
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 60 deg - No Ice	
7	0.9 Dead+1.6 Wind 60 deg - No Ice	
8	1.2 Dead+1.6 Wind 90 deg - No Ice	•
9	0.9 Dead+1.6 Wind 90 deg - No Ice	
10	1.2 Dead+1.6 Wind 120 deg - No Ice	
11	0.9 Dead+1.6 Wind 120 deg - No Ice	
12	1.2 Dead+1.6 Wind 150 deg - No Ice	
13	0.9 Dead+1.6 Wind 150 deg - No Ice	
14	1.2 Dead+1.6 Wind 180 deg - No Ice	·
15	0.9 Dead+1.6 Wind 180 deg - No Ice	•
16	1.2 Dead+1.6 Wind 210 deg - No Ice	•
17	0.9 Dead+1.6 Wind 210 deg - No Ice	
18	1.2 Dead+1.6 Wind 240 deg - No Ice	
19	0.9 Dead+1.6 Wind 240 deg - No Ice	
20	1.2 Dead+1.6 Wind 270 deg - No Ice	
21	0.9 Dead+1.6 Wind 270 deg - No Ice	

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		2023-Day BCC Meeting
į	Buckeye Mt Viper	23 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Comb.	Description
No.	· · ·
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	. Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
Tl	150 - 140	Leg	Max Tension	23	3.79	0.26	0.06
		_	Max. Compression	18	-4.64	-0.02	0.00
			Max. Mx	8	1.22	0.44	-0.05
			Max. My	3	0.65	-0.00	-0.41
			Max. Vy	20	-0.38	0.28	0.05
			Max. Vx	2	-0.35	-0.00	0.25
		Diagonal	Max Tension	22	1.38	0.00	0.00
			Max. Compression	10	-1.43	0.00	0.00
			Max. Mx	33	0.22	0.03	-0.00
			Max. My	11	1.26	0.00	-0.00
			Max. Vy	33	-0.04	0.03	-0.00
			Max. Vx	11	-0.00	0.00	0.00
		Top Girt	Max Tension	23	0.03	0.00	0.00
		-	Max. Compression	27	-0.04	0.00	0.00
			Max. Mx	26	-0.04	-0.07	0.00
			Max. Vy	26	-0.06	0.00	0.00
T2	140 - 120	Leg	Max Tension	15	21.90	0.01	-0.05
			Max. Compression	2	-24.42	-0.01	0.18
			Max. Mx	10	10.59	-0.22	-0.20
			Max. My	24	-1.15	0.15	0.26
			Max. Vy	10	0.09	-0.22	-0.20
			Max. Vx	24	-0.10	0.15	0.26
		Diagonal	Max Tension	10	2.70	0.00	0.00
			Max. Compression	10	-2.73	0.00	0.00

2025-08-05 BCC Meeting

tres. Torner	Job		Page
tnxTower		Buckeye Mt Viper	24 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi: Moment
				Comb.	K	kip-ft	kip-ft
			Max. Mx	35	0.24	0.03	0.00
			Max. My	11	2.69	0.01	-0.00
			Max. Vy	35	-0.04	0.03	0.00
			Max. Vx	11	-0.00	0.00	0.00
T3	120 - 100	Leg	Max Tension	15	54.88	0.02	-0.09
			Max. Compression	2	-60.47	-0.01	0.90
			Max. Mx	10	-59.95	-0.84	-0.31
			Max. My	. 2	-60.47	-0.01	0.90
			Max. Vy	8	0.31	-0.53	-0.04
			Max. Vx	2	-0.29	-0.01	0.60
		Diagonal	Max Tension	23	5.76	0.03	-0.00
			Max. Compression	10	-6.12	0.00	0.00
			Max. Mx	35	0.33	0.04	-0.00
			Max. My	25	-4.53	-0.03	0.01
			Max. Vy	35	-0.04	0.04	-0.00
			Max. Vx	25	0.00	0.00	0.00
T4	100 - 80	Leg	Max Tension	15	79.21	-0.76	-0.04
			Max. Compression	2	-87.24	1.03	-0.31
			Max. Mx	2	-79.58	1.03	-0.31
			Max. My	, 25	-1.71	-0.00	1.07
			Max. Vy	2	0.73	1.03	-0.31
			Max. Vx	4	-1.11	-0.14	-1.05
		Diagonal	Max Tension	7	4.20	0.00	0.00
			Max. Compression	18 .	-4.42	0.00	0.00
			Max. Mx	33	0.05	0.05	-0.01
			Max. My	10	-3.68	-0.01	-0.01
			Max. Vy	33	0.05	0.05	-0.01
			Max. Vx	31	0.00	0.00	0.00
T5	80 - 60	Leg	Max Tension	15	107.69	-0.55	-0.01
			Max. Compression	2 ·	-120.69	0.83	0.01
			Max. Mx	3	-120.03	0.83	0.02
			Max. My	, 12	-3.72	-0.03	-0.90
			Max. Vy	3	0.85	0.83	-0.00
			Max. Vx	5	-1.31	-0.07	-0.79
		Diagonal	Max Tension	8	5.68	0.00	0.00
			Max. Compression	8 .	-5.65	0.00	0.00
			Max. Mx	33	0.09	0.07	0.01
			Max. My	31	-0.04	0.07	-0.01
			Max. Vy	33	0.06	0.07	0.01
			Max. Vx	31	0.00	0.00	0.00
T6	60 - 40	Leg	Max Tension	15	133.76	-0.77	-0.02
			Max. Compression	2	-151.51	1.35	0.02
			Max. Mx	2	-151.51	1.35	0.02
			Max. My	، 25	-1.87	-0.01	1.21
			Max. Vy	3	-0.17	1.35	0.02
			Max. Vx	12	0.20	0.01	-1.21
		Diagonal	Max Tension	8	5.43	0.00	0.00
			Max. Compression	10	-5.57	0.00	0.00
			Max. Mx	33	0.32	0.10	-0.01
			Max. My	37	-0.39	0.09	0.01
			Max. Vy	33	0.08	0.10	-0.01
		_	Max. Vx	37	-0.00	0.00	0.00
T7	40 - 20	Leg	Max Tension	15	155.69	-1.33	-0.03
			Max. Compression	2 ·	-177.66	2.41	0.04
			Max. Mx	- 2	-177.66	2.41	0.04
			Max. My	25	-2.05	-0.08	2.33
			Max. Vy	29	0.31	-1.78	-0.01
			Max. Vx	25	0.35	-0.08	2.33
		Diagonal	Max Tension	8	6.40	0.00	0.00
			Max. Compression	10	-6.88	0.00	0.00
			Max, Mx	33	0.87	0.16	0.02

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	Buckeye Mt Viper	2025-0 page CC Meeting 25 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				. Comb.	K	kip-ft	kip-ft
			Max. My	32	0.84	0.16	-0.02
			Max. Vy	33	0.10	0.16	0.02
			Max. Vx	32	0.01	0.00	0.00
T8	20 - 0	Leg	Max Tension	15	178.33	-1.37	-0.01
			Max. Compression	2	-205.00	0.00	-0.00
			Max. Mx	2	-192.03	2.41	0.04
			Max. My	25	-2.47	-0.10	3.41
			Max. Vy	29	-0.38	-1.78	-0.01
			Max. Vx	25	0.50	-0.10	3.41
		Diagonal	Max Tension	23	6.96	0.00	0.00
			Max. Compression	' 10	-7.81	0.00	0.00
			Max. Mx	. 33	-0.84	0.21	-0.02
			Max. My	32	1.51	0.17	-0.03
			Max. Vy	34	0.11	0.17	0.03
			Max. Vx	32	0.01	0.00	0.00

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	· Horizontal, X K	Horizontal, Z K
Leg C	Max. Vert	18	194.71	17.55	-9.35
8 -	Max. H _x	18	194.71	17.55	-9.35
	Max. H _z	5	-159.72	-14.16	8.56
	Min. Vert	7	-172.93	-15.88	8.33
	Min. H _x	7	-172.93	-15.88	8.33
	Min. H _z	18	194.71	17.55	-9.35
Leg B	Max. Vert	10	204.91	-18.68	-9.59
	$Max. H_x$	23	-183.04	16.72	8.76
	Max. Hz	25	-168.03	14.91	8.79
	Min. Vert	23	-183.04	16.72	8.76
	Min. H _x	10	204.91	-18.68	-9.59
	Min. H _z	10	204.91	-18.68	-9.59
Leg A	Max. Vert	2	212.48	-0.14	21.77
	Max. H _x	21	8.39	0.63	0.79
	Max, H _z	2	212.48	-0.14	21.77
	Min. Vert	15	-184.50	0.21	-18.95
	Min. H _x	8	4.81	-0.57	0.43
	Min. Hz	15	-184.50	0.21	-18.95

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear <u>.</u>	Overturning Moment, M.	Overturning Moment, M-	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	17.90	0.00	-0.00	9.17	5.84	0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	21.48	-0.02	-34.21	-2667.19	10.07	-3.32
0.9 Dead+1.6 Wind 0 deg - No Ice	16.11	-0.02	-34.21	-2669.94	8.31	-3.32
1.2 Dead+1.6 Wind 30 deg - No Ice	21.48	15.36	-28.24	-2211.81	-1196.08	11.53
0.9 Dead+1.6 Wind 30 deg - No	16.11	15.36	-28.24	-2214.56	-1197.83	11.53

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2023-06-03 Dec Meeting
Job		Page
	Buckeye Mt Viper	26 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Load Combination	Vertical	$Shear_x$	Shear <u>-</u>	Overturning Moment, M_x	Overturning Moment, M _z	Torque
······································	K	K	K	kip-ft	kip-ft	kip-ft
Ice 1.2 Dead+1.6 Wind 60 deg - No Ice	21.48	25.27	-15.52	-1210.05	-1972.54	19.73
0.9 Dead+1.6 Wind 60 deg - No Ice	16.11	25.27	-15.52	-1212.80	-1974.30	19.73
1.2 Dead+1.6 Wind 90 deg - No Ice	21.48	28.49	0:22	30.54	-2217.75	20.47
0.9 Dead+1.6 Wind 90 deg - No Ice	16.11	28.49	, 0.22	27.79	-2219.50	20.47
1.2 Dead+1.6 Wind 120 deg - No Ice	21.48	28.21	16.95	1338.80	-2193.27	26.95
0.9 Dead+1.6 Wind 120 deg - No Ice	16.11	28.21	16.95	1336.05	-2195.02	26.95
1.2 Dead+1.6 Wind 150 deg - No Ice	21.48	16.35	28.36	2241.30	-1277.28	21.89
0.9 Dead+1.6 Wind 150 deg - No Ice	16.11	16.35	28.36	2238.55	-1279.03	21.89
1.2 Dead+1.6 Wind 180 deg - No Ice	21.48	0.20	31.25	2469.24	-9.47	5.76
0.9 Dead+1.6 Wind 180 deg - No Ice	16.11	0.20	, 31.25	2466.49	-11.22	5.76
1.2 Dead+1.6 Wind 210 deg - No Ice	21.48	-14.90	27.08	2139.87	1173.40	-9.45
0.9 Dead+1.6 Wind 210 deg - No Ice	16.11	-14.90	27.08	2137.12	1171.65	-9.45
1.2 Dead+1.6 Wind 240 deg - No Ice	21.48	-26.75	15.91	1253.36	2089.58	-17.83
0.9 Dead+1.6 Wind 240 deg - No Ice	16.11	-26.75	15.91	1250.61	2087.83	-17.83
1.2 Dead+1.6 Wind 270 deg - No Ice	21.48	-28.23	-0.57	-36.55	2211.26	-18.18
0.9 Dead+1.6 Wind 270 deg - No Ice	16.11	-28.23	0.57	-39.30	2209.51	-18.18
1.2 Dead+1.6 Wind 300 deg - No Ice	21.48	-26.46	-16.43	-1285.96	2083.86	-21.51
0.9 Dead+1.6 Wind 300 deg - No Ice	16.11	-26.46	-16.43	-1288.71	2082.11	-21.51
1.2 Dead+1.6 Wind 330 deg - No Ice	21.48	-16.24	-29.12	-2282.59	1283.25	-16.87
0.9 Dead+1.6 Wind 330 deg - No Ice	16.11	-16.24	-29.12	-2285.35	1281.50	-16.87
1.2 Dead+1.0 Ice+1.0 Temp	97.88	0.00	-0.00	65.29	56.01	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	97.88	-0.00	3.62	-225.76	56.16	-2.17
Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0	97.88	1.74	-3.09	-184.09	-84.20	-0.36
Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0	97.88	2.91	-1.73	-74.11	-179.09	1.33
Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0	97.88	3.35	0.01	66.21	-214.11	2.60
Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	97.88	3.02	1.78	208.30	-187.01	3.60
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	97.88	1.78	3.09	314.20	-87.53	3.57
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	97.88	0.01	3.51	348.33	55.24	2.29
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	97.88	-1.72	3.04	310.28	194.51	0.46
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	97.88	-2.96	1.73	204.55	293.96	-1.24
1.2 Dead+1.0 Wind 270	97.88	-3.34	-0.03	63.07	325.18	-2.50
				•		

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025 00 05 DCC M
Job		Page
	Buckeye Mt Viper	27 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Load	Vertical	$Shear_x$	Shear _z	Overturning	Overturning	Torque
Combination			7	Moment, M_x	Moment, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp			*			
1.2 Dead+1.0 Wind 300	97.88	-2.97	-1.77	-77.42	295.25	-3.35
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	97.88	-1.78	-3.13	-186.58	199.19	-3.34
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	17.90	-0.00	-6.02	-457.24	6.35	-0.56
Dead+Wind 30 deg - Service	17.90	2.72	-4.98	-378.55	-204.55	1.97
Dead+Wind 60 deg - Service	17.90	4.49	-2.75	-204.24	-341.08	3.37
Dead+Wind 90 deg - Service	17.90	5.06	0.04	12.45	-384.51	3.50
Dead+Wind 120 deg - Service	17.90	4.98	2.99	240.48	-378.11	4.58
Dead+Wind 150 deg - Service	17.90	2.88	5.00	398.15	-218.17	3.71
Dead+Wind 180 deg - Service	17.90	0.03	. 5.53	438.68	3.07	0.97
Dead+Wind 210 deg - Service	17.90	-2.64	4.79	381.14	210.07	-1.62
Dead+Wind 240 deg - Service	17.90	-4.73	2.81	226.15	370.04	-3.05
Dead+Wind 270 deg - Service	17.90	-5.02	-0.10	1.19	392.75	-3.12
Dead+Wind 300 deg - Service	17.90	-4.68	-2.90	-216.97	369.08	-3.67
Dead+Wind 330 deg - Service	17.90	-2.87	-5.13	-390.43	228.50	-2.87

Solution Summary

***************************************		n of Applied Force.			Sum of Reaction		***************************************
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-17.90	0.00	-0.00	17.90	0.00	0.000%
2	-0.02	-21.48	-34.21	0.02	21.48	34.21	0.000%
3	-0.02	-16.11	-34.21	0.02	16.11	34.21	0.000%
4	15.36	-21.48	-28.24	-15.36	21.48	28.24	0.000%
5	15.36	-16.11	-28.24	-15.36	16.11	28.24	0.000%
6	25.27	-21.48	-15.52	-25.27	21.48	15.52	0.000%
7	25.27	-16.11	-15.52	-25.27	16.11	15.52	0.000%
8	28.49	-21.48	0.22	-28.49	21.48	-0.22	0.000%
9	28.49	-16.11	0.22	-28.49	16.11	-0.22	0.000%
10	28.21	-21.48	16.95	-28.21	21.48	-16.95	0.000%
11	28.21	-16.11	16.95	-28.21	16.11	-16.95	0.000%
12	16.35	-21.48	28.36	-16.35	21.48	-28.36	0.000%
13	16.35	-16.11	28.36	-16.35	16.11	-28.36	0.000%
14	0.20	-21.48	31.25	-0.20	21.48	-31.25	0.000%
15	0.20	-16.11	31.25	-0.20	16.11	-31.25	0.000%
16	-14.90	-21.48	27.08	14.90	21.48	-27.08	0.000%
17	-14.90	-16.11	27.08	14.90	16.11	-27.08	0.000%
18	-26.75	-21.48	15.91	26.75	21.48	-15.91	0.000%
19	-26.75	-16.11	15.91	26.75	16.11	-15.91	0.000%
20	-28.23	-21.48	-0.57	28.23	21.48	0.57	0.000%
21	-28.23	-16.11	-0.57	28.23	16.11	0.57	0.000%
22	-26.46	-21.48	-16.43	26.46	21.48	16.43	0.000%
23	-26.46	-16.11	-16.43	26.46	16.11	16.43	0.000%
24	-16.24	-21.48	-29.12	16.24	21.48	29.12	0.000%
25	-16.24	-16.11	-29.12	16.24	16.11	29.12	0.000%
26	0.00	-97.88	0.00	-0.00	97.88	0.00	0.000%
27	-0.00	-97.88	-3.62	0.00	97.88	3.62	0.000%
28	1.74	-97.88	-3.09	-1.74	97.88	3.09	0.000%
29	2.91	-97.88	-1.73	-2.91	97.88	1.73	0.000%
30	3.35	-97.88	0.01	-3.35	97.88	-0.01	0.000%
31	3.02	-97.88	1.78	-3.02	97.88	-1.78	0.000%
32	1.78	-97.88	3.09	-1.78	97.88	-3.09	0.000%
33	0.01	-97.88	3.51	-0.01	97.88	-3.51	0.000%
34	-1.72	-97.88	3.04	1.72	97.88	-3.04	0.000%
35	-2.96	-97.88	1.73	2.96	97.88	-1.73	0.000%

Area Tornor	Job	·	Page
tnxTower		Buckeye Mt Viper	28 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

	Sui	m of Applied Forces	5		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
36	-3.34	-97.88	-0.03	3.34	97.88	0.03	0.000%
37	-2.97	-97.88	-1.77	2.97	97.88	1.77	0.000%
38	-1.78	-97.88	-3.13	1.78	97.88	3.13	0.000%
39	-0.00	-17.90	-6.02	0.00	17.90	6.02	0.000%
40	2.72	-17.90	-4.98	-2.72	17.90	4.98	0.000%
41	4.49	-17.90	-2.75	-4.49	17.90	2.75	0.000%
42	5.06	-17.90	0.04	-5.06	17.90	-0.04	0.000%
43	4.98	-17.90	2.99	-4.98	17.90	-2.99	0.000%
44	2.88	-17.90	5.00	-2.88	17.90	-5.00	0.000%
45	0.03	-17.90	5.53	-0.03	17.90	-5.53	0.000%
46	-2.64	-17.90	4.79	2.64	17.90	-4.79	0.000%
47	-4.73	-17.90	2.81	4.73	17.90	-2.81	0.000%
48	-5.02	-17.90	-0.10	5.02	17.90	0.10	0.000%
49	-4.68	-17.90	-2.90	4.68	17.90	2.90	0.000%
50	-2.87	-17.90	-5.13	2.87	17.90	5.13	0.000%

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	۰ .	0
T1	150 - 140	3.153	44	0.19	0.06
T2	140 - 120	2.746	44	0.19	0.06
T3	120 - 100	1.965	44	0.17	0.05
T4	100 - 80	1.292	44	0.14	0.04
T5	80 - 60	0.781	44	0.10	0.03
T6	60 - 40	0.415	39	0.07	0.01
T7	40 - 20	0.183	39	. 0.04	0.01
T8	20 - 0	0.049	39	0.02	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in-	0	0	ft
159.00	5/8-in x 4-ft Lightning Rod	44	3.153	0.19	0.06	301225
149.00	20'x3" pipe	44	3.112	0.19	0.06	301225
147.00	Side Arm Mount [SO 303-3]	44	3.030	0.19	0.06	301225
117.00	Side Arm Mount [SO 303-3]	44	1.855	0.17	0.05	39255
92.00	6' Dish Ice Shield	44	1.069	0.12	0.03	29786
86.00	8' Dish Ice Shield	44	0.918	0.11	0.03	32843
85.00	HX6-6W-6WH	44	0.894	0.11	0.03	33414
80.00	PL6-65-PXA	44	0.781	0.10	0.03	35799
79.00	PL6-65-PXA	44	0.759	0.10	0.03	35910

Maximum Tower Deflections - Design Wind

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Buckeye Mt Viper	29 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation	Horz. Deflection	Gov. Load	, Tilt	Twist
	ft	in	Comb.	, 0	٥
Т1	150 - 140	18.301	3	1.12	0.34
T2	140 - 120	15.946	3	1.11	0.33
T3	120 - 100	11.422	3	0.99	0.29
T4	100 - 80	7.533	3	0.79	0.22
T5	80 - 60	4.580	3 .	0.59	0.17
T6	60 - 40	2.426	3	0.38	0.09
T7	40 - 20	1.065	3	0.22	0.04
T8	20 - 0	0.284	3	0.11	0.02

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature
159.00	5/8-in x 4-ft Lightning Rod	3	18.301	1.12	0.34	59163
149.00	20'x3" pipe	3	18.064	1.12	0.33	59163
147.00	Side Arm Mount [SO 303-3]	3	17.592	1.12	0.33	59163
117.00	Side Arm Mount [SO 303-3]	3	10.787	0.96	0.28	6766
92.00	6' Dish Ice Shield	3	6.244	0.71	0.20	5198
86.00	8' Dish Ice Shield	3	5.375	0.65	0.19	5807
85.00	HX6-6W-6WH	3	5.238	0.64	0.18	5923
80.00	PL6-65-PXA	3	4.580	0.59	0.17	6410
79.00	PL6-65-PXA	3	4.454	0.58	0.16	6433

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft	2782	G	in	Bolts	per Bolt K	per Bolt K	Allowable		
T1	150	Leg	A325N	0.7500	4	0.95	29.82	0.032	1	Bolt Tension
		Diagonal	A325N	0.7500	. 1	1.38	4.62	0.298	1	Member Block Shear
		Top Girt	A325N	0.7500	1	0.08	7.37	0.011	I	Member Block Shear
T2	140	Leg	A325N	0.7500	4	5.48	29.82	0.184	1	Bolt Tension
		Diagonal	A325N	0.7500	1	2.70	4.62	0.583	I	Member Block Shear
T3	120	Leg	A325N	0.7500	6	9.15	29.82	0.307	1	Bolt Tension
		Diagonal	A325X	0.7500	1	5.76	7.77	0.741	I	Member Block Shear
T4	100	Leg	A325N	0.7500	8	9.90	29.82	0.332	I	Bolt Tension
		Diagonal	A325N	0.7500	1	4.20	6.93	0.606	I	Member Block Shear
T5	80	Leg	A325N	0.7500	8	13.46	29.82	0.451	1	Bolt Tension
		Diagonal	A325N	0.7500	1	5.68	6.93	0.819	1	Member Block Shear
T6	60	Leg	A325N	1.0000	8	16.72	53.01	0.315	1	Bolt Tension
		Diagonal	A325N	0.7500	1	5.43	8.97	0.605	1	Member Block Shear
T7	40	Leg	A325N	1.0000	8	19.46	53.01	0.367	1	Bolt Tension
		Diagonal	A325N	1.0000	1	6.40	10.16	0.630	1	Member Block

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2023-06-03 DCC Weeting
Job		Page 30 of 33
	Buckeye Mt Viper	30 01 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
Т8	20	Diagonal	A325N	1.0000	I	6.96	16.94	0.411	1	Shear Member Block Shear

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		fŧ	ft		in^2	K	K	ϕP_n
T1	150 - 140	P2.5x.203 (2.875 OD)	10.00	5.00	63.3 K=1.00	1.7040	-4.64	57.19	0.081 1
T2	140 - 120	P2.5x.203 (2.875 OD)	20.00	5.00	63.3 K=1.00	1.7040	-24.42	57.19	0.427 1
T3	120 - 100	P4x.237 (4.50 OD)	20.00	6.67	53.0 K=1.00	3.1741	-60.47	116.32	0.520 1
T4	100 - 80	P5x.258 (5.563 OD)	20.03	6.68	42.7 K=1.00	4.2999	-87.24	169.37	0.515 1
T5	80 - 60	P5x.258 (5.563 OD)	20.03	6.68	42.7 K=1.00	4.2999	-120.69	169.37	0.713 1
T6	60 - 40	P6x.28 (6.625 OD)	20.03	6.68	35.7 K=1.00	5.5813	-151.51	228.83	0.662 1
T7	40 - 20	Pipe 8.625"ODx0.322"	20.03	10.02	40.9 K=1.00	8.3993	-177.66	334.42	0.531 1
T8	20 - 0	Pipe 8.625"ODx0.322"	20.03	10.02	40.9 K=1.00	8.3993	-205.00	334.42	0.613 1

 $^{^{1}}P_{u}$ / ϕP_{n} controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	150 - 140	L2x2x1/8	7.07	3.23	103.1 K=1.06	0.4844	-1.43	8.83	0.162 1
T2	140 - 120	L2x2x1/8	7.07	3.23	103.1 K=1.06	0.4844	-2.73	8.83	0.310 1
Т3	120 - 100	L2x2x3/16	8.33	3.72	114.9 K=1.01	0.7150	-6.12	12.23	0.501 1
T4	100 - 80	L2x2x3/16	9.43	4.49	136.7 K=1.00	0.7150	-4.42	8.65	0.512 1
T5	80 - 60	L2x2x3/16	10.94	5.25	159.9 K=1.00	0.7150	-5.43	6.32	0.859 1
Т6	60 - 40	L2 1/2x2 1/2x3/16	12.58	6.03	146.1 K=1.00	0.9020	-5.39	9.55	0.565 1

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2005 00 05 BGCM .:
Job		Page
	Buckeye Mt Viper	31 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation	Size	L	L_u ,	Kl/r	A	P_u	ф Р"	Ratio P _u
	ft		ft	ft `		in ²	K	K	$\overline{\phi P_n}$
T 7	40 - 20	L3x3x3/16	16.01	7.70	155.0 K=1.00	1.0900	-6.88	10.25	0.671
Т8	20 - 0	L3x3x5/16	17.62	8.51	173.4 K=1.00	1.7800	-7.81	13.38	0.583 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P
	ft		ft	ft		in^2	K	K	$\frac{-1}{\phi P_n}$
TI	150 - 140	L2x2x3/16	5.00	4.47	136.1 K=1.00	0.7150	-0.08	8.72	0.009 1

 $^{{}^{1}}P_{u}/\phi P_{n}$ controls

Tension Checks

Leg Design Data (Tension)									
Section No.	Elevation	Size	L	L_u .	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ΦP_n
T1	150 - 140	P2.5x.203 (2.875 OD)	10.00	5.00	63.3	1.7040	3.79	76.68	0.049
T2	140 - 120	P2.5x.203 (2.875 OD)	20.00	5.00	63.3	1.7040	21.90	76.68	0.286 1
T3	120 - 100	P4x.237 (4.50 OD)	20.00	6.67	53.0	3.1741	54.88	142.83	0.384
T4	100 - 80	P5x.258 (5.563 OD)	20.03	6.68	42.7	4.2999	79.21	193.49	0.409
T5	80 - 60	P5x.258 (5.563 OD)	20.03	6.68	42.7	4.2999	107.69	193.49	0.557
T6	60 - 40	P6x.28 (6.625 OD)	20.03	6.68	35.7	5.5813	133.76	251.16	0.533
T7	40 - 20	Pipe 8.625"ODx0.322"	20.03	10.02	40.9	8.3993	155.69	377.97	0.412
T8	20 - 0	Pipe 8.625"ODx0.322"	20.03	10.02	40.9	8.3993	178.33	377.97	0.472

 $^{^{1}} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in^2	K	K	${\phi P_n}$
T1	150 - 140	L2x2x1/8	7.07	3.23	64.5	0.2812	1.38	12,23	0.113 1
T2	140 - 120	L2x2x1/8	7.07	3.23	64.5	0.2812	2.70	12.23	0.220 1
T3	120 - 100	L2x2x3/16	8.33	3.72	75.0	0.4132	5.76	20.14	0.286 1
T4	100 - 80	L2x2x3/16	9.43	4.49	89.9	0.4132	4.20	17.97	0.234

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		Page
	Buckeye Mt Viper	32 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in²	K	K	${\phi P_n}$
T5	80 - 60	L2x2x3/16	9.91	4.75	95.1	0.4132	5.68	17.97	0.316 1
T6	60 - 40	L2 1/2x2 1/2x3/16	12.02	5.75	90.8	0.5535	5.43	24.08	0.226 1
T7	40 - 20	L3x3x3/16	16.01	7.70	100.5	0.6593	6.40	28.68	0.223^{-1}
T8	20 - 0	L3x3x5/16	17.62	8.51	112.9	1.0713	6.96	46.60	0.149 1

 $^{{}^{1}}P_{u}/\phi P_{n}$ controls

Top Girt Design Data (Tension)

Section	Elevation	Size	L	L_{u}	Kl/r	A	P_u	фP _n	Ratio
No.	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_n}$
TI	150 - 140	L2x2x3/16	5.00	4.47	92.6	0.4132	0.08	17.97	0.004 1

¹ P_u / ϕP_n controls

Section Capacity Table

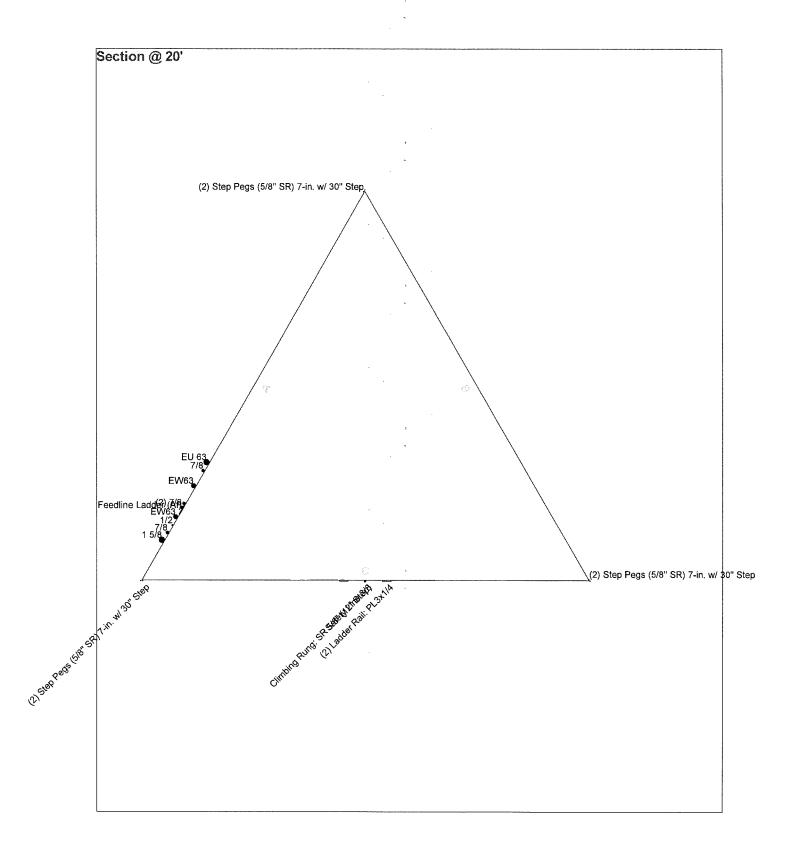
Section	Elevation	Component	Size	Critical	P	$øP_{allow}$	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
Tl	150 - 140	Leg	P2.5x.203 (2.875 OD)	· 1	-4.64	57.19	8.1	Pass
T2	140 - 120	Leg	P2.5x.203 (2.875 OD)	21	-24.42	57.19	42.7	Pass
T3	120 - 100	Leg	P4x.237 (4.50 OD)	48	-60.47	116.32	52.0	Pass
T4	100 - 80	Leg	P5x.258 (5.563 OD)	69	-87.24	169.37	51.5	Pass
T5	80 - 60	Leg	P5x.258 (5.563 OD)	90	-120.69	169.37	71.3	Pass
T6	60 - 40	Leg	P6x.28 (6.625 OD)	111	-151.51	228.83	66.2	Pass
T7	40 - 20	Leg	Pipe 8.625"ODx0.322"	. 132	-177.66	334.42	53.1	Pass
T8	20 - 0	Leg	Pipe 8.625"ODx0.322"	147	-205.00	334.42	61.3	Pass
Ti	150 - 140	Diagonal	L2x2x1/8	. 8	-1.43	8.83	16.2 29.8 (b)	Pass
T2	140 - 120	Diagonal	L2x2x1/8	23	-2.73	8.83	31.0 58.3 (b)	Pass
Т3	120 - 100	Diagonal	L2x2x3/16	- 50	-6.12	12.23	50.1 74.1 (b)	Pass
T4	100 - 80	Diagonal	L2x2x3/16	70	-4.42	8.65	51.2 60.6 (b)	Pass
T5	80 - 60	Diagonal	L2x2x3/16	92	-5.43	6.32	85.9	Pass
Т6	60 - 40	Diagonal	L2 1/2x2 1/2x3/16	113	-5.39	9.55	56.5 60.5 (b)	Pass
T7	40 - 20	Diagonal	L3x3x3/16	134	-6.88	10.25	67.1	Pass
T8	20 - 0	Diagonal	L3x3x5/16	149	-7.81	13.38	58.3	Pass
T1	150 - 140	Top Girt	L2x2x3/16	4	-0.08	8.72	0.9 1.1 (b)	Pass
							Summary	_
			•			Leg (T5) Diagonal (T5)	71.3 85.9	Pass Pass
						Top Girt (T1)	1.1	Pass
						Bolt Checks	81.9	Pass
						RATING =	85.9	Pass

			2025 00 05 DGG 15
4T and an	Job		Page
tnxTower		Buckeye Mt Viper	33 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615	Client		Designed by

Watauga County

Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

 $Program\ Version\ 8.3.1.2\ -\ 12/11/2024\ File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Desktop/125017_1018_Buckeye_Mapping\ George File: C:/Users/hicham.anssar/One Drive\ -\ Engineered\ Tower\ Solutions/Hicham.anssar/One Drive\ -\ Engineered\ Tower\ -\ Engineered\ Tower\ -\ Engineered$ SA/SE/8177_Tower Modification Drawings/Analysis/Tower/Buckeye Mt. - Viper.eri


hicham.anssar

March 25,2025 Site Name: Buckeye Mt. - Viper Page 9

150.0 Ft Self Support Structural Modification Analysis ETS, PLLC Job Number: 24125017.STR.8177

APPENDIX B BASE LEVEL DRAWING

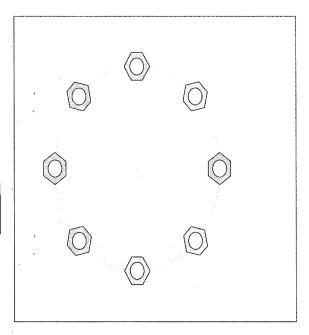
Feed Line Plan 20' Round Flat App In Face App Out Face

Engineered Tower Solutions, PL	$LC^{^{Job:}}$ Buckeye Mt V	iper				
3227 Wellington Ct.		Project: ETS, PLLC Job No. 24125017.STR.8177				
Raleigh, NC 27615	Client: Watauga County	Drawn by: hicham.anssar	App'd:			
Phone: (919) 782-2710	Code: TIA-222-G	Date: 03/25/25	Scale: NTS			
FAX: 919-782-2710	Path:		Dwg No. E-7			

March 25,2025 Site Name: Buckeye Mt. - Viper Page 10 150.0 Ft Self Support Structural Modification Analysis ETS, PLLC Job Number: 24125017.STR.8177

APPENDIX C ADDITIONAL CALCULATIONS

Self Support Anchor Rod Capacity


Site Info	
Site #	HP-1343
Site Name	Buckeye Mt Viper
ETS, PLLC #	24125017.STR.8177

Analysis Considerations	i en e
TIA-222 Revision	G
Grout Considered:	Yes
l _{ar} (in)	0
Eta Factor, η	0.55

Applied Loads		
	Comp.	Uplift
Axial Force (kips)	212.00	185.00
Shear Force (kips)	22.00	19.00

Considered Eccentricity	- 17 A
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000

^{*}Anchor Rod Eccentricity Applied

Connection Properties			Analysis Results	Angen (L
Anchor Rod Data	·	Anchor Rod Summary		(units of kips, kip-in)
(8) 1" ø bolts (F1554-55 N; Fy=55 ksi, Fu=75 ksi)	,	Pu_t = 23.13	φPn_t = 36.36	Stress Rating
I _{ar} (in): 0	•	Vu = 2.38	φVn = n/a	75.5%
	•	Mu = n/a	φMn = n/a	Pass

SST Unit Base Foundation

Site # : HP-1343
Site Name: Buckeye Mt. - Viper
ETS, PLLC #: 24125017.STR.8177

TIA-222 Revision: G

Top & Bot. Pad Rein. Different?:	
Tower Centroid Offset?:	7
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis	Reactions	\$
Global Moment, M:	2670	ft-kips
Global Axial, P:	21	kips
Global Shear, V:	34	kips
Leg Compression, P _{comp} :	212	kips
Leg Comp. Shear, V _{u_comp} :	22	kips
Leg Uplift, Puplift:	185	kips
Leg Uplift. Shear, V u_uplift:	19	kips
Tower Height, H :	150	ft
Base Face Width, BW :	15	ft
BP Dist. Above Fdn, bp_{dist}:	S 3	in

Foundation Analysis Checks				Washing
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	209.40	34.00	16.2%	Pass
Bearing Pressure (ksf)	4.31	1.95	45.4%	Pass
Overturning (kip*ft)	5011.94	3019.70	60.3%	Pass
Pier Flexure (Comp.) (kip*ft)	1094.56	121.00	11.1%	Pass
Pier Flexure (Tension) (kip*ft)	592.82	104.50	17.6%	Pass
Pier Compression (kip)	5998.68	224.44	3.7%	Pass
` Pad Flexure (kip*ft)	1815.06	215.38	11.9%	Pass
Pad Shear - 1-way (kips)	394.85	74.99	19.0%	Pass
Pad Shear - Comp 2-way (ksi)	0.164	0.070	42.6%	Pass

Pier Properties		
Pier Shape:		
Pier Diameter, dpier:	4.0	ft
Ext. Above Grade, E:	0.50	ft
Pier Rebar Size, Sc:	7	
Pier Rebar Quantity, mc:	16	
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, mt:	7	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Pad Properties		11.1007
Depth, D:	6.75	ft
Pad Width, W ₁ :	24.00	ft
Pad Thickness, T:	1.75	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	7	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	43	
Pad Clear Cover, cc _{pad} :	3	in

Material Properti	es	
Rebar Grade, Fy:	60 ksi	
Concrete Compressive Strength, F'c:	3.0 ksi	
Dry Concrete Density, δ c :	150 pcf	

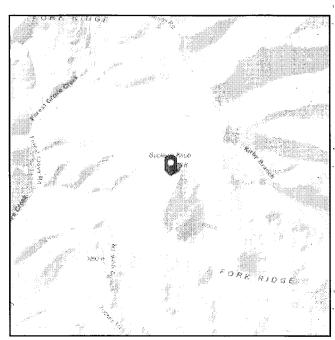
Soil Properties		
Total Soil Unit Weight, γ :	110	pcf
Ultimate Net Bearing, Qnet:	5.000	ksf
 Cohesion, Cu :	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	30	degrees
 SPT Blow Count, N _{blows} :	12	
Base Friction, μ :	0.35	
 Neglected Depth, N:	2.0	ft
 Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	N/A	ft

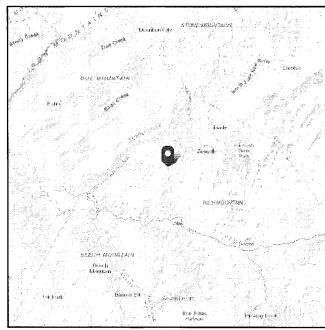
Structural Rating:	42.6%
Soil Rating:	60.3%

Address:

No Address at This Location

ASCE Hazards Report


Standard: ASCE/SEI 7-10


Latitude: 36.31608

Longitude: -81.79151 Risk Category: IV Soil Class:

Elevation: 4364.061870703125 ft D - Stiff Soil

(NAVD 88)

Wind

Results:

Wind Speed 120-Vmph 10-year MRI 76 Vmph

25-year MRI 84 Vmph 90 Vmph

96 Vmph

50-year MRI 100-year MRI

Special

Special Wind Region -- Mountainous terrain, gorges, and special wind regions shown in Fig. 26.5-1 shall be examined for unusual wind conditions. The

Authority Having Jurisdiction shall, if necessary, adjust the values given in Fig. 26.5-1 to account for higher local wind speeds. Such adjustment shall be based on meteorological information and an estimate of the basic wind speed obtained

required wind speeds per Jurisdiction guidances.

140 Vmph for elevations between 3500 ft and 4500 ft.

Topographic effects do not need to be considered with the

in accordance with the provisions in Section 26.5.3.

Data Source:

ASCE/SEI 7-10, Fig. 26.5-1B and Figs. CC-1-CC-4, and Section 26.5.2,

Date Accessed:

incorporating grata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2.

Seismic

Site Soil Class	•	D - Stiff So	oil								
Results:					*						
S _s :		0.272		. 5	S _{D1} :		0.157				
S ₁ :		0.098		. 1	Γ∟ :		12				
Fa:		1.582		F	PGA:		0.145				
F _v :		2.4		F	PGA _M :		0.219				
S _{MS} :		0.431	•	, F	PGA:		1.51				
S _{M1} :		0.236		I	e :		1.5				
S_{DS} :		0.287									
Seismic Design	n Category: D ⁿ	se Spectrum			0.30 0.25		Design Respo	onse S _l	pectrum		
0.30					0.20						
0.20					0.15						
0.15				,	0.10						
0.10					0.05				- English		•
0 2	S _a (g) vs T(s)	8 10	12	14	0	2	S _a (g) vs T(s)	8	10	12	ap and and and and and and and and and and

Data Accessed:

Tue Mar 25 2025

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness:

0.75 in.

Concurrent Temperature:

15 F

Gust Speed

30 mph

Data Source:

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed:

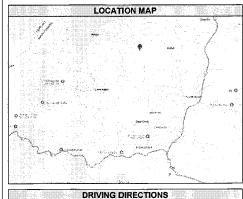
Tue Mar 25 2025

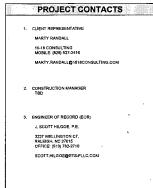
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

In the Appalachian Mountains, ice thicknesses may vary significantly over short distances.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.


In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

APPENDIX D MODIFICATION DESIGN DRAWINGS

TOWER MODIFICATION DRAWINGS

	SITE INFORMATION
SITE NAME	BUCKEYE MT VIPER
SITE NUMBER	HP-1343
SITE ADDRESS	2542 FOREST GROVE ROAD VILAS, NC 28898 WATAUGA COUNTY
LAT. / LONG.	N 38.3160811, W 81.7915111
ETS JOB#.	24125017.STR.8177
TOWER MANUFACTURER	VALMONT
TOWER TYPE	SELF SUPPORT TOWER
TOWER HEIGHT	150.0 FT

ETS OFFERS REVIEW OF CONTRACTOR-PREPARED CLASS IV RIGGING PLANS FOR A FEEL CONTACT RIGGING @ETS-PLLC.COM FOR PRICING AT TIMELINE.

NOTE FOR CONTRACTOR.

	CODE COMPLIANCE
	BASED ON THE REQUIREMENTS OF YIA STRUCTURAL STANDARDS FOR STEEL OWERS AND ANTENNA SUPPORTING STRUCTURES USING:
TIA CODE	TIA-222-G
BUILDING CODE	2018 NORTH CAROLINA STATE BUILDING CODE (2015 IBC)
NOMINAL WIND SPEED	168 MPH (AS REQUIRED BY WATAUGA COUNTY)
ICE THICKNESS	1.66 IN
WIND SPEED WITH ICE	30 MFH
SERVICE LOAD WIND SPEED	60 MPH
EXPOSURE CATEGORY	С
STRUCTURE CLASS	NI NI
TOPOGRAPHIC CATEGORY	1
SPECIAL NOTES	-

SHEET #	REV. (DATE)	DESCRIPTION
T-1	0-03/25/2025	TITLE PAGE
N-1	0+03/25/2025	MODIFICATION INSPECTION CHECKLIST
N-2	0-03/25/2025	PROJECT NOTES
ВМ	0-03/25/2026	BILL OF MAYERIALS
S-1	0-03/25/2025	TOWER ELEVATION AND MODIFICATION SCHEDULE
S-2	0-03/25/2025	SITE PLAN
5-3	0-03/25/2025	DIAGONAL REPLACEMENT DETAILS
P-1	0-03/25/2025	PHOTOS
-	-	·
-		
-		
-		-
-		-
		-
-		
		-
	-	· ·

	PREPARED BY:
DRAWINGS	ENGINEERED TOWER SOLUTIONS
CODE COMPLIANCE	3227 WELLINGTON COURT RALEIGH, NC 27815 c. 919-762-2710, f. 919-435-0631 www.ets-pile.com
THIS REINFORCEMENT DESIGN IS BASED ON THE REQUIREMENTS OF TIA STRUCTURAL STANDARDS FOR STEEL	PREPARED FOR:
ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES USING: TIA CODE TIA-222-G	
BUILDING CODE 2018 NORTH CAROLINA STATE BUILDING CODE (2015 IBC)	
NOMINAL WIND SPEED 168 MPH (AS REQUIRED BY WATAUGA COUNTY)	
ICE THICKNESS 1,00 IN	THE ASSET
WND SPEED WITH ICE 30 MPH	SITE NAME
THE STATE OF THE S	BUCKEYE MT
SERVICE LOAD WIND SPEED 80 MPH EXPOSURE CATEGORY C	SITE NUMBER:
	HP-1343 SITE ADDRESS
	2542 FOREST GROVE ROAD VILAS, NC 28898
TOPOGRAPHIC CATEGORY 1	LATITUDEA.ONGITUDE N 38.316081*, W 81.791511*
SPECIAL NOTES -	SEAL ANTILLA MORRADIA
SHEET INDEX	CAROLLINA CAROLLINA
SHEET # REV. (DATE) DESCRIPTION	1 500 kg 20 1 1 1
T-1 0-03/25/2025 TITLE PAGE	SEAL 241389
N-1 0-03/25/2025 MODIFICATION INSPECTION CHECKLIST	he has been
N-2 0-03/25/2025 PROJECT NOTES	1-34 70 M 305-1
BM 0-03/25/2625 BILL OF MATERIALS	7/1/1/1/1/1/1/03/25/2025
S-1 0+03/25/2025 TOWER ELEVATION AND MODIFICATION SCHEDULE	REV DATE DETAILS
S-2 0-03/25/2025 SITE PLAN	0 03/25/2025 FOR CONSTRUCTION
S-3 0-03/25/2025 DIAGONAL REPLACEMENT DETAILS	2
P-1 0-03/25/2025 PHOTOS	3 4
	5
	7
<u> </u>	8
	10
	11 12
	13
	DRAWN BY: EDR CHECKED BY: HA
	SHEET TITLE:
	TITLE DAGE
	TITLE PAGE
<u> </u>	SHEET - 4 CURRENT REV # 0
· ·	# T-1 CORRENT REV # 0

	574.7	MI CHECKLIST
REQUIRED	REPORT ITEM	BRIEF DESCRIPTION
		PRE-CONSTRUCTION
N/A	EOR APPROVED SHOP DRAWINGS	ONCE THE PRE-MODIFICATION MAPPING IS COMPLETE AND PRIOR TO FABRICATION. THE CONTRACTOR SHALL PROVIDE DETAILED ASSEMBLY DRAWING ANDOR SHOP DRAWINGS ALONG WITH EOR RRI FORM DETAILING ANY CHANGES FROM THE ORIGINAL DESIGN TO THE EOR FOR REMEW AND APPROVAL.
NVA	FABRICATION INSPECTION	A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THE CONTRACT DOCUMENTS, SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	FABRICATOR CERTIFIED WELD INSPECTION	A CWI SHALL INSPECT ALL WELDING PERFORMED ON STRUCTURAL MEMBERS DURING FABRICATION, A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
×	MATERIAL TEST REPORTS (MTR)	MATERIAL YEST REPORTS SHALL BE PROVIDED FOR MATERIAL USED. MTRS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	FABRICATOR NDE INSPECTION REPORT	CRITICAL SHOP WELDS THAT REQUIRE TESTING ARE NOTED ON THESE CONTRACT DRAWINGS. A CERTIFIED NOT INSPECTOR SHALL PERFORM NON-CESTRUCTIVE EXAMINATION AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	NDE OF MONOPOLE BASE PLATE	A NDE OF THE POLE TO BASE PLATE CONNECTION IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDED TO THE MIINSPECTOR FOR INCLUSION I THE MI REPORT.
×	PACKING SLIPS	PACKING/SHIPPING LIST FOR ALL MATERIAL USED DURING CONSTRUCTION OF THE MODIFICATION.
	STING AND INSPECTIONS:	
NIA		
		CONSTRUCTION
NUA	FOUNDATION INSPECTIONS	A VISUAL OBSERVATION OF THE EXCAVATION AND REBAR SHALL BE PERFORMED BEFORE PLACING THE CONCRETE. A VISUAL OBSERVATION OF THE REBAR SHALL BE PERFORMED BEFORE PLACING THE EPOXY. A SEALED WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION THE MI REPORT.
N/A	CONCRETE COMP, STRENGTH AND SLUMP TEST	THE CONCRETE MIX DESIGN, SLUWP TEST, AND COMPRESSIVE STRENGTH TESTS SHALL BE PROVIDED AS PART OF THE FOUNDATION REPORT.
N/A	EARTHWORK SOIL COMPACTION	FOUNDATION SOIL COMPACTION SHALL BE INSPECTED AND APPROVED BY AN APPROVED FOUNDATION INSPECTOR AND RESULTS INCLUDED AS PART OF THE FOUNDATION REPORT.
N/A	EARTHWORK: BEARING CAPACITY	FOUNDATION SUB-GRADES SHALL BE INSPECTED AND APPROVED BY AN APPROVED FOUNDATION INSPECTOR AND RESULTS INCLUDED AS PART OF TH FOUNDATION REPORT.
N/A	MICROPILE/ROCK ANCHOR	MICROPILES/ROCK ANCHORS SHALL BE INSPECTED BY THE FOUNDATION INSPECTION VENDOR AND SHALL BE INCLUDED AS PART OF THE FOUNDATION INSPECTION REPORT, ADDITIONAL TESTING ANDIOR INSPECTION REQUIREMENTS ARE NOTED IN THE PROJECT NOTES.
N/A	POST-INSTALLED ANCHOR ROD VERIFICATION	POST INSTALLED ANCHOR ROD VERIFICATION SHALL BE PERFORMED IN ACCORDANCE WITH REQUIREMENTS AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	BASE PLATE GROUT VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR THAT CERTIFIES THAT THE GROUT WAS REMOVED AND/OR INSTALLED IN ACCORDANCE WITH APPLICABLE REQUIREMENTS FOR INCLUSION IN THE MI REPORT.
N/A	FIELD CERTIFIED WELD INSPECTION	A CERTIFIED WELD INSPECTOR SHALL INSPECT AND TEST FIELD WELDS PER THE WELDING NOTES ON SHEET N.Z. A REDORT SHALL BE PROVIDED, NO OF FIELD WELDS SHALL BE PERFORMED AS REQUIRED BY APPLICASLE STANDARDS AND CONTRACT DOCUMENTS, THE NDE REPORT SHALL BE NCLUDED IN THE CWI REPORT.
N/A	FIELD NOE	A NDE OF THE FIELD WELDS AND ANY ADDITIONAL NDE REQUIREMENTS NOYED IN THESE DESIGN DOCUMENTS.
×	ON-SITE COLD GALVANIZING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE WRITTEN AND PHOTOGRAPHIC DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY ON-SITE COLD GALVANIZING WAS APPLIED PER MANUFACTURER SPECIFICATIONS AND APPLICABLE STANDARDS.
N/A	TENSION TWIST AND PLUMB	THE GENERAL CONTRACTOR SHALL PROVIDE A REPORT IN ACCORDANCE WITH APPLICABLE STANDARDS DOCUMENTING TENSION TWIST AND PLUMB.
N/A	TOWER PLUMB DELIVERABLES	THE CONTRACTOR SHALL PROVIDE WRITTEN AND PHOTOGRAPHIC DOCUMENTATION TO THE MI INSPECTOR VERIFYING THE TOWER PLUMB CONDITION
NVA	CANISTER DRAWINGS	THE CONTRACTOR SHALL SUBMIT A LEGIBLE COPY OF ANY FINAL FABRICATION OR PARTS ORAWINGS PROVIDED BY THE CANISTER VENDOR.
x	GC AS-BUILT DRAWINGS	THE GENERAL CONTRACTOR SHALL SUBMIT A LEGIBLE COPY OF THE ORIGINAL DESIGN DRAWMASS EITHER STATING 'INSTALLED AS DESIGNED' OR NOTING ANY CHANGES THAT WERE REGURED AND APPROVED BY THE ENGINEER OF RECORD, EORAFI FORMS APPROVING ALL CHANGES SHALL BE SUBMITTED.
DOITIONAL TE	STING AND INSPECTIONS:	
N/A	L	POST-CONSTRUCTION
x	CONSTRUCTION COMPLIANCE LETTER	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THESE CONTRACT DRAWNOS.
N/A	POST-INSTALLED ANCHOR ROD PULL TESTS	POST-INSTALLED ANCHOR RODS SHALL BE TESTED BY AN APPROVED PULL TEST INSPECTOR AND A REPORT SHALL BE PROVIDED INDICATING TESTING RESULTS.
×	PHOTOGRAPHS	PHOTOGRAPHS SHALL BE SUBMITTED TO THE ML PHOTOS SHALL DOCUMENT ALL PHASES OF THE CONSTRUCTION. THE PHOTOS SHALL BE ORGANIZE IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO.
N/A	BOLT HOLE INSTALLATION VERIFICATION REPORT	THE MINSPECTOR SHALL VERIFY THE HOLE SIZE AND CONDITION OF 10% OF ALL NON PRE-TENSIONED BOLTS INSTALLED AS PART OF THE MODIFICATION. THE MI REPORT SHALL CONTAIN THE COMPLETED BOLT INSTALLATION VERIFICATION REPORT, INCLUDING THE SUPPORTING PHOTOGRAPHS.
x	PUNCH LIST DEVELOPMENT AND CORRECTION DOCUMENTATION	FINAL PUNCH LIST INDICATING ALL NONCONFORMANCE(S) IDENTIFIED AND THE FINAL RESOLUTION/APPROVAL
×	MI INSPECTOR RECORD DRAWING(S)	THE MIINSPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTOR'S REDLINE DRAWING AND THE ACTUAL COMPLETED INSTALLATION.
	STING AND INSPECTIONS.	
N/A		

MODIFICATION INSPECTION NOTES GENERAL

NO DOCUMENT, CODE OR POLICY CAN ANTICIPATE EVERY SITUATION THAT MAY ARISE, ACCORDINGLY, THIS CHECKLIST IS INTENDED TO SERVE AS A SOURCE OF GUIDING PRINCIPLES IN ESTABLISHING GUIDELINES FOR MODIFICATION INSPECTION.

THE MIST TO CONSIBILING SUBCLINES OF MEMORY AND IS NOT AND IS NOT A REVIEW OF THE MODIFICATION DESIGN IT TIBLE. AND THE MINISPECTOR DOES NOT THE MODIFICATION DESIGN IT TIBLE. AND THE MINISPECTOR DOES NOT THE MODIFICATION DESIGN IT TIBLE. AND THE MINISPECTOR DOES NOT THE MODIFICATION DESIGN IT THE MIST AND THE MINISPECTOR AND ATTEMPT AND THE MINISPECTOR SHALL INSPECT AND NOTE CONFORMACE HONCONFORMANCE AND PROVIDED TO THE POINT OF CONTACT FOR EVALUATION OF THE MINISPECTOR SHALL DESIGN AND THE MINISPECTOR SHALL DESIGN AND THE MINISPECTOR SHALL DESIGN AND THE MINISPECTOR SHALL DESIGN AND THE MINISPECTOR

TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BESION COMMUNICATING AND COORDINATING AS SOON AS A PICKNESSE GORBET (PL) IS REGEIVED. THE EMPETED THAT EACH PARTY ML USE PROMOTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT NOWNAT HES OCAMINOR INVESTOR SHALL CONTACT THE OWNER OCHMING (PC).

SERVICE LEVEL COMMITMENT

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MI REPORT:

- THE GC SHALL PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLY 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MITO BE
- THE MINISPECTOR AS TO WHEN THE STEWLL BE READY FOR THE MIT DIS CONDUCTED.

 THE CIC AND MINISPECTOR COORDINATE CLOSIELY THROUGHOUT THE ENTIRE

 MAKEN POSSIBLE, IT IS PREFERRED TO HAVE THE CO. AND MINISPECTOR ON-SITE SIMULTANEOUSLY FOR ANY CHAY WARE TRISONING OR RETENSIONNED OPERATIONS. WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE COM MINISPECTOR KNOSTET DURING THE MIT TO HAVE ANY MAKEN DEPOSITIONES CORRECTED DURING THE INTITUDE TO THE COMPANY CHAPT OF CONTRICTION OF THE CONTRICTION OF CONTRICTION OF CONTRICTION OF CONTRICTION OF ACTION OF CONTRICTION OF

REQUIRED PHOTOS

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

- ANE TO BE TAKEN AND INCLUDED IN THE REPORT:

 PRECONSTRUCTION GENERAL SITE CONDITION

 PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION

 CONSTRUCTIONEMECTION AND INSPECTION

 RAW MATERIALS

 PHOTOGRAPH AND CONTINUE OF THE PHOTOGRAPH AND THE PHO

PHOTOS OF ELEVATED MODIFICATIONS TAKEN ONLY FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

BUCKEYE MT. -**VIPER** HP-1343 SITE ADDRESS: 2542 FOREST GROVE ROAD VILAS, NC 28698 LATITUDE LONGITUDE: N 36.316061", W 81.791511"

REV	DATE	DETAILS
0	03/25/2025	FOR CONSTRUCTION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
DRAN	NN BY EOR	CHECKED BY MY

SHEET TITLE MODIFICATION INSPECTION CHECKLIST

SHEET N-1 CURRENT REV # 0 ETS # 24125017,STR,8177

GENERAL NOTES:

- ALL REFERENCES TO THE OWNER IN THESE DOCUMENTS SHALL BE CONSIDERED WATAUGA COUNTY OR ITS DESIGNATED REPRESENTATIVE.
- ITS DESIGNATED REPRESENT ATTIVE.

 ALL MORN RESIDENCE ON THESE GOAMMANS MUST BE COMPLETED BY THE CONTRACTOR WAS NOTED OF THE OWNER. THE CONTRACTOR MUST HAVE CONSIDERABLE EXPENSIVES IN PREPORMANCE OF WORK SMULAT OT HAT DESCRIBED HERSEN WAS CONSIDERABLE EXPENSIVES IN PREPORMANCE OF WORK AND AND THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OW
- (ATI) BIG). UNLESS SHOWN OR NOTED OTHERWISE ON THE CONTRACT DRAWINGS, OR IN THE SPECIFICATIONS, THE FOLLOWING NOTES SHALL. HEREY TO THE WATERIALS LISTED HEREIN, AND TO THE PROCEDURES TO BE USED ON THIS SHALL. SHOW THE WATER HERE SHOWN THE SHALL BE FOLLOWED EXACTLY AND SHALL SUPPRISED AND FOUNDLY THAN FORTER SHALL BE FOLLOWED SHALL BE FOLLOWED EXACTLY AND SHALL SUPPRISED AND FOUNDLY THAN FORTER SHALL BE SHALL BE FOLLOWED EXACTLY AND SHALL SUPPRISED AND FOUNDLY THAN FORTER SHALL BE SHALL BE FOLLOWED.

- NAME AND ADMINISTRATION OF THE STRUCTURE BY INSTRUCTIONS SHALL BE FOLLOWED EXACTLY AND SHALL
 DEPOSED BY AND CONNICTION AND SERVICES CHARGES AND SERVICES AND SERVICES.

 TO RUSHES THE SHALL SHEET OF THE STRUCTURE AND THE CONNICTION AND SHALL BE ADMINISTRATION OF THE STRUCTURE AND THE CONNICTION AND SHALL BE ADMINISTRATION. THE STRUCTURE AND THE CONNICTION AND THE DOWNER THAT MAY BE RESESSAMY, SUCH MATERIAL SHALL BE REMOVED AND
- ALL MATERIALS AND EQUIPMENT FUNDAMED SHALL BY AND DE GOOD QUALITY, FREE FROM FALLTS AND DEFECTS AND IN COMPORTANCE WITH THE CONTRACT DOCUMENTS, ANY AND ALL SUBSTITUTIONS WAS THE PROPERTY APPROVED AND AUTHORIZED WHICH THE CONTRACT DOCUMENTS, ANY AND ALL SUBSTITUTIONS WAS THE PROPERTY APPROVED AND AUTHORIZED WHICH THE CONTRACT DECLINERS AND PROPERTY AND PROPERTY AND PROPERTY AND PROPERTY AND PROPERTY AND PROPERTY AND PROPERTY AND PROPERTY AND THE PROPERTY AND PROPERTY AND THE PROPERTY AND PROPERT
- LIGHT OF THE WINTERMAN AND ELLEMENTS THE RING SUBSTITUTION.

 THE CONTRACTOR SHALL BE RESPONSIBLE FOR INTATION, MAINTAINING, AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE WORK. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT THIS PROJECT AND RELITED WORK COMPLIES WITH ALL APPLICABLE LOCAL, STATE, AND RECEIRAL SAFETY CODES AND REQUALITIONS GOVERNION THIS WORK.
- 10. ACCESS TO THE PROPOSED WORK SITE MAY BE RESTRICTED. THE CONTRACTOR SHALL COORDINATE INTERNOED CONSTRUCTION ACTUTY, INCLUDING WORK SCHEDULE AND MATERIALS ACCESS, WITH THE RESUBENT LEASING AGENT FOR APPROVA.
- ALL PERMITS THAT MUST BE OFFANDED FOR SPECIAL CONDITIONS AND REQUIREMENTS OF THE CONTRACTOR. THE CONTRACTOR WILL BE RESPONSIBLE FOR ABIDING BY ALL CONDITIONS AND REQUIREMENTS OF THE PERMITS.
- PERMINS.

 I. FRAPPLICABLE, ALL CONCRETE WORK SHALL COMPLY TO LOCAL CODES AND THE ACI 318-18, "BUILDING REQUIREMENTS FOR STRUCTURAL CONCRETE."

 3. ZHADIUSE RHORO TO THE BEGINNING OF ANY CONSTRUCTION. THE CONTRACTOR MUST NOTIFY THE AMPLICABLE JURISDICTIONAL (STATE, COLATY) OR CITY) ENGINEER.

WELDING NOTES:

- ALL WELDING SHALL BE IN ACCORDANCE WITH THE AWS D1.1/D1.1M: 2016 "STRUCTURAL WELDING CODE-STEEL".
- CODE-STEEL".
 ALL WELDING SHALL BE PERFORMED BY AWS CERTIFIED WELDERS.
 CONTRACTOR SHALL RETAIN AN AWS CERTIFIED WELD INSPECTOR TO PERFORM VISUAL INSPECTIONS ON FIELD WELD. A LETTER AWO REPORT SHALL BE ISSUED TO THE CONTRACTOR. CONTRACTOR SHALL SUMMILIETER AND REPORT TO TOWNER OWNER. SUMMITTED THE AND MEMORITURE OF LOWER OWNER.

 MINIOT THE SURFACE ADMORNT TO THE WELD FOR A DISTANCE OF 2" MINIMUM ALL AROUND, GRIND THE SURFACE OF THE ROOT TO BE INSTALLED FOR A DISTANCE OF 2" MINIMUM ALL AROUND THE AREA TO BE WILDED. BUSUME BOTH AREAS ARE LOWER FREE OF ALL OWNAIDEN, SURFACES TO BE WILDED SHALL BE FREE FROM SCALE, SUR, RUST, MOISTURE, GREASE OR ANY OTHER FORBIGM MATERIAL THAT WOULD PREVENT PROPER WELDING.
- PREVENT PROPER YEALTHON.

 DO NOT WILD IF THE TEMPERATURE OF THE STEEL IN THE VICINITY OF THE WELD AREA IS BELOW O'F.
 WHEN THE TEMPERATURE IS BETWEEN O'F AND 32°F, PREHEAT AND MAINTAIN THE STEEL IN THE VICINITY
 OF THE WELD AREA AT 70°F DURING THE WELDING PROCESS.
- DO NOT WELD ON WET OR FROST-COVERED SURFACES & PROVIDE ADEQUATE PROTECTION FROM HIGH WANDS.
- FOR ALL WELDING, USE E70XX ELECTRODES.
- FOR ALL WELLING, USE PLAZA ELECTIOLUSS.

 ATTER FINAL INSECTION, THE AREA OF THE WELDS, THE INSTALLATION AND ALL SURFACES DAMAGED BY WELDING OR GRINDING SHALL BE APPLIED BY WELDING OR GRINDING SHALL BE APPLIED BY ANY THE GALVANZING COMPOUND SHALL DO NOTAIN A MINMUM OF 85% ± PURE ZINC, THE FINISHED CONTRIVEN SHALL CONTAIN SHALL BE A MINMUM THEORY.

STRUCTURAL STEEL NOTES:

- THE FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC SPECIFICATION FOR MANUAL OF STEEL CONSTRUCTION, LOAD AND RESISTANCE FACTOR DESIGN, 15TH EDITION,
 - UNLESS OTHERWISE NOTED, ALL STRUCTURAL ELEMENTS SHALL CONFORM TO THE FOLLOWING REQUIREMENTS.

 A STRUCTURAL STEEL.

 - ANGLE ASTM ASS
 PIPETURE STIM ASS (R. B (FY = 42 KS))
 PLATE ASTM ASS (REET SUPPORTING AND DILYED TOWERS)
 PLATE ASTM ASS (REET SUPPORTING AND DILYED TOWERS)
 GUYED WRIES ASTM AND GOOD AND SCRIPPORTING AND ALL BOLTS. ASTM ASSE (YEE) LOW LANGED HOD STRAND)

 ALL BOLTS. ASTM ASSE (YEE) LOW VANICED HOD STRENGTH BOLTS.
 ALL WILLS ASTM ASSE CARBON AND ALLOY STEEL NUTS.

 ALL WILLS ASTM ASSE CARBON AND ALLOY STEEL NUTS.
- ALL CONNECTIONS NOT FULLY DETAILED ON THESE PLANS SHALL BE DETAILED BY THE STEEL FABRICATOR IN ACCORDANCE WITH AISC SPECIFICATION FOR MANUAL OF STEEL CONSTRUCTION, LOAD AND RESISTANCE FACTOR DESIGN, 15TH EDITION.

 HOLES SHALL NOT BE FLAME OUT THRU STEEL UNLESS APPROVED BY THE ENGINEER.

- HOLES SHALL NOT BE FLAME CUT THRU STEEL LINESS APPROVED BY THE ENGINEER

 OF LOTP GRALL WAS BEEN ALT RESS UNKESS OF THERMORE INDICE. AFTER FABRICATION WHERE PRACTICABLE

 GLUNNIDING ASTAL ATZA, ASTAL ASSALSSAN GRASH ASSALSSAN, GRASH ASPAPLICABLE.

 RESPIRE DAMAGED SINEFACES WITH LAND WAVENING REPRIN HET DOWN DO INFOLVENORING TO ASTAL ATRO

 OR BY APPLICATION OF STOK OR THICK PASTED MATERIAL SPECIFICALLY DESIGNED FOR REPAIR

 OR BY APPLICATION OF STOK OR THICK PASTED MATERIAL SPECIFICALLY DESIGNED FOR REPAIR

 WHICH STOK OR SANTE MATERIAL IS PAPARED. MY AT A TORON TO A TEMPERATURE SUFFICIENT ON THE

 THE METALLICS IN STICK OR PASTED, SPREAD MOLITEN MATERIAL LINEFORM.Y OVER SURFACES TO BE
 COATED MON OWNER DESCESS MATERIALS.
- CUAIED AND MIPE OFF EXCESS MATERIAL.

 ANUT LOOKING DEVICE SHALL BE INSTALLED ON ALL PROPOSED AND/OR REPLACED BOLTS.

 ALL PROPOSED AND/OR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH TO EXCLUDE THE THREADS FROM THE SHEAR PLANE.
- FROM ITE SHEAR FUNCE.

 ALL PROPOSED MODER REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT BE AT LEAST FLUSH WITH THE FACE OF THE NUT, IT IS NOT PERMITTED FOR THE BOLT END TO SE BELOW THE FACE OF THE NUT AFTEN INTERIORNIS COMPLETED.

 GALVANIZED ASTIM AJ25 BOLTS SHALL NOT BE REUSED.

BOLT TIGHTENING PROCEDURE:

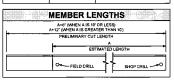
- CONNECTION BUT SIGNECT TO CIRECT TENSION SHALL BE INSTALLED AND TIGHTENED AS PER SECTION 8.7 OF THE JISC SPECIFICATION FOR STRUCTURAL JOINTS USING AZE OR AMB BOLTS, LOCATED BY THE AISC MANUAL OF STEEL CONSTRUCTION. THE INSTALLATION PROCEDURE IS PARAPHARED AS FOLLIONS AND ALL AN

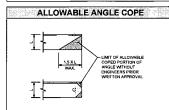
 - ARC MINIOL OF STEEL CONSTRUCTION. THE INSTALLATION PROCEDURE IS PARAPHANESIC AFFOLLOWS PARTEMPERS SHALL BE INSTALLED IN PROPERLY ALLADID OLDES AND TIGHTEND BY ONE OF THE METHODS DESCRIBED IN SUSSECTION 8.2.1 THROUGH 8.2.4.

 2.1 TURN-OF-THE-MINISTRUCTION OF THE CONNECTION AND BROUGHT TO A SHUT INTH AND BOLTS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND BROUGHT TO A SHUT INTH AND CONSTRUCTION OF THE CONNECTION OF THE CONNECTION AND BROUGHT TO A SHUT INTH AND CONSTRUCTION OF THE CONNECTION OF THE CON

TIGHTEN	I CONNECTION BOLTS BY AISC - "TURN OF THE NUT" METHOD), USING THE CHART BELOW,
BOLT L	ENGTHS UP TO AND INCLUDING FOUR DIA,	
X-	BOLTS UP TO AND INCLUDING 2.6 INCH LENGTH	+X TURN BEYOND SNUG TIGH
*	BOLTS UP TO AND INCLUDING 2.5 INCH LENGTH "	+K TURN BEYOND SNUG TIGH
*	BOLTS UP TO AND INCLUDING 3,0 INCH LENGTH	+K TURN BEYOND SNUG TIGH
V-	BOLTS UP TO AND INCLUDING 3,5 INCH LENGTH	+X TURN BEYOND SNUG TIGH
4*	BOLTS UP TO AND INCLUDING A DINCH LENGTH	+K TURN REYOND SNUG TIGHT

BOLT LENGTHS OVER FOUR DIA. BUT NOT EXCEEDING EIGHT DIA BOLTS 2:25 TO 4:0 INCH LENGTH BOLTS 2:75 TO 5:0 INCH LENGTH

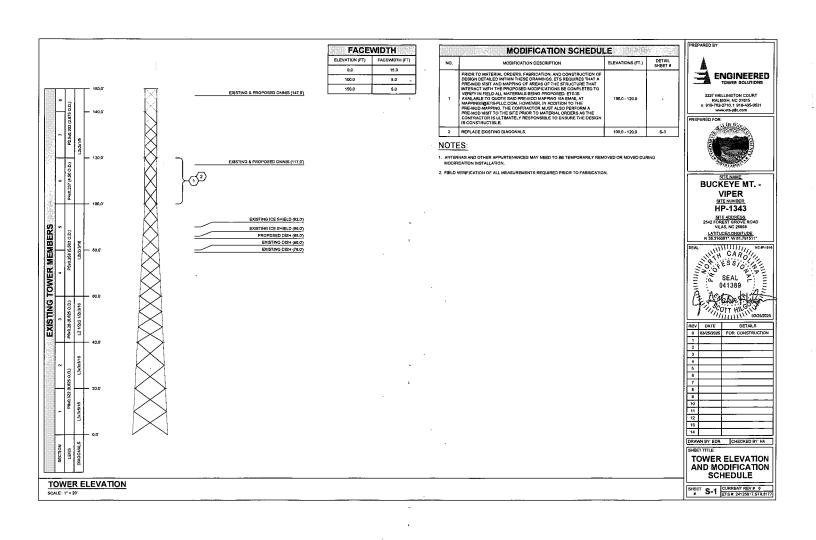

+K TURN BEYOND SNUG TIGHT BOLTS 3.25 TO 6.0 INCH LENGTH +X TURN BEYOND SNUG TIGHT BOLTS 3.75 TO 7.0 INCH LENGTH +X TURN BEYOND SNUG TIGHT BOLTS 4.25 TO 8.0 INCH LENGTH ALL OTHER BOLTED CONNECTIONS SHALL BE BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1 OF THE SPECIFICATION.

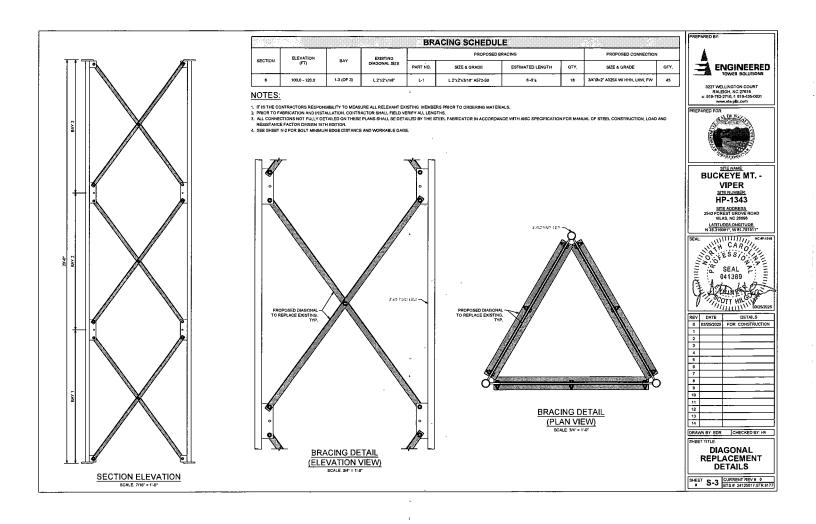

+X TURN BEYOND SNUG TIGHT

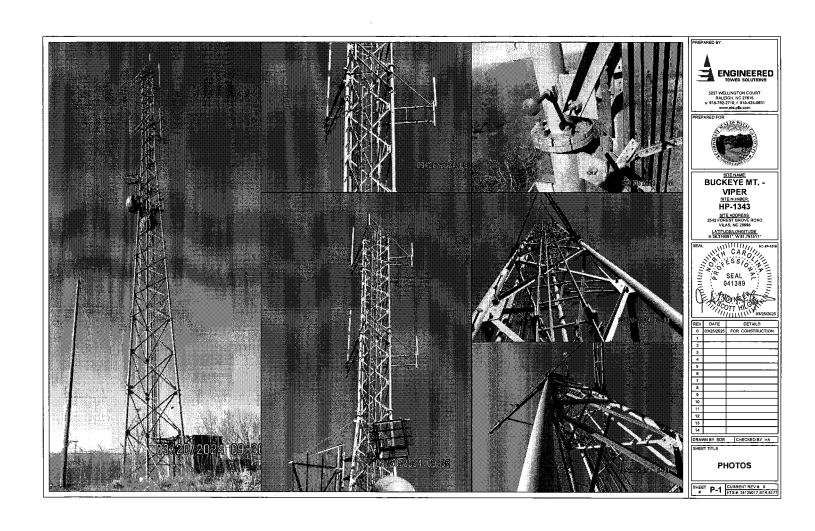
NOMINA	AL HOLE DIME	HOLE DIMENSIONS	
BOLT DIAMETER	STANDARD HOLE	SHORT SLOT	
У.	%₁	%4 × 1%1	
%	¹X4	'K ₆ × 'K	
×	17/16	¹¾s X 1	
%	15/1	1%4 × 1%	
1	11/4	1% × 1%	

ВС	LT EDGI	AND SP	ACING
BOLT CIAMETER	MIN EDGE	SPACING	
Ж	%	1%	Is MIN.
*	1%	11/4	EDGE
*	1%	21/4	1 []]
%	11/2	2%	SPACING
1	11/4	3	1

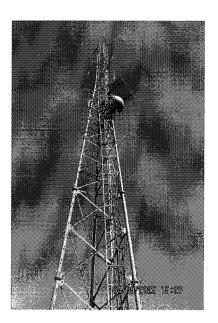
AGES	VORKABLE	١
	GAGE	LEG LENGTH
	21/2	4
GAGE	2	3K
-	1%	3
U	1%	25
	1%	2
	1	1%




1	Ľ	///////////////////////////////////////						
П	REV	DATE	DETAILS					
П	0	03/25/2025	FOR CONSTRUCTION					
П	1							
П	2							
П	3							
П	4							
П	5							
П	6							
J	7							
1	8							
1	9							
П	10							
П	11							
П	12							
П	13							
П	14							
П	DRAV	MN BY: EDR	CHECKED BY: HA					
П	SHEE	T TITLE:						
	ŀ	PROJECT NOTES						


SHEET N-2 CURRENT REV # 0
ETS #. 24125017.STR.8177

		T		BILL OF MA		T	T		نا ا
NTITY REQUIRED	MANUFACTURER	PART NUMBER	DESCRIPTION	LENGTH	DETAIL SHEET #	PART WEIGHT (LB)	TOTAL WEIGHT (LB)	NOTES	🛕
			DIAGONAL REPLACEMENT MATERIALS & HARDWARE		<u> </u>				ENGINEE TOWER SOLUTION
18	•	L-1	L Z'xZ'x3/16" A572-50	8'-0"±	S-3	20,50	369.00		
45	•	-	3/4'@ A325X W/ HHN, LKW, FW	r	S-3	0,58	25,10		3227 WELLINGTON COUR RALEIGH, NC 27815 o. 919-782-2710, f: 919-435-0
					`	ļ			o. 919-782-2710, f. 919-435-6 www.ets-plic.com
						1			PREPARED FOR
				_					Colorado
			-			ļ			
				 			<u> </u>		
					-		 		
				 			 		SITE NAME
				 	-				BUCKEYE MT
				 	+		1		VIPER
				+			1		SITE NUMBER: HP-1343
		-		+	 		+ +		SITE ADDRESS
-	-			-		-			SITE ADDRESS: 2542 FOREST GROVE RO VILAS, NC 28898
				 	,		-		LATITUDE/LONGITUDE
				 -					SEAL:
				+			+		CARO!
					 		 		1 50 6 68810
				 			 		SEA: SEAL 2 SEAL
				 	+				元 : 041389 /
	-			 	-		 		Elizando
					1		l	-	COTT HILLS
				<u> </u>					77/0000
- 1									0 03/25/2025 FOR CONSTR
			•	_					1
									3
				 - -					4
				 					6
	•	<u> </u>			1				7
				-	1		1		8 9
		<u> </u>				_	1		10
				_	 				11 12
-			···	+					13
			•		 	1	 		14
					1	T		·	DRAWN BY EDR CHECKED
		 		 	1				SHEET TITLE
			-	 		-	 		BILL OF MATER
				1"					
				'	1	TOTAL WEIGHT (LB):	395,10	PAGE 1 OF 1	SHEET BM CURRENT REV



Pre Modification Inspection Report BUCKEYE MT. - VIPER (HP-1343) 150-ft± Self-Support Tower ETS # 24125017.Ins.8179 April 30, 2025 Page 1 of 5

PRE MODIFICATION INSPECTION REPORT

SITE NAME: BUCKEYE MT. - VIPER

Performed By:

Alex Meister Tower Engineer - Inspections Charlie Kluth
Tower Engineer - Inspections

Pre Modification Inspection Report BUCKEYE MT. - VIPER (HP-1343) 150-ft± Self-Support Tower ETS # 24125017.Ins.8179 April 30, 2025 Page 2 of 5

1.0 ASSIGNMENT

Subject − Pre-modification inspection of a 150-ft± self-support tower.

Location – 2542 Forest Grove Rd, Vilas, NC 28692

Structure – 150-ft± Self-Support Tower

Purpose – The objective of the inspection was to determine the existing section dimensions from 100' to 120', and to perform a visual inspection of existing conditions and potential issues that may take place during the tower modification.

2.0 SCOPE OF SERVICES

1) Perform a pre-modification inspection

2) Prepare a report of observations and recommendations

3.0 PARTICIPATING PERSONNEL

Representatives: Mr. Marty Randall

10-18 Consulting (828) 527-2416

Consulting Engineers: Mr. Alex Meister

Mr. Charlie Kluth

Engineered Tower Solutions, PLLC (ETS)

3227 Wellington Ct. Raleigh, NC 27615 (919) 782-2710

Pre Modification Inspection Report
BUCKEYE MT. - VIPER (HP-1343)
150-ft± Self-Support Tower
ETS # 24125017.Ins.8179
April 30, 2025
Page 3 of 5

4.0 BACKGROUND INFORMATION

Watauga County requested that ETS conduct a pre modification inspection of the tower. The objective of the inspection was to determine the existing section dimensions from 100' to 120', and to perform a visual inspection of existing conditions and potential issues that may take place during the tower modification.

5.0 INVESTIGATION

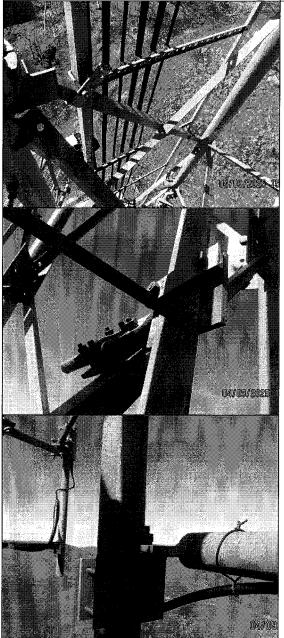
Pre Modification Inspection – Alex Meister and Charlie Kluth performed the inspection on April 9, 2025. For the purpose of this inspection, the tower legs were named by letter according to the magnetic azimuth defined by a line from the center of tower to the leg. "A" leg is the leg closest to magnetic north, followed clockwise by "B" and "C."

6.0 RESULTS

- 1. Tower Section Details
- 2. Miscellaneous Obstructions

Pre Modification Inspection Report BUCKEYE MT. - VIPER (HP-1343) 150-ft± Self-Support Tower ETS # 24125017.Ins.8179 April 30, 2025 Page 4 of 5

EXECUTIVE SUMMARY


Observations and Recommendations Photograph <u>Item 1 – Tower Section Details</u> Section 6 - 100'0"±-120'0"± (tapered 3 panel X bracing) Leg: P4.5"Øx0.237" Bottom Flange: PL 10 1/4"Øx7/8" w/ (6) 3/4"Ø Top Flange: PL 9 1/4"Øx3/4" w/ (4) 3/4"Ø bolts Section Height: 20'-0" O-O Diagonals: L2"x2"x1/8" w/ (1) 3/4"Ø EB and (1) 5/8"Ø CB Gusset: 1/4" THK

Pre Modification Inspection Report BUCKEYE MT. - VIPER (HP-1343) 150-ft± Self-Support Tower ETS # 24125017.Ins.8179 April 30, 2025 Page 5 of 5

EXECUTIVE SUMMARY

Photograph

Observations and Recommendations

<u>Item 3 – Miscellaneous Obstructions</u>

Climbing Pegs

• C leg: spacing 2'-6"

Climbing Ladder

• BC face: width: 1'-1/2", step: 1'-0", J-hooks and J-plates to diagonals

Waveguide

- CA face near C leg
- J-hooks and J-plates to diagonals

Coax

• (1) 1 5/8 FHSM, (1) 7/8 FHSM, (1) 1/2 FHSM, (2) 7/8 FH, and (1) 1/2 FH attached to waveguide on CA face

Omni Mount at 117'-0"

- Location: All legs
- SO mount SO: 6'-0"
 - o Arm: (2) P2.4"Ø, VSep.: 2'-6"
 - o Bracing (1) SR 3/4"Ø (Vert.)
 - o MP (1) P2.4"Øx0.153"x4'-0"
- Equipment:
 - o A leg: (1) Unknown 3"Øx4'-0" Omni
 - o B leg: (1) Unknown 10'-0"x2 Element Dipole
 - o C leg: (1) Unknown 3"Øx15'-0" Omni
- Leg connections: (1) BPL 7"x6"x1/2" and (1) BPL 6.75"x5"x3/8"x7" w/(4) 1/2"Ø bolts @ 4" C-C V, 5" C-C H
- Stabilizer SR1.25"Ø connected back to diagonal members at 117'

Page: 5

Watauga County

BIDDER: K-Co Enterprises, Inc.

TOWER MOD BREAKDOWN:

1. Total cost of tower modification materials only

1690.00

2. Total cost of tower modification labor only

10,542.00

3. Total cost of tower modification

\$ 12,232.00

Page: 1 Watauga County

BIDDER: K-Co Enterprises, Inc.

WATAUGA COUNTY, NC	INVITATION FOR BIDS – Buckeye MtViper				
<u>BID #</u>	Bids will be publicly opened: June 13th, 2025 at 3:00pm				
	Questions Due by: June 2 nd , 2025				
Refer ALL Inquiries to : Marty Randall Telephone No. 828-527-2416	Commodity: Install tower modifications on an existing tower (HP-1343, Buckeye MtViper) located at 2542 Forest Grove Road, Vilas, NC 28698.				
E-Mail: marty.randall@1018consulting.com	Using Agency Name: HP-1343, Buckeye MtViper				
(See page 2 for mailing instructions.)					

NOTICE TO BIDDERS

Sealed bids, subject to the conditions made a part hereof, will be received at **814 W. King Street, Boone NC 28607 until 3:00 PM** on the day of opening and then opened, for furnishing and delivering the commodity as described herein. Refer to page 2 for proper mailing instructions.

Bids submitted via e-mail or facsimile (FAX) machine in response to this Invitation for Bids will not be acceptable. Bids are subject to rejection unless submitted on this form.

EXECUTION

In compliance with this Invitation for Bids, and subject to all the conditions herein, the undersigned offers and agrees to furnish and deliver any or all items upon which prices are bid, at the prices set opposite each item within the time specified herein. By executing this bid, I certify that this bid is submitted competitively and without collusion (G.S. 143-54).

Failure to execute/sign bid prior to submittal shall render bid invalid.

Late bids are not acceptable.

BIDDER:	FEDERAL ID OR SOCIAL	FEDERAL ID OR SOCIAL SECURITY NO.			
K-Co Enterprises, Inc.	26-1278195	26-1278195			
STREET ADDRESS:	P.O. BOX:	ZIP:			
613 Hurricane Creek Rd.					
CITY & STATE & ZIP:	TELEPHONE NUMBER:	TOLL FREE TEL. NO			
Piedmont, SC 29673	864-947-8704	(800)			
PRINCIPAL PLACE OF BUSINESS ADDRESS IF DIFFERENT	FROM ABOVE (SEE IN	STRUCTIONS TO BIDDERS ITE	M #21):		
			· .		
TYPE OR PRINT NAME & TITLE OF PERSON SIGNING:	· ·	FAX NUMBER:	FAX NUMBER:		
Ernest Rood, Project Manager	864-947-8204	864-947-8204			
AUTHORIZED SIGNATURE:	E-MAIL:	E-MAIL:			
Ernest Rood	bids@kcoenterprises.co	bids@kcoenterprises.com			

Offer valid for 120 days from date of bid opening unless otherwise stated here: ____ days

ACCEPTANCE OF BID

If any or all parts of this bid are accepted by Watauga County, NC, an authorized representative of Watauga County, NC shall affix their signature hereto and this document and the provisions of the Instructions to Bidders, special terms and conditions specific to this Invitation for Bids, the specifications, and the North Carolina General Contract Terms and Conditions shall then constitute the written agreement between the parties. A copy of this acceptance will be forwarded to the successful bidder(s).

FOR Watauga County, NC USE ONLY		
Offer accepted and contract awarded this	day of	, 20 , as indicated on attached certification,
by		(Authorized representative of Watauga County, NC).

Page:	2		
Matau	~ ~	Call	

Vatauga County	BIDDER:	K-Co Enterprises, Inc.
		1

In an effort to support the sustainability efforts of Watauga County, North Carolina we solicit your cooperation in this effort.

It is desirable that all responses meet the following requirements:

- All copies should be printed double sided.
- All submittals and copies should be printed on recycled paper with a minimum post-consumer content of 30% and indicate this information accordingly on the response.
- Unless absolutely necessary, all bids and copies should minimize or eliminate use of non-recyclable or non reusable materials such as plastic report covers, plastic dividers, vinyl sleeves, and GBC binding. Three-ringed binders, glued materials, paper clips, and staples are acceptable.
- Materials should be submitted in a format which allows for easy removal and recycling of paper materials.

<u>MAILING INSTRUCTIONS:</u> Send two fully executed bid documents. Address envelope and insert bid name as shown below. It is the responsibility of the bidder to have the bid in this office by the specified time and date of opening.

DELIVERED BY US POSTAL SERVICE	DELIVERED BY ANY OTHER MEANS		
	SEND SUCH AS FEDX, UPS, ETC. FOR NEXT DAY		
814 W. King Street Boone NC 28607	814 W. King Street Boone NC 28607		

Watauga County, NC Tower Construction Project

Watauga County, North Carolina

Scope of Work – Watauga County, NC proposes to modify an existing communications tower site per the attached 3-25-2025 ETS Structural Modification Drawings 24125017.STR.8177 REV 0. All work shall comply with applicable North Carolina Building Codes and ANSI/TIA/EIA Standards. If the following Specification calls for a condition that is greater than the TIA/EIA Standards or North Carolina Building Codes, use the specifications shown in this document. All work shall be coordinated with Watauga County, NC. The modifications and all appurtenances shall be installed and affixed with the highest quality of workmanship. The selected Contractor will advise Watauga County, NC's Contracting Officer and Marty Randall (10-18 Consulting 828-527-2416 marty.randall@1018consulting.com) two weeks in advance of the date the work will start. The contractor will provide Marty Randall weekly project progress reports and immediately report any abnormal conditions encountered during construction.

COMPLETION DEADLINE: Work should be completed wit weather days.	thin 90 days of receipt	of materials, not cou	unting bad
If the above time is not possible, state completion	on time in days from co	ontract issue.	<u>Days</u>
Understand all requirements in the Scope of Work	YesX	No	

Watauga County	BIDDER:	K-Co Enterpri	ses, Inc.		
CONTRACTING OFFICER		 -			
This project will be under contract with Wata Contracting Officer will be:	auga County	, NC and will b	e under	the direction of the Contracting Office	er. The
Will Holt Watauga, NC Office:828-264-4235 Cell: 828-434-3491					
NOTE: Any questions prior to issue of marty.randall@1018consulting.com as s					
Understand the Contact information as li	sted above	Yes_	X	No	
CONTRACTOR REQUIREMENTS		•			
The Contractor shall submit the following ite	ms with thei	r bid:			
 Each bid must be accompanied by a bid time the bid is filed with the City. No bid Bid bonds may be submitted in any form certified check or surety issued bid bond 	shall be con allowed un	isidered if the l	ond is n	not received simultaneously with the b	id.
2. Performance and payment bonds are re	quired once	bid is awarded	i.		
Watauga County reserves the right to accep	t or reject ar	ny or all bids a	าd to wai	ive minor irregularities.	
Two complete copies of your bid respondisted items will forfeit your bid.	ise must be	submitted w	<u>ith your</u>	r package. Failure to submit the a	bove-
Understand Contractor Requirements Pro	ocess	Yes_X_	No		
BIDDING INSTRUCTIONS					
Contractors bidding on this project must fully Invitation for Bid, and conditions at the Desig to fully understand any potential obstacles that any portion of the work or interpretation of design of the state of t	gnated Cons nat would pre	truction Site (E event speedy o	CS). The completion	ne contractor is encouraged to visit the on of this project. Any questions conc	e DCS erning
Understand Bidding Instructions Yes	sX	No			
COORDINATION OF THE WORK					
The Tower Contractor shall notify Marty Rar two weeks prior to the desired construction Failure to give advanced notice may result in	time. Failui	re to give adva	ance noti	ice may result in delay of the starting	
Understand the Coordination Requirement	nt	Yes_	X	No	
MICROWAVE REALIGNMENT					
The Tower Contractor shall notify Marty Rar be moved during construction. The Tower original RSL.					
Understand the Microwave Realignment I	Requiremen	nt Yes_	X	No	
<u>PERMITS</u>		ŧ			
The contractor is responsible for obtaining p exempt from permits.	ermits and s	cheduling insp	ections v	with the permitting office. The County	is not
Understand the Permit Process		Yes_	<u>X</u>	No	
EXPEDITE CONSTRUCTION					

It is expected that the contractor will expedite completion of the project, taking full advantage of the weather and other

Page: 3

Page: 4 Watauga County BIDDER:	K-Co Enterprises, Inc.		
favorable working conditions.			
Understand Expedite Construction Process	Yes_X_	No	
POST CONSTRUCTION INSPECTION (PCI)			
Upon completion of the tower modification the Tower C Solutions ("ETS") to conduct the Post Construction the findings of the Inspection. (Watauga County, N Watauga County, NC for all initial inspections. documents are at the contractor's expense. For sedeviation from the Tower Modification Drawings and Contractor shall provide to the Contracting Officer, adocuments each deviation along with Engineer of Recommendations.	Inspection ("PCI"), and to go to has, a contract to provide Additional inspections of scheduling, email: modifical Specifications is found during a red-lined copy of each D	generate a complete report do de this service. Fees will be due to non-conformity with eations@ets-pllc.com. In the eng, or as a result of the PCI, brawing and/or Specification of the action of the properties and the properties are serviced to the properties and the properties are serviced to the properties a	ocumenting the paid by th contract e event any the Towel
Understand Final Inspection Process	Yes_X_	No	
CONTRACTOR LICENSES The Tower Contractor, and/or the subcontractor design be licensed to operate a contracting business in the Signature of t	tate of North Carolina as rec t comply with the North Caro ad any following revisions.	quired under NCGS 87.	
CONSTRUCTION & MATERIALS Tower Contractor must ensure that the tower and com	npound always remain secur	e.	
Tower Contractor is responsible for restroom facilities	(e.g. porta-jon)		
All components of the tower modification but not lim minimum, be hot-dipped galvanized.	ited to bolts, nuts, mounting	g brackets, torque arms, etc.	shall, at a
Understand Construction and Materials Yes_	X No		
EROSION CONTROL The Contractor will be responsible for Erosion Control Understand Erosion Control Methods and response	•	ed if not practiced.	

TOWER MODIFICATION DRAWINGS (SOW)

3-25-2025 ETS Structural Modification Drawings 24125017.STR.8177 REV 0

Base Product

1.8m | 6ft ValuLine® High Performance, High XPD Antenna, dual-polarized, 5.925 – 7.125 GHz

\Box	1	(~I	.: : :	L :
$P\Gamma$	ווחנ	CLU	Class	אודוכם	חסוזו
1 1 1	-u	$-\iota$	ー・レーン		

Product TypeMicrowave antenna

Product Brand ValuLine®

General Specifications

Antenna Type HX - ValuLine® High Performance, High XPD

Antenna, dual-polarized

Polarization Dual

Side Struts, Included

Side Struts, Optional

Dimensions

Diameter, nominal 1.8 m | 6 ft

Electrical Specifications

Radiation Pattern Envelope Reference (RPE)

Operating Frequency Band 5.925 – 7.125 GHz

Gain, Low Band 38.3 dBi

Gain, Mid Band 39.1 dBi

Gain, Top Band 39.9 dBi

Boresite Cross Polarization Discrimination (XPD) 33 dB

Front-to-Back Ratio 70 dB

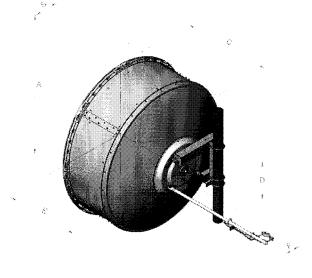
Beamwidth, Horizontal 1.8 °

Beamwidth, Vertical 1.8 °

Return Loss 26 dB

VSWR 1.1

Electrical Compliance ACMA FX03_6b, 6p7b | ETSI 302 217 Class


3 | IC 3059A | IC 3064A | US FCC Part 101A

7376

Page 1 of 7

Cross Polarization Discrimination (XPD) Electrical Compliance	ETSI EN 302217 XPD Category 2			
Electrical Specifications, Band 2				
Operating Frequency Band	5.725 - 5.850 GHz			
Gain, Mid Band	38.4 dBi			
Beamwidth, Horizontal	2°			
Beamwidth, Vertical	2°			
Mechanical Specifications				
Compatible Mounting Pipe Diameter	115 mm-120 mm 4.5 in-4.7 in			
Fine Azimuth Adjustment Range	±15°			
Fine Elevation Adjustment Range	±5°			
Wind Speed, operational	200 km/h 124.274 mph			
Wind Speed, survival	200 km/h 124.274 mph			

Antenna Dimensions and Mounting Information

	Dimension	ons in inc	hes				
Antenna size, ft (m)	Α	В		С	D	E	F
6 (1.8)	74.8 (1899)	13.4 (340)	. (47.5 1206)	20.9 (530)	39.4 (1001)	8.4 (214)

Wind Forces at Wind Velocity Survival Rating

Axial Force (FA)

Angle α for MT Max

Side Force (FS)

Twisting Moment (MT)

Force on Inboard Strut Side

Zcg without Ice

Zcg with 1/2 in (12 mm) Radial Ice

Weight with 1/2 in (12 mm) Radial Ice

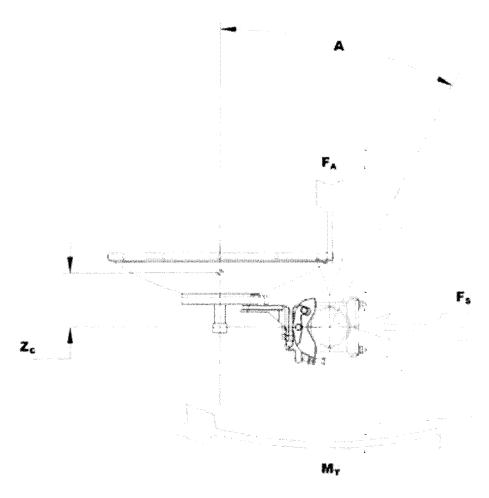
6960 N | 1,564.671 lbf

-130°

1566 N | 352.051 lbf

3923 N-m | 34,721.477 in lb

4075 N | 916.097 lbf


363 mm | 14.291 in

541 mm | 21.299 in

237 kg | 522.495 lb

Page 3 of 7

Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Weight, net 85 kg | 187.393 lb

Regulatory Compliance/Certifications

Agency Classification

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

* Footnotes

Operating Frequency Band

Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

Page 5 of 7

HX6-6M

Gain, Mid Band

Boresite Cross Polarization Discrimination (XPD)

Front-to-Back Ratio

Return Loss

VSWR

Radiation Pattern Envelope Reference (RPE)

Cross Polarization Discrimination (XPD) Electrical Compliance

Wind Speed, operational

Wind Speed, survival

Axial Force (FA)

Side Force (FS)

For a given frequency band, gain is primarily a function of antenna size. The gain of Andrew antennas is determined by either gain by comparison or by computer integration of the measured antenna patterns.

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

Denotes highest radiation relative to the main beam, at 180° ± 40 °, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise.

The figure that indicates the proportion of radio waves incident upon the antenna that are rejected as a ratio of those that are accepted.

Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band.

Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of +/-1° throughout

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

For VHLP(X), SHP(X), HX and USX antennas, the wind speed where the maximum antenna deflection is $0.3 \times 10^{-2} \, \text{m}^{-2}$ the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than $0.1 \, \text{degrees}$.

The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without permanent deformation. Realignment may be required. This wind speed is applicable to antenna with the specified amount of radial ice.

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this

Page 6 of 7

Twisting Moment (MT)

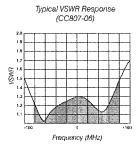
parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

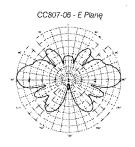
Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

800 MHz Corporate Collinear Antennas

746-870 MHz

CC807 Series


These industry leading PIM and PIP rated collinear arrays allow site operators to combine, with complete integrity, a large number of communications services into a single, low profile collinear antenna array.


The true corporate feed of these arrays maintains total pattern integrity over a very broad operating and width, similar to that previously available only in exposed dipole configurations. This is now achieved in the preferred from factor of a fully enclosed fiberglass radome. The corporate collinears employ a unique corporate phasing system enabling precision control of the element placements ensuring phase purity resulting in exceptional bandwidth and electrical performance.

Gain is maximised and side lobes reduced dramatically. In a patented design approach the individual dipole elements are soldered to a brass support tube which is directly connected to the mounting tube and the lightning spike at the top of the antenna.

Features:

- 500W Continuous Power rating for CC807-11, CC807-08, CC807-06
- -150dBc Passive Intermodulation (PIM) rating
- 25 kW Peak Instantaneous (PIP) rating
- Extraordinary bandwidth characteristics with superior pattern control
- DC grounding on all elements for the ultimate in lightning protection and dissipation of static noise.

Electrical Specifications

Model Number	CC807-03-P	С	C807-06	.р	3.3 6.	CC807-08-P		. cc	807-11-P	
Nominal Gain dBd (dBi)	3 (5.1)	1 1	6 (8,1)			8 (10.1)		10	.5 (12.6)	• ;
Frequency MHz					746 - 870					
Tuned Bandwidth MHz	 X				Full Band					
VSWR (Return Loss)					< 1.5:1			······································		
Downtilt ^{e (1)}	Not Offered	0	°Std, -3°,-	5°		0 °St	d, -1°, -2	ı°, -3°, -4°, -5	ò	
Vertical Beamwidth®	28		17			9			4.5	
Horizontal Beamwidth°				On	ni +/- 0.50	i B				
Input Power W	250					500				
Passive IM 3rd order (2x20W) dBc				····· - ·	-150					
Peak Instantaneous Power kW		~			25					

Mechanical

Model Number		CC807-03-P	CC807-06-P	CC807-08-P	CC807-11-P				
Construction			Sky blue fibre						
Length mm (inches)		1203 (47)	1741 (69)	2817 (111)	5219 (205)				
Radome Diameter mm (inche	s) .		76	(3)					
Weight kg (lbs)		4 (9)	12(27)	22 (49)					
Shipping Weight kg (lbs)		8 (18)	11 (25)	18 (40)	30 (66)				
	Н	115 (4.5)							
Shipping Dimensions mm (inches)	w								
mm (mones)	L	1400 (55)	1900 (75)	3000 (118)	5600 (220)				
Termination		4.3-10 fixed female							
Suggested Clamps (not include	led)		2 x U	C-114					
Invertible Mounting		14.7	Yes	> (1)					
Projected area cm² (ft²)	No Ice	806 (0.9)	1268 (1.4)	2320 (2.5)	4560 (4.9)				
Projected area cirr (itr)	With Ice	1048 (1.2)	1571 (1.7)	2880 (3.1)	5760 (6.2)				
Lateral Thrust @160km/h N (100 mph lbs)		96 (22)	150 (34)	276 (62)	540 (121)				
Wind Gust Rating km/h (mph)	No Ice	>240 (>150)							
Torque @ 160km/h Nm (100m	ph ft-lbs)	20 (15)	73 (54)	278 (205)	1032 (761)				

⁽¹⁾ To order pre-set downtill versions available, simply add a -T2 or -T4, etc towards the end of the part number to denote the downtill model required. For eg. CC807-11-T2-P to order a CC807-11-P with 2 deg of downtill. Please note: Models with downtill are NOT field invertible.

Date: March 25, 2025

Marty Randall 10-18 Consulting Cell: 828-527-2416

marty.randall@1018consulting.com

Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 (919) 782-2710

Subject:

Structural Modification Analysis Report

Carrier Designation:

Watauga County Reconfiguration

Carrier Site Name:

Buckeye Mt. - Viper

Tower Owner Designation:

NCSHP Site Number:

HP-1343

NCSHP Site Name:

Buckeye Mt. - Viper

Engineering Firm Designation:

ETS, PLLC Job Number:

24125017.STR.8177

Site Data:

2542 Forest Grove Road, Vilas, Watauga County, NC 28698

Latitude N 36° 18' 57.89", Longitude W 81° 47' 29.44"

150.0 Foot - Self Support Tower

Dear Marty Randall,

Engineered Tower Solutions, PLLC is pleased to submit this "Structural Modification Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

Modified Structure W/ Final Equipment Configuration:

Tower:

85.9% Sufficient Capacity

Foundation:

60.3% Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 140 mph (converted to an equivalent 108 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222 G) as required by the 2018 North Carolina State Building Code (2015 IBC). Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by:

Hicham Anssar Structural Engineer I

Respectfully submitted by:

J. Scott Hilgoe, PE Structural Engineering Manager NC License #P-1016 CAROLLA SEAL POLICIAN SEAL POLICIAN PROJECT AND SEAL POLICIAN PROJECT AND SEAL POLICIAN PROJECT AND SEAL POLICIAN PROJECT AND SEAL POLICIAN PROJECT AND SEAL POLICIAN PROJECT AND SEAL POLICIAN PROJECT AND SEAL POLICIAN PROJECT AND SEAL POLICIAN PROJECT AND SEAL POLICIAN PROJECT AND SEAL PROJECT

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity

- 4.1) Recommendations
- 4.2) Dish Antenna Deflection Results

APPENDIX A

tnxTower Output

APPENDIX B

Base Level Drawing

APPENDIX C

Additional Calculations

APPENDIX D

Modification Design Drawings

March 25,2025 Site Name: Buckeye Mt. - Viper Page 3

150.0 Ft Self Support Structural Modification Analysis ETS, PLLC Job Number: 24125017.STR.8177

1) INTRODUCTION

This tower is a 150-ft self-supporting tower designed by Valmont in July of 2010. This tower was originally designed for a nominal 3-second gust wind speed of 90 mph per ANSI/TIA-222-G.

2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-G

Structure Class:

Ш

Nominal Wind Speed:

108 mph (As required by Watauga County)

Exposure Category:

C

Topographic Factor:

1 (Topographic effects do not need to be considered with the required

special wind speeds as required by Watauga County)

Ice Thickness:

1 0 in

Wind Speed with Ice:

30 mph

Service Wind Speed:

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Line of		Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
147.0 (Watauga County)	156.2	1	RFI	CC807-11 (Mounted to the existing Side Arm)	1	7/8"
117.0 (Watauga County)	126.2	1	RFI	CC807-11 (Mounted to the existing Side Arm)	1	1-5/8"
85.0		1	Commscope	HX6-6W-6WH		
(Watauga County)	85.0	1	Tower Mount	.4.5"ø x 5-ft Dish Pipe Mount	1	EU63

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	155.0	1	Unknow	15-ft Omni		
4470	150.0	1	Unknow	, 4-ft Omni	2	7/8"
147.0 (NCSHP)		1	Unknow	Junction Box (9" x 6" x 6")		
(1100111)	147.0	3	Tower Mounts	Horizontal Mount Pipe/Stabilizer	1	1/2"
		3	Tower Mounts	6-ft Side Arm Mount		
	125.0	1	Unknow	15-ft Omni		
117.0	120.0	1	Unknow .	4-ft Omni	1	1-5/8"
(NCSHP)	117.0	2	Tower Mounts	Horizontal Mount Pipe/Stabilizer	1	7/8"
		2	Tower Mounts	6-ft Side Arm Mount	•	170
117.0	123.0	1	Unknow	10-ft Dipole *		
(Watauga	117.0	1	Tower Mount	Horizontal Mount Pipe/Stabilizer	1	1/2" *
County)		1	Tower Mount	6-ft Side Arm Mount		
80.0	92.0	1	Unknown	6-ft Dish Ice Shield**	-	-
(Watauga	80.0	1	Tower Mount	5-ft Dish Pipe Mount ***	_	E/8/00 ***
County)	00.0	1	Commscope	PL6-65-PXA ***	··· 1	EW63 ***
80.0 (Unknown)	SOUTH A STOMAR MOUNTS SEE THE MOTE PLAN MOUNT		5-ft Empty Pipe Mount	-	-	
70.0	86.0	1	Unknown	8-ft Ice Shield	-	-
79.0 (NCSHP)	70.0	1	Tower Mount	5-ft Dish Pipe Mount	1	FIME
(NCSHP)	CSHP) 79.0		Commscope	PL6-65-PXA	1	EW63

^{*}Existing Dipole at 117-ft to be removed.

** Existing Ice Shield at B Leg to be relocated from 90-ft to 92-ft.

***Existing Equipment on B Leg to be removed.

Site Name: Buckeye Mt. - Viper Page 5

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Tower Modification Drawings	ETS, PLLC (Job No. 24125017.STR.8177)	03/25/2025	Appendix D
Previous Structural Analysis Report	ETS, PLLC (Job No. 24125017.STR.9095)	02/24/2025	On File
Maintenance And Condition Assessment	ETS, PLLC (Job No. 24129454.IE.1439)	11/06/2024	On File
Geotechnical Investigation Report	ETS, PLLC (Job No. 24125017)	05/02/2024	On File
Tower Mapping Report	ETS, PLLC (Job No. 24125017.El.1178)	03/26/2024	On File
Foundation Mapping Report	ETS, PLLC (Job No. 24125017.El.1177)	03/25/2024	On File
Previous Structural Analysis Report	Tower Engineering Professionals (Project No. 090571)	05/28/2012	NCSHP
Original Foundation Design Drawings	Valmont (Drawing No. 231923)	07/23/2010	NCSHP
Original Tower Design Drawings	Valmont (Archive No. F-1013277)	07/23/2010	NCSHP

3.1) Analysis Method

tnxTower (version 8.3.1.2), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the reinforced leg sections. These calculations are presented in Appendix C.

3.2) Assumptions

- 1) Tower and structures were built and have been maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) Existing Member steel grades have been assumed as follows: Tower Legs (A500-50), Bracing (A36), and Anchor Bolts (F1554-55).

This analysis may be affected if any assumptions are not valid or have been made in error. Engineered Tower Solutions, PLLC should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	150 - 140	Leg	P2.5x.203 (2.875 OD)	1	-4.64	57.19	8.1	Pass
T2	140 - 120	Leg	P2.5x.203 (2.875 OD)	21	-24.42	57.19	42.7	Pass
T3	120 - 100	Leg	P4x.237 (4.50 OD)	48	-60.47	116.32	52.0	Pass
T4	100 - 80	Leg	P5x.258 (5.563 OD)	69	-87.24	169.37	51.5	Pass
T5	80 - 60	Leg	P5x.258 (5.563 OD)	90	-120.69	169.37	71.3	Pass
T6	60 - 40	Leg	P6x.28 (6.625 OD)	111	-151.51	228.83	66.2	Pass
T7	40 - 20	Leg	Pipe 8.625"ODx0.322"	132	-177.66	334.42	53.1	Pass
T8	20 - 0	Leg	Pipe 8.625"ODx0.322"	147	-205.00	334.42	61.3	Pass
T1	150 - 140	Diagonal	L2x2x1/8	8	-1.43	8.83	16.2 29.8 (b)	Pass
T2	140 - 120	Diagonal	L2x2x1/8	23	-2.73	8.83	31.0 58.3 (b)	Pass
Т3	120 - 100	Diagonal	L2x2x3/16	50	-6.12	12.23	50.1 74.1 (b)	Pass
T4	100 - 80	Diagonal	L2x2x3/16	70	-4.42	8.65	51.2 60.6 (b)	Pass
T5	80 - 60	Diagonal	L2x2x3/16	92	-5.43	6.32	85.9	Pass
T6	60 - 40	Diagonal	L2 1/2x2 1/2x3/16	113	-5.39	9.55	56.5 60.5 (b)	Pass
T7	40 - 20	Diagonal	L3x3x3/16	134	-6.88	10.25	67.1	Pass
T8	20 - 0	Diagonal	L3x3x5/16	149	-7.81	13.38	58.3	Pass
T1	150 - 140	Top Girt	L2x2x3/16	4	-0.08	8.72	0.9 1.1 (b)	Pass
							Summary	
						Leg (T5)	71.3	Pass
***************************************						Diagonal (T5)	85.9	Pass
·····		· •				Top Girt (T1)	1.1	Pass
	3		7			Bolt Checks	81.9	Pass
	***************************************					Rating =	85.9	Pass

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail	
1	Anchor Rods	0	75.5	Pass	
1	Base Foundation (Structural)	0	42.6	Pass	
1	Base Foundation (Soil Interaction)	0	60.3	Pass	

Structure Rating (max from all components) =	85.9%

Notes:

4.1) Recommendations

The tower and its foundations have sufficient capacity to carry the final load configuration once the proposed modifications are installed (see Appendix D).

The loading modification, as follows, must be completed for the results of this analysis to be valid:

Loading Changes:

- 1- Existing Dipole on B Leg at 117-ft to be removed.
- 2- Existing Ice Shield at B Leg to be relocated from 90-ft to 92-ft.
- 3- Existing Equipment on B Leg at 80-ft to be removed.

4.2) Dish Antenna Deflection Results

The results of the tilt and twist values for a 60 mph 3-second gust service wind speed per the TIA-222-G standard are given below:

Critical Deflections and Radius of Curvature - Service Wind

60:00:00:00:00:00:00:00:00:00:00:00:00:0		***************************************	•			
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	, in	0	o	ft
85.00	HX6-6W-6WH	44	0.894	0.11	0.03	33414
80.00	PL6-65-PXA	44	0.781	0.10	0.03	35799
79.00	PL6-65 - PXA	44	0.759	0.10	0.03	35910

¹⁾ See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed

APPENDIX A TNXTOWER OUTPUT

150.0 ft Δ. P2.5x.203 (2.875 OD) 140.0 ft L2x2x1/8 6@5 A36 12 120.0 ft 0 P4x,237 (4,50 A572-50 9 100.0 ft 1.3 7 P5x.258 (5.563 OD) 12 @ 6.66667 A500-50 Ä, 1,3 12 60.0 ft 0 L2 1/2x2 1/2x3/16 P6x.28 (6.625 A36 1.8 40.0 ft L3x3x3/16 4 Pipe 8.625"ODx0.322" 4K / 20.0 ft 9 5 L3x3x5/16 34 K / 0.0 ft Diagonal Grade Face Width (ft) # Panels @ (ft) Weight (K) Leg Grade Top Girts Legs

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
5/8-in x 4-ft Lightning Rod 159		10' x 2,375" Horizontal Mount	117	
20'x3" pipe	149	Pipe/Stabilizer		
Side Arm Mount [SO 303-3]	147	10' x 2,375" Horizontal Mount	117	
10' x 2,375" Horizontal Mount	147	Pipe/Stabilizer		
Pipe/Stabilizer		3" x 4' Omni	117	
10' x 2.375" Horizontal Mount	147	3" dia x 15-ft Omni Antenna	117	
Pipe/Stabilizer		CC807-11	117	
10' x 2.375" Horizontal Mount	147	6' Dish Ice Shield	92	
Pipe/Stabilizer		8' Dish Ice Shield	86	
3" x 4' Omni	147	4.5" x 5-ft Dish Pipe Mount	85	
3" dia x 15-ft Omni Antenna	147	HX6-6W-6WH	85	
CC807-11	147	4.5" x 5-ft Dish Pipe Mount	80	
Junction Box (9" x 6" x 6")	147	4.5" x 5-ft Dish Pipe Mount	80	
Side Arm Mount [SO 303-3]	117	PL6-65-PXA	80	
10' x 2.375" Horizontal Mount	117	PL6-65-PXA	79	
Pipe/Stabilizer		4.5" x 5-ft Dish Pipe Mount	79	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A500-50	50 ksi	62 ksi	A572-50	50 ksi	65 ksi	
		E0 kai				

TOWER DESIGN NOTES

- Tower designed for Exposure C to the TIA-222-G Standard.
 Tower designed for a 108 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 30 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.

- Deflections are based upon a 60 mph wind.
 Tower Structure Class III.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 85.9%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 212 K SHEAR: 22 K

UPLIFT: -185 K SHEAR: 19 K

AXIAL 98 K MOMENT SHEAR ₹ 366 kip-ft

TORQUE 4 kip-ft 30 mph WIND - 1.0000 in ICE

AXIAL 21 K SHEAR MOMENT 2670 kip-ft

TORQUE 27 kip-ft REACTIONS - 108 mph WIND

Engineered Tower Solutions, PLLC Dob Buckeye Mt Viper							
	3227 Wellington Ct.	Project: ETS, PLLC Job No. 24125017.STR.8177					
		Client: Watauga County Drawn by: hicham.anssar	pp'd:				
	Phone: (919) 782-2710	Code: TIA-222-G Date: 03/25/25 S	icale: NTS				
	FAV: 040 792 2740	Path: D	wg No. ⊏ ₁				

tnxTower Buckeye Mt. - Viper 2023-Dragge CC Meeting Engineered Tower Solutions, PLLC Buckeye Mt. - Viper 1 of 33 3227 Wellington Ct. Raleigh, NC 27615 ETS, PLLC Job No. 24125017.STR.8177 Date 15:00:36 03/25/25 Client Designed by

Watauga County

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 150.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 15.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Phone: (919) 782-2710

FAX: 919-782-2710

Basic wind speed of 108 mph.

Structure Class III. Exposure Category C.

Tanagarahia Catagory C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 30 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

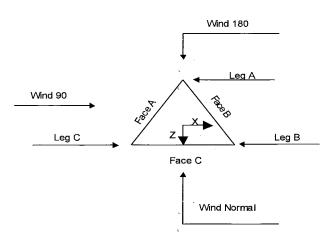
- Consider Moments Legs
 Consider Moments Horizontals
 Consider Moments Diagonals
 Use Moment Magnification
- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 - Kz In Exposure D Hurricane Region
- √ Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends
 SR Members Are Concentric
 Distribute Leg Loads As Uniform
 Use Special Wind Profile

- Assume Legs Pinned
- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurtenances Alternative Appurt. EPA Calculation Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules

- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- √ Include Angle Block Shear Check
 Use TIA-222-G Bracing Resist. Exemption
 Use TIA-222-G Tension Splice Exemption
 Poles

Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside And Inside Corner Radii Are Known

hicham.anssar


2025-08-05 BCC Meeting

tnxTower .

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025-08-05 BCC Meeting
Job		Page
	Buckeye Mt Viper	2 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Triangular Tower

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database	- 4	Width	of	Length
			•		Sections	
	ft			ft		ft
T1	150.00-140.00			5.00	1	10.00
T2	140.00-120.00		•	5.00	1	20.00
T3	120.00-100.00		•	5.00	1	20.00
T4	100.00-80.00			5.00	1	20.00
T5	80.00-60.00			7.00	1	20.00
T6	60.00-40.00			9.00	1	20.00
T7	40.00-20.00		-	11.00	1	20.00
T8	20.00-0.00			13.00	1	20.00

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	150.00-140.00	5.00	X Brace	No	No	0.0000	0.0000
T2	140.00-120.00	5.00	X Brace	،No	No	0.0000	0.0000
Т3	120.00-100.00	6.67	X Brace	No	No	0.0000	0.0000
T4	100.00-80.00	6.67	X Brace	No	No	0.0000	0.0000
T5	80.00-60.00	6.67	X Brace	No	No	0.0000	0.0000
Т6	60.00-40.00	6.67	X Brace	No .	No	0.0000	0.0000
T7	40.00-20.00	10.00	X Brace	No	No	0.0000	0.0000

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		2025-0 page BCC Meeting
	Buckeye Mt Viper	3 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

>>>>>>>>>		**********************************		********************************	***************************************	***************************************	
Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
Т8	20.00-0.00	10.00	X Brace	No	No	0.0000	0.0000
***************************************		·············	*******************************	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Martin 2002-1000000000000000000000000000000000	***********************

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Туре	Size	Grade	Туре	Size	Grade
			······································	***************************************		
T1 150.00-140.00	Pipe	P2.5x.203 (2.875 OD)	A500-50	Equal Angle	L2x2x1/8	A36
			(50 ksi)			(36 ksi)
Γ2 140.00-120.00	Pipe	P2.5x.203 (2.875 OD)	A500-50	Equal Angle	L2x2x1/8	A36
			(50 ksi)			(36 ksi)
T3 120.00-100.00	Pipe	P4x.237 (4.50 OD)	A500-50	Equal Angle	L2x2x3/16	A572-50
	-		(50 ksi)			(50 ksi)
T4 100.00-80.00	Pipe	P5x.258 (5.563 OD)	A500-50	Equal Angle	L2x2x3/16	`A36 ´
			(50 ksi)			(36 ksi)
T5 80.00-60.00	Pipe	P5x.258 (5.563 OD)	A500-50	Equal Angle	L2x2x3/16	`A36 ´
	-		(50 ksi)			(36 ksi)
T6 60.00-40.00	Pipe	P6x.28 (6.625 OD)	A500-50	Equal Angle	L2 1/2x2 1/2x3/16	`A36 ´
	-	,	(50 ksi)	. 0		(36 ksi)
T7 40.00-20.00	Pipe	Pipe 8.625"ODx0.322"	À500-50	Equal Angle	L3x3x3/16	A36
	•	•	(50 ksi)			(36 ksi)
T8 20.00-0.00	Pipe	Pipe 8.625"ODx0.322"	A500-50	Equal Angle	L3x3x5/16	A36
	•		(50 ksi)	-1		(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 150.00-140.00	Equal Angle	L2x2x3/16	A36	Solid Round		A36
Xeroenadenanenadenaden (***************************************	***************************************	(36 ksi)	······································		(36 ksi)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
T1	0.00	0.2500	A36	1	1	1	36.0000	36.0000	36.0000
150.00-140.00			(36 ksi)						
T2	0.00	0.2500	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T3	0.00	0.2500	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T4	0.00	0.3750	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						

tnxTower	Job	Buckeye Mt Viper	2025-08-05 BCC Meeting Page 4 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
T5 80.00-60.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T6 60.00-40.00	0.00	0.3750	A36 (36 ksi)	1	. 1	1	36.0000	36.0000	36.0000
T7 40.00-20.00	0.00	0.3750	A36 (36 ksi)	1	Ţ	1	36.0000	36.0000	36.0000
T8 20.00-0.00	0.00	0.3750	A36 (36 ksi)	1 .	1	1	36.0000	36.0000	36.0000

Tower Section Geometry (cont'd)

						. K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
ft	Angles	Rounds		X Y	X Y	X Y	X Y	X Y	Х У	X Y
T1	Yes	No	1	1	1	1	1	1	1	1
150.00-140.00				1	1	1	1	1	1	1
T2	Yes	No	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	I
T3	Yes	No	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T4	Yes	No	1	1	1	. 1	1	1	1	1
100.00-80.00				1	1 -	1	1	1	1	1
T5	Yes	No	1	1	1	1	1	1	1	1
80.00-60.00				1	1 .	I	1	1	1	1 -
T6	Yes	No	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T7	Yes	No	1	1	1	I	1	1	1	1
40.00-20.00				1	1	' I	1	1	1	1
T8 20.00-0.00	Yes	No	1	1	1	1	1	1	1	1
				1	1	I	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

***************************************	·			***************************************			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ç	****************	•	***************************************	,	***************************************
Tower	Leg		Diagor	ıal	Top G	irt	Bottom	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
Elevation														
ft														
-	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
150.00-140.00							ı							
T2	0.0000	1	0.0000	0.75	0.0000	0.75	. 0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00														
T3	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00								•						

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		2025-0 PagaBCC Meeting
	Buckeye Mt Viper	5 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Elevation ft	Leg	***************************************	Diago	nal	Top G	irt	Botton	Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	· Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T4 100.00-80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 60.00-40.00	0.0000	I	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower	Redur		Reduna		Reduna		Redu		Redundan	t Vertical	Reduna	lant Hip	Redund	lant Hip
Elevation ft	Horiz	ontal	Diago	ıal	Sub-Diag	gonal	Sub-Ho	rizontal					Diag	gonal
	Net Width	u = U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct	•	Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
	0.000	0.55.41		~~~			in		in		in		in	***************************************
T1 150.00-140.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75(1)	0.0000	0.75 (1)
130.00-140.00	3	0.75(2)	0.0000	(1) 0.75			,				0.0000	0.75 (2)	0.0000	0.75 (2)
	0.000	01.10 (2)	0.0000	(2)			,				0.0000	0.73 (2)	0.0000	0.73 (2)
	0.0000	0.75(3)	0.0000	0.75							0.0000	0.75(3)	0.0000	0.75(3)
				(3)								ìí		. ,
	0.0000	0.75 (4)	0.0000	0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T2	0.0000	0.75 (1)	0.0000	(4)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.55 (1)	0.0000	0 == (1)
140.00-120.00		0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
110.00 120.00		0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75(2)
		(-)		(2)							0.0000	0.75 (2)	0.0000	0.73 (2)
	0.0000	0.75(3)	0.0000	0.75							0.0000	0.75(3)	0.0000	0.75(3)
				(3)										
	0.0000	0.75 (4)	0.0000	0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
Т3	0.0000	0.75(1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
120.00-100.00		0.73(1)	0.0000	(1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
120.00 100.00	0.0000	0.75(2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75(2)
		(-)		(2)							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75(3)	0.0000	0.75							0.0000	0.75 (3)	0.0000	0.75(3)
				(3)										
	0.0000	0.75 (4)	0.0000	0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T4	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
100.00-80.00	0.0000	0.75(1)	0.0000	(1)	0.0000	0.73	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
100.00 00.00	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75(2)
		()		(2)							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75(3)	0.0000	0.75							0.0000	0.75 (3)	0.0000	0.75(3)
				(3)										
	0.0000	0.75 (4)	0.0000	0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T5 80.00-60.00	0.0000	0.75(1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
13 80.00-00.00	0.0000	0.73(1)	0.0000	(1)	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.75 (1)	0.0000	0.75 (1)
	0.0000	0.75(2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75(2)
				(2)								J (=)	5.5000	55 (2)
	0.0000	0.75 (3)	0.0000	0.75						***************************************	0.0000	0.75 (3)	0.0000	0.75(3)
				(3)	and the second s					*********				
	0.0000	0.75 (4)	0.0000	0.75						***************************************	0.0000	0.75 (4)	0.0000	0.75 (4)
				(4)	***				1			l		

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025-08-05 BCC Meeting
Job		Page
	Buckeye Mt Viper	6 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Elevation ft	Redui Horiz		Reduna Diago		Reduna Sub-Diag		Redu Sub-Ho	ndant rizontal	Redundan	t Vertical	Redund	lant Hip		lant Hip gonal
,i	Net Widti Deduct in	h U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T6 60.00-40.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
	0.0000	0.75 (2)	0.0000	0.75	**************************************		`		***************************************		0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75					ni ini ini ini ini ini ini ini ini ini		0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75	***************************************				***************************************		0.0000	0.75 (4)	0.0000	0.75 (4)
T7 40.00-20.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
	0.0000	0.75 (2)	0.0000	0.75					***************************************		0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75	-						0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75 (4)			٠				0.0000	0.75 (4)	0.0000	0.75 (4)
T8 20.00-0.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
										***************************************		***************************************	***************************************	**************************************
	0.0000	0.75 (2)	0.0000	0.75 (2)							0.0000	0.75 (2)	0.0000	0.75 (2)
***************************************	0.0000	0.75 (3)	0.0000	0.75 (3)							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75 (4)						***************************************	0.0000	0.75 (4)	0.0000	0.75 (4)

Tower Elevation ft	Leg Connection Type	Leg		Diagor	ıal	Top G	irt .	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
		Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.
T1	Flange	0.7500	4	0.7500	1	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
150.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	0.7500	4	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T4	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 80.00-60.00	Flange	0.7500	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 60.00-40.00	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

tras Tornor	Job	202	5-0 9-25 BCC Meeting
tnxTower		Buckeye Mt Viper	7 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Tower Elevation ft	Leg Connection Type	Leg	***************************************	Diagon	al	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T7 40.00-20.00	Flange	1.0000	8	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 20.00-0.00	Flange	0.7500	0	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N	************	A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
***													m
Step Pegs (5/8" SR) 7-in. w/ 30" Step	A	No	No	Ar (CaAa)	80.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49
Step Pegs (5/8" SR) 7-in. w/ 30" Step	В	No	No	Ar (CaAa)	80.00 - 0.00	0.0000,	0.5	2	2	0.3500	0.3500		0.49
Step Pegs (5/8" SR) 7-in. w/ 30" Step	С	No	No	Ar (CaAa)	150.00 - 0.00	0.0000	0.5	2	2	0.3500	0.3500		0.49
Ladder Rail: PL3x1/4	C	No	No	Af (CaAa)	150.00 - 0.00	0.0000	0	2	2	12.0420 3.0000	3.0000		3.83
Climbing Rung: SR 5/8" (12" Step)	С	No	No	Ar (CaAa)	150.00 - 0.00	0.0000	0	1	1	0.6250	0.6250		1.04
Safety Line 3/8 ***	С	No	No	Ar (CaAa)	150.00 - 0.00	0.0000	0	1	1	0.3750	0.3750		0.22
Feedline Ladder (Af)	A	No	No	Af (CaAa)	150.00 - 0.00	0.0000	-0.32	1	1	3.0000	3.5000		8.40
1 5/8	A	No	No	Ar (CaAa)	117.00 - 10.00	0.0000	-0.4	1	1	1.9800	1.9800		1.04
7/8	Α	No	No	Ar (CaAa)	147.00 - 10.00	0.0000	-0.38	1	1	1.1100	1.1100		0.54
1/2	Α	No	No	Ar (CaAa)	147.00 - 10.00	0.0000	-0.36	1	1	0.5800	0.5800		0.25
EW63	Α	No	No	Ar (CaAa)	80.00 - 10.00	0.0000	-0.34	1	1	1.5742	1.5742		0.51
7/8	Α	No	No	Ar (CaAa)	147.00 - 117.00	0.0000	-0.31	I	1	1.1100	1.1100		0.54
7/8	A	No	No	Ar (CaAa)	117.00 - 10.00	0.0000	-0.31	2	2	0.5000 1.1100	1,1100		0.54
EW63	Α	No	No	Ar (CaAa)	79.00 - 10.00	0.0000	-0.26	1	1	1.5742	1.5742		0.51
***		_					_						_
7/8	Α	No	No	Ar (CaAa)	147.00 - 10.00	0.0000	-0.22	l	1	1.1100	1.1100		0.54
EU 63 ***	A	No	No	Ar (CaAa)	85.00 - 10.00	0.0000	-0.2	1	1	2.0300	2.0300		0.56

2025-08-05 BCC Meeting

tnxTower

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025-08-05 BCC Meeting
Job		Page
	Buckeye Mt Viper	8 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Feed Line/Linear Appurtenances - Entered As Area

**************************************	***************						***************************************	***************************************
Description	Face	Allow	Exclude	Component	Placement	Total	$C_A A_A$	Weight
,		Shield					-22	
	or	Snieia	From	Туре		Number		
	Leg		Torque		ft		ft²/ft	plf
	LLE		Torque		.) ι		ji /ji	py
			Calculation					
***					***************************************			
***************************************							·····	4444

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft²	ft²	ft²	fit²	K
T1	150.00-140.00	A	0.000	0.000	8.570	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	11.700	0.000	0.10
T2	140.00-120.00	Α	0.000	0.000	19. 4 87	0.000	0.21
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	23.400	0.000	0.20
T3	120.00-100.00	Α	0.000	0.000	24.740	0.000	0.23
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	23.400	0.000	0.20
T4	100.00-80.00	Α	0.000	0.000	26.682	0.000	0.24
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	23.400	0.000	0.20
T5	80.00-60.00	Α	0.000	0.000	37.266	0.000	0.29
		В	0.000	0.000	1.400	0.000	0.02
		C	0.000	0.000	23.400	0.000	0.20
T6	60.00-40.00	Α	0.000	0.000	37.424	0.000	0.29
		В	0.000	0.000	1.400	0.000	0.02
		C	0.000	0.000	23.400	0.000	0.20
T7	40.00-20.00	Α	0.000	0.000	37.424	0.000	0.29
		В	0.000	0.000	1.400	0.000	0.02
		C	0.000	0.000	23.400	0.000	0.20
T8	20.00-0.00	Α	0.000	0.000	25.245	0.000	0.24
		В	0.000	0.000	1.400	0.000	0.02
		C	0.000	0.000	23.400	0.000	0.20

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft ²	ft²	ft ²	ft ²	K
T1	150.00-140.00	Α	2.899	0.000	0.000	30.602	0.000	0.69
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	45.694	0.000	0.87
T2	140.00-120.00	Α	2.867	0.000	0.000	76.834	0.000	1.69
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	90.662	0.000	1.71
T3	120.00-100.00	Α	2.820	0.000	0.000	100.195	0.000	2.02
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	89.566	0.000	1.67
T4	100.00-80.00	Α	2.764	0.000	0.000	106.750	0.000	2.11
		В		0.000	0.000	0.000	0.000	0.00

tnxTower Job 2025-09-46-BCC Meeting Buckeye Mt. - Viper 9 of 33 Project Date 3227 Wellington Ct. ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Watauga County Designed by hicham.anssar

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C₁A₁ In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft²	·ft²	ft^2	ft²	K
		С		0.000	0.000	88.274	0.000	1.62
T5	80.00-60.00	Α	2.695	0.000	0.000	164.689	0.000	3.10
		В		0.000	0.000	21.569	0.000	0.25
		C		0.000	0.000	86.693	0.000	1.56
T6	60.00-40.00	A	2.606	0.000	0.000	161.275	0.000	2.96
		В		0.000	0.000	20.939	0.000	0.24
		C		0.000	0.000	84.636	0.000	1.48
T7	40.00-20.00	Α	2.476	0.000	0.000	155.295	0.000	2.75
		В		0.000	0.000	20.023	0.000	0.22
		C		0.000	0.000	81.644	0.000	1.38
T8	20.00-0.00	Α	2.219	0.000	0.000	91.085	0.000	1.49
		В		0.000	0.000	18.205	0.000	0.18
		C		0.000	0.000	75.704	0.000	1.18

		Fe	ed Line	Center of	Pressure
Section	Elevation	CP_X	CP_Z	CP _X Ice	CP _z Ice
		in	in	in	in
T1	150.00-140.00	-2.3951	2.0192	4.7432	3.9421
T2	140.00-120.00	-3.0693	2.3062	-6.4135	4.7847
T3	120.00-100.00	-4.1168	2.7296	-7.4678	5.1546
T4	100.00-80.00	-5.0308	3.1161	-9.3871	6.2366
T5	80.00-60.00	-7.6857	3.7206	-12.3949	6.6827
T6	60.00-40.00	-8.1562	3.9395	-14.3158	7.7366
T7	40.00-20.00	-8.9146	4.2694	-16.4331	8.8937
Т8	20.00-0.00	-5.6635	3.4317	-11.2104	8.1297

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	4	Step Pegs (5/8" SR) 7-in. w/	140.00 -	0.6000	0.3876
		30" Step	150.00		
T1	5	Ladder Rail: PL3x1/4	140.00 -	0.6000	0.3876
			150.00		
T1	6	Climbing Rung: SR 5/8" (12"	140.00 -	0.6000	0.3876
1		Step)	150.00		
T1	7	Safety Line 3/8	140.00 -	0.6000	0.3876
			150.00		
T1	9	Feedline Ladder (Af)	140.00 -	0.6000	0.3876
			150.00		
T1	11	7/8	140.00 -	0.6000	0.3876
1			147.00		
T1	12	1/2	140.00 -	0.6000	0.3876
			147.00		
T1	14	7/8	140.00 -	0.6000	0.3876
			147.00		
T1	19	7/8	140.00 -	0.6000	0.3876
			147.00		
T2	4	Step Pegs (5/8" SR) 7-in. w/	120.00 -	0.6000	0.4454

	Job		Page
tnxTower		Buckeye Mt Viper	10 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

			1		
Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.	30" Step	Segment Elev. 140.00	No Ice	Ice
Т2	5	Ladder Rail: PL3x 1/4	120.00 -	0.6000	0.4454
12		Ladder Ran. 1 L3x 1/4	140.00	0.0000	0.4454
T2:	6	Clumbing Rung: SR 5/8" (12"	120.00 -	0.6000	0.4454
		Step)	140.00		517157
T2	7	Safety Line 3/8	120.00 -	0.6000	0.4454
			140.00		
T2	9	Feedline Ladder (Af)	120.00 -	- 0.6000	0.4454
			140.00		
T2	11	7/8	120.00 -	0.6000	0.4454
T2	12	1/2	140.00 120.00 -	0.6000	0.4454
12	12	1/2	140.00	0.0000	0.4434
T2	14	7/8	120.00 -	0.6000	0.4454
			140.00		31.75
T2	19	7/8	120.00 -	0.6000	0.4454
			140.00		
T3	4	Step Pegs (5/8" SR) 7-in. w/	100.00 -	0.6000	0.4590
та	-	30" Step	120.00		0.4500
T3	5	Ladder Rail: PL3x1/4	100.00 - 120.00	- 0.6000	0.4590
Т3	6	Climbing Rung: SR 5/8" (12"	100.00 -	0.6000	0.4590
	Ü	Step)	120.00	0.0000	0.4370
Т3	7	Safety Line 3/8	100.00 -	0.6000	0.4590
		j	120.00		
T3	9	Feedline Ladder (Af)	100.00 -	0.6000	0.4590
			120.00		'
T3	10	1 5/8	100.00 -	0.6000	0.4590
T. a	* 1	7.0	117.00	0.6000	0.4500
Т3	11	7/8	100.00 -	0.6000	0.4590
Т3	12	1/2	120.00 100.00 -	0.6000	0.4590
*3	12	1/2	120.00	0.000	0.4390
Т3	14	7/8	117.00 -	0.6000	0.4590
			120.00		
T3	15	7/8	100.00 -	0.6000	0.4590
			117.00		
T3	19	7/8	100.00 -	0.6000	0.4590
	_	C. P. (6/0// GP) d : /	120.00	0.6000	0.5055
T4	4	Step Pegs (5/8" SR) 7-in. w/ 30" Step	80.00 - 100.00	0.6000	0.5075
T4	5	Ladder Rail: PL3x1/4	80.00 - 100.00	0.6000	0.5075
T4	6	Climbing Rung: SR 5/8" (12"		0.6000	0.5075
^'	ĭ	Step)			3.3073
T4	7	Safety Line 3/8	80.00 - 100.00	0.6000	0.5075
T4	9	Feedline Ladder (Af)		60.6000	0.5075
T4	10		80.00 - 100.00	0.6000	0.5075
T4	11		80.00 - 100.00	0.6000	0.5075
T4	12		80.00 - 100.00 80.00 - 100.00	0.6000 0.6000	0.5075
T4 T4	15 19		80.00 - 100.00 80.00 - 100.00	0.6000	0.5075 0.5075
T4	21	EU 63	80.00 - 100.00	0.6000	0.5075
T5	2 2	Step Pegs (5/8" SR) 7-in. w/	60.00 - 80.00	0.6000	0.5914
[- [30" Step	33.30		
T5	3	Step Pegs (5/8" SR) 7-in. w/	60.00 - 80.00	0.6000	0.5914
		30" Step			
T5	4	Step Pegs (5/8" SR) 7-in. w/	60.00 - 80.00	0.6000	0.5914
	_	30" Step	60.00 33.5		
T5	5	Ladder Rail: PL3x1/4	60.00 - 80.00	0.6000	0.5914
T5	6	Climbing Rung: SR 5/8" (12"	60.00 - 80.00	0.6000	0.5914
T5	7	Step) Safety Line 3/8	60.00 - 80.00	0.6000	0.5914
13	/1	Safety Line 3/6	00.00 - 00.00]	0.00001	0.3914

Anna Tomas and	Job		2025-08-25-BCC Meeting
tnxTower	ĺ	Buckeye Mt Viper	11 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

<i>T</i> 1	E1 * ·	Described:	P 1 Y	v i	v
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	, K _a No Ice	K _a
T5	Record No.	Feedline Ladder (Af)	60.00 - 80.00	0.6000	<i>Ice</i> 0.5914
T5	10	1 5/8	60.00 - 80.00	0.6000	0.5914
T5	11	7/8	60.00 - 80.00	0.6000	0.5914
T5	12	1/2	60.00 - 80.00	0.6000	0.5914
T5	13	EW63	60.00 - 80.00	0.6000	0.5914
T5	15	7/8	60.00 - 80.00	0.6000	0.5914
T5	17	EW63	60.00 - 79.00	0.6000	0.5914
T5	19	7/8	60.00 - 80.00	0.6000	0.5914
T5	21	EU 63	60.00 - 80.00	0.6000	0.5914
Т6	2	Step Pegs (5/8" SR) 7-in. w/	40.00 - 60.00	0.6000	0.6000
		30" Step			
Т6	3	Step Pegs (5/8" SR) 7-in. w/	40.00 - 60.00	0.6000	0.6000
		30" Step		`	
Т6	4	Step Pegs (5/8" SR) 7-in. w/	40.00 - 60.00	0.6000	0.6000
		30" Step			
Т6	5	Ladder Rail: PL3x1/4	40.00 - 60.00	0.6000	0.6000
Т6	6	Climbing Rung: SR 5/8" (12"	40.00 - 60.00	0.6000	0.6000
		Step)			
Т6	7	Safety Line 3/8	40.00 - 60.00	0.6000	0.6000
Т6	9	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т6	10	1 5/8	40.00 - 60.00	0.6000	0.6000
Т6	11	7/8	40.00 - 60.00	0.6000	0.6000
T6	12	1/2	40.00 - 60.00	, 0.6000	0.6000
Т6	13	EW63	40.00 - 60.00	0.6000	0.6000
Т6	15	7/8	40.00 - 60.00	0.6000	0.6000
Т6	17	EW63	40.00 - 60.00	0.6000	0.6000
T6	19	7/8	40.00 - 60.00	0.6000	0.6000
T6	21	EU 63	40.00 - 60.00	0.6000	0.6000
T7	2	Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
Т7	3	30" Step Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
1 /	3	30" Step	20.00 - 40.00	0.0000	0.6000
T7	4	Step Pegs (5/8" SR) 7-in. w/	20.00 - 40.00	0.6000	0.6000
1 '	7	30" Step	20.00 - 40.00	0.0000	0.0000
Т7	5	Ladder Rail: PL3x1/4	20.00 - 40.00	0.6000	0.6000
T7	6	Climbing Rung: SR 5/8" (12"	20.00 - 40.00	0.6000	0.6000
'	· ·	Step)	20.00 10.00	0.0000	0.0000
T7	7	Safety Line 3/8	20.00 - 40.00	0.6000	0.6000
T7	9	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T7	10	1 5/8	20.00 - 40.00	0.6000	0.6000
T7	11	7/8	20.00 - 40.00	0.6000	0.6000
T7	12	1/2	20.00 - 40.00	0.6000	0.6000
T7	13	EW63	20.00 - 40.00	0.6000	0.6000
T7	15	7/8	20.00 - 40.00	0.6000	0.6000
T7	17	EW63	20.00 - 40.00	0.6000	0.6000
T7	19	7/8	20.00 - 40.00	0.6000	0.6000
T7	21	EU 63	20.00 - 40.00	0.6000	0.6000
T8:	2	Step Pegs (5/8" SR) 7-in. w/	0.00 - 20.00	0.6000	0.6000
		30" Step			
Т8	3	Step Pegs (5/8" SR) 7-in. w/	0.00 - 20.00	0.6000	0.6000
		30" Step			
T8	4	Step Pegs (5/8" SR) 7-in. w/	0.00 - 20.00	0.6000	0.6000
		30" Step			
T8	5	Ladder Rail: PL3x1/4	0.00 - 20.00	0.6000	0.6000
T8	6	Climbing Rung; SR 5/8" (12"	0.00 - 20.00	0.6000	0.6000
		Step)			
T8	7	Safety Line 3/8	0.00 - 20.00	0.6000	0.6000
T8	9	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T8	10	1 5/8	10.00 - 20.00	0.6000	0.6000
T8	11	7/8	10.00 - 20.00	0.6000	0.6000
T8	12	1/2	10.00 - 20.00	0.6000	0.6000
Т8	13	EW63	10.00 - 20.00	0.6000	0.6000

Acces Townson	Job		Page
tnxTower		Buckeye Mt Viper	12 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

I	Tower	Feed Line	Description	Feed Line	K_a	K_{u}
ı	Section	Record No.		Segment Elev.	No Ice	Ice
ı	T8	15	7/8	10.00 - 20.00	0.6000	0.6000
I	T8	17	EW63	10.00 - 20.00	0.6000	0.6000
I	Т8	19	7/8	10.00 - 20.00	0.6000	0.6000
l	Т8	21	EU 63	10.00 - 20.00	0.6000	0.6000

			Di	screte T	ower L	oads			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement	***************************************	C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft²	ft²	K
***				t.		***************************************			
20'x3" pipe	A	From Centroid-Le g	2.25 0.00 10.00	0.00	149.00	No Ice 1/2" Ice 1" Ice	5.65 8.03 10.08	5.65 8.03 10.08	0.05 0.09 0.15
5/8-in x 4-ft Lightning Rod	Α	From Centroid-Le	2.50 0.00	0.00	159.00	No Ice 1/2" Ice	0.25 0.66	0.25 0.66	0.00 0.01
***		g	1.00			1" Ice	0.97	0.97	0.01
Side Arm Mount [SO 303-3]	В	None		0.00	147.00	No Ice 1/2" Ice 1" Ice	7.67 11.04	7.67 11.04 14.57	0.34 0.48 0.65
10' x 2.375" Horizontal Mount Pipe/Stabilizer	A	From Leg	0.00	0.00	147.00	No Ice 1/2" Ice	14.57 2.38 3.40	0.06 0.12	0.04 0.06
10' x 2.375" Horizontal Mount Pipe/Stabilizer	В	From Leg	0.00 0.00 0.00	0.00	147.00	1" Ice No Ice 1/2" Ice	4.45 2.38 3.40	0.21 0.06 0.12	0.08 0.04 0.06
10' x 2.375" Horizontal Mount Pipe/Stabilizer	С	From Leg	0.00 0.00 0.00	0.00	147.00	1" Ice No Ice 1/2" Ice	4.45 2.38 3.40	0.21 0.06 0.12	0.08 0.04 0.06
3" x 4' Omni	Α	From Leg	0.00 6.00 0.00	0.00	147.00	1" Ice No Ice 1/2" Ice	4.45 1.04 1.44	0.21 1.04 1.44	0.08 0.04 0.05
3" dia x 15-ft Omni Antenna	В	From Leg	3.00 6.00 0.00	0.00	147.00	1" Ice No Ice 1/2" Ice	1.68 4.25 6.03	1.68 4.25 6.03	0.06 0.04 0.07
CC807-11	C	From Leg	8.00 6.00 0.00	0.00	147.00	1" Ice No Ice 1/2" Ice	7.58 4.86 7.63	7.58 4.86 7.63	0.11 0.05 0.09
Junction Box (9" x 6" x 6")	A	From Face	9.20 0.50 0.00 0.00	0.00	147.00	1" Ice No Ice 1/2" Ice 1" Ice	9.40 0.83 0.95 1.07	9.40 0.50 0.59 0.69	0.14 0.03 0.03 0.04
***			0.00			1 100	1.07	0.09	0.04
Side Arm Mount [SO 303-3]	В	None		0.00	117.00	No Ice 1/2" Ice	7.67 11.04	7.67 11.04	0.34 0.48
10' x 2.375" Horizontal Mount Pipe/Stabilizer	A	From Leg	0.00	0.00	117.00	1" Ice No Ice 1/2" Ice	14.57 2.38 3.40	14.57 0.06 0.12	0.65 0.04 0.06
10' x 2.375" Horizontal Mount Pipe/Stabilizer	В	From Leg	0.00 0.00 0.00	0.00	117.00	I" Ice No Ice 1/2" Ice	4.45 2.38 3.40	0.21 0.06 0.12	0.08 0.04 0.06

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		2025-08-Ag-BCC Meeting
	Buckeye Mt Viper	13 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

10' x 2.375" Horizontal Mount Pipe/Stabilizer 3" x 4' Omni " dia x 15-ft Omni Antenna CC807-11 ***	C A	From Leg	Vert ft ft ft 0.00 0.00		ft		ft^2	ft^2	K
Mount Pipe/Stabilizer 3" x 4' Omni " dia x 15-ft Omni Antenna CC807-11 ***			0.00						
Mount Pipe/Stabilizer 3" x 4' Omni " dia x 15-ft Omni Antenna CC807-11 ***			0.00		•••••••••••••••••	l" Ice	4.45	0.21	0.08
Mount Pipe/Stabilizer 3" x 4' Omni " dia x 15-ft Omni Antenna CC807-11 ***				0.00	117.00	No Ice	2.38	0.06	0.04
3" x 4' Omni " dia x 15-ft Omni Antenna CC807-11 ***	A		0.00	0.00	117.00	1/2" Ice	3.40	0.12	0.06
" dia x 15-ft Omni Antenna CC807-11 ***	A		0.00			1" Ice	4.45	0.21	0.08
" dia x 15-ft Omni Antenna CC807-11 ***		From Leg	6.00	0.00	117.00	No Ice	1.04	1.04	0.04
CC807-11 ***			0.00		117.00	1/2" Ice	1.44	1.44	0.05
CC807-11 ***			3.00	*		1" Ice	1.68	1.68	0.06
CC807-11 ***	C	From Leg	6.00	0.00	117.00	No Ice	4.35	4.35	0.04
***	-		0.00			1/2" Ice	6.03	6.03	0.07
***			8.00			1" Ice	7.58	7.58	0.11
***	В	From Leg	6.00	0.00	117.00	No Ice	4.98	4.98	0.05
			0.00			1/2" Ice	7.63	7.63	0.09
			9.20			l" Ice	9.40	9.40	0.14
4.5" x 5-ft Dish Pipe Mount									
•	В	From Leg	1.33	0.00	80.00	No Ice	1.43	1.43	0.05
		· ·	0.00			1/2" Ice	2.08	2.08	0.07
			0.00			1" Ice	2.40	2.40	0.09
6' Dish Ice Shield	В	From Leg	3.00	0.00	92.00	No Ice	7.72	7.72	0.31
		0	0.00			1/2" Ice	11.08	11.08	0.53
			0.00	•		1" Ice	14.44	14.41	0.78
4.5" x 5-ft Dish Pipe Mount	В	From Leg	1.33	0.00	85.00	No Ice	1.43	1.43	0.05
			0.00			1/2" Ice	2.08	2.08	0.07
			0.00			I" Ice	2.40	2.40	0.09

4.5" x 5-ft Dish Pipe Mount	С	From Leg	1.33	. 0.00	79.00	No Ice	1.43	1.43	0.05
			0.00			1/2" Ice	2.08	2.08	0.07
			0.00			1" Ice	2.40	2.40	0.09
8' Dish Ice Shield	C	From Leg	3.00	0.00	86.00	No Ice	8.67	8.67	0.38
			0.00			1/2" Ice	11.10	11.10	0.66
			0.00			1" Ice	13.32	13.53	0.97

4.5" x 5-ft Dish Pipe Mount	Α	From Leg	1.33	0.00	80.00	No Ice	1.43	1.43	0.05
			0.00			1/2" Ice	2.08	2.08	0.07
***			0.00			1" Ice	2.40	2.40	0.09

	Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
***				ft	0	0	ft	ft		ft²	K
PL6-65-PXA ***	В	Paraboloid w/Radome	From Leg	2.00 0.00 0.00	50.00		80.00	6.36	No Ice 1/2" Ice 1" Ice	31.75 32.59 33.43	0.16 0.33 0.50
PL6-65-PXA	С	Paraboloid w/Radome	From Leg	2.00 0.00 0.00	10.00		79.00	6.36	No Ice 1/2" Ice 1" Ice	31.75 32.59 33.43	0.16 0.33 0.50

2025-08-05 BCC Meeting

4	Job		Page
tnxTower		Buckeye Mt Viper	14 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
***	•••••		•••••	ft	0	0	ft	ft	•••••	ft²	K
HX6-6W-6WH	В	Paraboloid w/Shroud (HP)	From Leg	2.00 0.00 0.00	48.00		85.00	6.23	No Ice 1/2" Ice 1" Ice	30.48 31.30 32.13	0.19 · 0.35 0.51
***				****		•				52.15	0.51

Tower Pressures - No Ice

 $G_H = 0.850$

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а			•	%	In	Out
					с	1	*]		Face	Face
ft	ft		psf	ft^2	е	ft ²	ft^2	ft²		ft²	ft ²
T1	145.00	1.369	40	52.396	Α	5.282	. 4.792	4.792	47.57	8.570	0.000
150.00-140.00					В	5.282	4.792		47.57	0.000	0.000
					C	5.282	4.792		47.57	11.700	0.000
T2	130.00	1.337	39	104.792	Α	8.976	9.583	9.583	51.64	19.487	0.000
140.00-120.00					В	8.976	9.583		51.64	0.000	0.000
1					С	8.976	9.583		51.64	23.400	0.000
T3	110.00	1.291	38	107.500	Α	7.708	15.000	15.000	66.06	24.740	0.000
120.00-100.00					В	7.708	15.000		66.06	0.000	0.000
					С	7.708	15.000		66.06	23.400	0.000
T4	90.00	1.238	36	129.283	Α	8.284	18.574	18.574	69.16	26.682	0.000
100.00-80.00					В	8.284	18.574		69.16	0.000	0.000
					С	8.284	` 18.574		69.16	23.400	0.000
T5 80.00-60.00	70.00	1.174	34	169.283	Α	9.816	. 18.574	18.574	65.42	37.266	0.000
					В	9.816	18.574		65.42	1.400	0.000
1					C	9.816	18.574		65.42	23.400	0.000
T6 60.00-40.00	50.00	1.094	32	211.055	Α	14.199	22.120	22.120	60.90	37.424	0.000
					В	14.199	22.120		60.90	1.400	0.000
					C	14.199	22.120		60.90	23.400	0.000
T7 40.00-20.00	30.00	0.982	29	254.393	Α	14.690	28.798	28.798	66.22	37.424	0.000
					В	14.690	28.798		66.22	1.400	0.000
					C	14.690	28.798		66.22	23.400	0.000
T8 20.00-0.00	10.00	0.850	25	294.393	Α	16.326	28.798	28.798	63.82	25.245	0.000
		l			В	16.326	28.798		63.82	1.400	0.000
					C	16.326	28.798		63.82	23.400	0.000

Tower Pressure - With Ice

 $G_H = 0.850$

Section	z	Kz	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	C_AA_A
Elevation				İ		а				%	In	Out
						c	•				Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft²	ft ²		ft²	ft^2
T1	145.00	1.369	3	2.8988	57.227	Α	. 5.282	29.765	14.454	41.24	30.602	0.000
150.00-140.00						В	5.282	29.765		41.24	0.000	0.000
1						C	5.282	29.765		41.24	45.694	0.000
T2	130.00	1.337	3	2.8674	114.350	Α	8.976	54.438	28.699	45.26	76.834	0.000
140.00-120.00				ı		В	8.976	54.438		45.26	0.000	0.000

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Client Watauga County	Designed by hicham.anssar

Section Elevation	z	Kz	q_z	tz	A_G	F a	A_F	A_R	A_{leg}	Leg %	$C_A A_A$ In	C_AA_A Out
Lie valion						c	,			,,,	Face	Face
ft	ft		psf	in	ft ²	e	ft ²	ft²	ft²		ft²	ft^2
						C	8.976	54.438		45.26	90.662	0.000
Т3	110.00	1.291	3	2.8199	116.900	Α	7.708	55.536	33.799	53.44	100.195	0.000
120.00-100.00						В	7.708	55.536		53.44	0.000	0.000
	i				,	C	7.708	55.536	1 1	53.44	89.566	0.000
T4 100.00-80.00	90.00	1.238	2	2.7638	138.508	·A	8.284	59.925	37.030	54.29	106.750	0.000
						В	8.284		i i	54.29	0.000	0.000
						C	8.284	59.925	l	54.29	88.274	0.000
T5 80.00-60.00	70.00	1.174	2	2.6952	178.279	Α	9.816		l	50.20	164.689	0.000
						В	9.816	63.030		50.20	21.569	0.000
						C	9.816	63.030		50.20	86.693	0.000
T6 60.00-40.00	50.00	1.094	2	2.6061	219.753	A	14.199	69.127	39.523	47.43	161.275	0.000
						В	14.199	69.127	1	47.43	20.939	0.000
1			· '			C	14.199	69.127	ļ	47.43	84.636	0.000
T7 40.00-20.00	30.00	0.982	2	2.4763	262.658	Α	14.690	69.585	45.334		155.295	0.000
						В	14.690	69.585		53.79	20.023	0.000
						C	14.690	69.585		53.79	81.644	0.000
T8 20.00-0.00	10.00	0.850	2	2.2186	301.798	A.	16.326	67.761	43.614	51.87	91.085	0.000
	1					В	16.326	67.761		51.87	18.205	0.000
						С	16.326	67.761		51.87	75.704	0.000

Tower Pressure - Service

 $G_H=0.850$

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	C_AA_A
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	$-ft^2$		ft ²	ft ²
Tl	145.00	1.369	11	52.396	Α	5.282	4.792	4.792	47.57	8.570	0.000
150.00-140.00					В	5.282	4.792		47.57	0.000	0.000
					C	5.282	4.792		47.57	11.700	0.000
T2	130.00	1.337	10	104.792	Α	8.976	9.583	9.583	51.64	19.487	0.000
140.00-120.00					В	8.976	9.583		51.64	0.000	0.000
					C	8.976	9.583		51.64	23.400	0.000
T3	110.00	1.291	10	107.500	Α	7.708	15.000	15.000	66.06	24.740	0.000
120.00-100.00					В	7.708	15.000		66.06	0.000	0.000
					С	7.708	15.000		66.06	23.400	0.000
T4	90.00	1.238	10	129.283	Α	8.284	18.574	18.574	69.16	26.682	0.000
100.00-80.00					В	8.284	18.574		69.16	0.000	0.000
					C	8.284	18.574		69.16	23.400	0.000
T5 80.00-60.00	70.00	1.174	9	169.283	Α	9.816	18.574	18.574	65.42	37.266	0.000
					В	9.816	18.574		65.42	1.400	0.000
					C	9.816	18.574		65.42	23.400	0.000
T6 60.00-40.00	50.00	1.094	9	211.055	Α	14.199	22.120	22.120	60.90	37.424	0.000
					В	14.199	22.120		60.90	1.400	0.000
					C	14.199	22.120		60.90	23.400	0.000
T7 40.00-20.00	30.00	0.982	8	254.393	Α	14.690	28.798	28.798	66.22	37.424	0.000
					В	14.690	28.798		66.22	1.400	0.000
					С	14.690	28.798		66.22	23.400	0.000
T8 20.00-0.00	10.00	0.850	7	294.393	Α	16.326	28.798	28.798	63.82	25.245	0.000
					В	16.326	28.798		63.82	1.400	0.000
					С	16.326	28.798		63.82	23.400	0.000

2025-08-05 BCC Meeting

Job Page *tnxTower* 16 of 33 Buckeye Mt. - Viper Project Engineered Tower Solutions, ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 **PLLC** Client

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Designed by Watauga County hicham.anssar

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
			c			psf						Į
ft	K	K	e						ft²	K	plf	
T1	0.20	0.35	A	0.192	2.622	40	1	1	8.019	1.04	103.51	С
150.00-140.00			В	0.192	2.622		1	1	8.019			
			С	0.192	2.622		1	1	8.019			
T2	0.40	0.63	Α	0.177	2.674	39	1	1	14.443	1.96	97.81	С
140.00-120.00			В	0.177	2.674		٠ 1	1	14,443			
i			С	0.177	2.674		1	1	14.443			
T3	0.43	1.01	Α	0.211	2.559	38	1	1	15.346	2.00	99.97	C
120.00-100.00			В	0.211	2.559		1	1	15.346			
			С	0.211	2.559		1	1	15.346			
T4	0.44	1.27	Α	0.208	2.57	36	1	I	16.957	2.08	104.16	С
100.00-80.00			В	0.208	2.57		1	1	16.957			
			С	0.208	2.57		1	1	16.957			
T5	0.50	1.34	Α	0.168	2.707	34	1	1	18.243	2.35	117.57	C
80.00-60.00			В	0.168	2.707		1	1	18.243			
			С	0.168	2.707		1	1	18.243			
T6	0.51	1.81	Α	0.172	2.692	32	1	1	23.717	2.59	129.26	С
60.00-40.00			В	0.172	2.692		٠ 1	1	23.717		·	
			С	0.172	2.692		1	1	23.717			
T7	0.51	2.41	Α	0.171	2.696	29	1	1	27.063	2.54	127.19	C
40.00-20.00			В	0.171	2.696		1	1	27.063			
1			C	0.171	2.696		ŀ	1	27.063			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	25	1	. 1	28.432	2.17	108.37	C
			В	0.153	2.759		1	1	28.432			
			C	0.153	2.759		1	1	28.432			
Sum Weight:	3.44	11.79						OTM	1203.66	16.72		
_									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self [*]	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft ²	K	plf	
T1	0.20	0.35	Α	0.192	2.622	40	. 0.8	1	6.963	0.94	94.11	Α
150.00-140.00			В	0.192	2.622		0.8	1	6.963			
			C	0.192	2.622		6.0	1	6.963			
T2	0.40	0.63	Α	0.177	2.674	39	0.8	1	12.648	1.80	89.84	Α
140.00-120.00			В	0.177	2.674		0.8	1	12.648			
			С	0.177	2.674		0.8	1	12.648			
T3	0.43	1.01	Α	0.211	2.559	38	0.8	1	13.804	1.87	93.65	A
120.00-100.00			В	0.211	2.559		0.8	· 1	13.804		i	
			C	0.211	2.559		0.8	1	13.804			
T4	0.44	1.27	Α	0.208	2.57	36	0.8	1	15.301	1.95	97.62	A
100.00-80.00			В	0.208	2.57		0.8	1	15.301			
			C	0.208	2.57		0.8	1	15.301			
T5	0.50	1.34	Α	0.168	2.707	34	0.8	1	16.280	2.20	109.83	A
80.00-60.00			В	0.168	2.707		0.8	1	16.280			
			С	0.168	2.707		' 0.8	1	16.280			
Т6	0.51	1.81	Α	0.172	2.692	-32	0.8	1	20.877	2.38	118.89	A
60.00-40.00			В	0.172	2.692		0.8	1	20.877			
			С	0.172	2.692		0.8	1	20.877			

2025 0 AgeBCC Meeting Job tnxTower Buckeye Mt. - Viper 17 of 33 Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County hicham.anssar

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf_	ì					
ft	K	K	е						ft²	K	plf	
T7	0.51	2.41	Α	0.171	2.696	29	0.8	1	24.125	2.35	117.54	Α
40.00-20.00			В	0.171	2.696		0.8	1	24.125			
			C	0.171	2.696		0.8	1	24.125			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	. 25	0.8	1	25.166	1.98	98.87	A
			В	0.153	2.759		0.8	1	25.166			
			С	0.153	2.759		0.8	1	25.166			
Sum Weight:	3.44	11.79	l					OTM	1114.74	15.47		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	\dot{q}_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			с			psf						
ft	K	K	е						ft ²	K	plf	
T1	0.20	0.35	Α	0.192	2.622	40	0.85	1	7.227	1.01	100.60	В
150.00-140.00			В	0.192	2.622		. 0.85	1	7.227			
1			С	0.192	2.622		0.85	1	7.227			
T2	0.40	0.63	Α	0.177	2.674	39	0.85	1	13.097	1.92	95.88	В
140.00-120.00			В	0.177	2.674		0.85	1	13.097			
1			С	0.177	2.674		0.85	1	13.097			
T3	0.43	1.01	Α	0.211	2.559	38	0.85	1	14,189	1.99	99.67	В
120.00-100.00			В	0.211	2.559	•	0.85	1	14.189			
			C	0.211	2.559		0.85	1	14.189			
T4	0.44	1.27	Α	0.208	2.57	36	0.85	1	15.715	2.07	103.61	В
100.00-80.00			В	0.208	2.57		0.85	1	15.715	j		
			C	0.208	2.57		0.85	1	15.715	1		
T5	0.50	1.34	Α	0.168	2.707	34	0.85	1	16.771	2.31	115.58	В
80.00-60.00			В	0.168	2.707		. 0.85	1	16.771			
			C	0.168	2.707		0.85	1	16.771			
T6	0.51	1.81	Α	0.172	2.692	32	0.85	1	21.587	2.50	125.04	В
60.00-40.00			В	0.172	2.692		0.85	1	21.587			
			C	0.172	2.692		0.85	1	21.587			
T7	0.51	2.41	Α	0.171	2.696	29	0.85	1	24.859	2.46	123.15	В
40.00-20.00			В	0.171	2.696	-	0.85	1	24.859			
			С	0.171	2.696		0.85	1	24.859			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	25	0.85	1	25.983	2.08	103.80	В
<u> </u>			В	0.153	2.759		0.85	1	25.983			
1			C	0.153	2.759		0.85	1	25.983	-		
Sum Weight:	3.44	11.79						OTM	1182.42	16.34		
								-	kip-ft			

Tower Forces - With Ice - Wind Normal To Face

	Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
	Elevation	Weight	Weight	а									Face
1				С			psf						
1	ft	K	K	е					L	ft^2	K	plf	
	T1	1.56	2.99	Α	0.612	1.797	3	1	1	27.655	0.18	17.53	С

2025-08-05 BCC Meeting Job Page tnxTower Buckeye Mt. - Viper 18 of 33 Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Client Designed by Watauga County

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a		"	42	<i>D</i> _r		112	•	"	Face
			c			psf						1
ft	K	K	e	-		F-9		ļ	ft²	K	plf	
150.00-140.00			В	0.612	1.797		1	1	27.655			
			С	0.612	1.797		1	1	27.655		į	
T2	3.40	5.22	Α	0.555	1.839	3	1	1	47.949	0.35	17.53	C
140.00-120.00			В	0.555	1.839		1	1	47.949			
			С	0.555	1.839		1	1	47.949			
T3	3.69	5.44	Α	0.541	1.852	3	1	1	47.026	0.36	17.76	С
120.00-100.00			В	0.541	1.852		1	1	47.026			
			C	0.541	1.852		٠ 1	1	47.026			
T4	3.73	6.01	Α	0.492	1.91	. 2	1	1	49.090	0.38	18.77	С
100.00-80.00			В	0.492	1.91		1	1	49.090			
			C	0.492	1.91		1	1	49.090			
T5	4.91	6.38	Α	0.409	2.047	2	1	1	50.156	0.48	23.84	C
80.00-60.00			В	0.409	2.047		1	- 1	50.156			
			C	0.409	2.047		1	1	50.156			
T6	4.68	7.80	Α	0.379	2.107	2	1	1	57.575	0.48	23.79	С
60.00-40.00			В	0.379	2.107		1	1	57.575			
			C	0.379	2.107		1	1	57.575			
T7	4.35	8.24	Α	0.321	2.242	2	1	1	56.837	0.43	21.43	C
40.00-20.00			В	0.321	2.242		1	1	56.837			
			С	0.321	2.242		٠ 1	1	56.837			
T8 20.00-0.00	2.85	8.35	Α	0.279	2.354	. 2	1	1	56.478	0.32	16.12	C
]			В	0.279	2.354		1	1	56.478			
			C	0.279	2.354		1	1	56.478			
Sum Weight:	29.19	50.45						OTM	217.11	2.96		
									kip-ft			

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а	1								Face
			с			psf						
ft	K	K	e						ft ²	K	plf	
T1	1.56	2.99	Α	0.612	1.797	3	0.8	1	26.599	0.17	17.10	Α
150.00-140.00			В	0.612	1.797		0.8	1	26.599			
			C	0.612	1.797		0.8	1	26.599			
T2	3.40	5.22	Α	0.555	1.839	3	0.8	1	46.154	0.34	17.16	Α
140.00-120.00			В	0.555	1.839		0.8	1	46.154			
			C	0.555	1.839		0.8	1	46.154			
T3	3.69	5.44	Α	0.541	1.852	3	0.8	1	45.484	0.35	17.45	Α
120.00-100.00			В	0.541	1.852		0.8	1	45.484			
			С	0.541	1.852		0.8	1	45.484			
T4	3.73	6.01	Α	0.492	1.91	2	0.8	1	47.433	0.37	18.45	Α
100.00-80.00			В	0.492	1.91		0.8	1	47.433			
			С	0.492	1.91		0.8	· 1	47.433			
T5	4.91	6.38	Α	0.409	2.047	2	0.8	1	48.193	0.47	23.45	Α
80.00-60.00			В	0.409	2.047		0.8	1	48.193			
			С	0.409	2.047		0.8	1	48.193			
T6	4.68	7.80	Α	0.379	2.107	2	0.8	1	54.735	0.46	23.25	Α.
60.00-40.00			В	0.379	2.107		0.8	1	54.735			
			С	0.379	2.107		0.8	1	54.735			
T7	4.35	8.24	Α	0.321	2.242	2	٠ 0.8	1	53.899	0.42	20.89	Α
40.00-20.00			В	0.321	2.242		0.8	1	53.899			
			C	0.321	2.242		0.8	1	53.899			
T8 20.00-0.00	2.85	8.35	Α	0.279	2.354	2	0.8	1	53.213	0.31	15.58	A

hicham.anssar

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job		2025 0 Ag BCC Meeting
	Buckeye Mt Viper	19 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf.						
ft	K	K	e						ft ²	K	plf	
			В	0.279	2.354		0.8	1	53.213			
			C	0.279	2.354		0.8	1	53.213			
Sum Weight:	29.19	50.45						OTM	212.73	2.90		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			с			psf						
ft	K	K	е						ft²	K	plf	
T1	1.56	2.99	Α	0.612	1.797	3	0.85	1	26.863	0.17	17.36	В
150.00-140.00			В	0.612	1.797		0.85	1	26.863			
			C	0.612	1.797		0.85	1	26.863			
T2	3.40	5.22	Α	0.555	1.839	3	0.85	1	46.602	0.35	17.43	В
140.00-120.00			В	0.555	1.839		0.85	1	46.602			
			С	0.555	1.839		- 0.85	1	46.602			
T3	3.69	5.44	Α	0.541	1.852	-3	0.85	I	45.870	0.36	17.79	В
120.00-100.00			В	0.541	1.852		0.85	1	45.870			
			C	0.541	1.852		0.85	I	45.870			
T4	3.73	6.01	Α	0.492	1.91	2	0.85	1	47.847	0.38	18.83	В
100.00-80.00			В	0.492	1.91		0.85	1	47.847			
			С	0.492	1.91		0.85	1	47.847			
T5	4.91	6.38	Α	0.409	2.047	. 2	0.85	1	48.684	0.48	23.90	В
80.00-60.00			В	0.409	2.047		0.85	1	48.684			
			С	0.409	2.047		0.85	1	48.684			
T6	4.68	7.80	Α	0.379	2.107	2	0.85	1	55.445	0.47	23.72	В
60.00-40.00			В	0.379	2.107		0.85	1	55.445			
			С	0.379	2.107		0.85	1	55.445			
T7	4.35	8.24	Α	0.321	2.242	2	0.85	1	54.634	0.43	21.32	В
40.00-20.00			В	0.321	2.242		0.85	1	54.634			
	1		С	0.321	2.242		0.85	1	54.634			
T8 20.00-0.00	2.85	8.35	Α	0.279	2.354	2	0.85	1	54.030	0.32	15.93	В
			В	0.279	2.354		0.85	1	54.030			
			С	0.279	2.354		0.85	1	54.030			
Sum Weight:	29.19	50.45						OTM	216.68	2.95		
<i>S</i>									kip-ft			

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a c			psf						Face
ft	K	K	e			ps,			ft²	K	plf	
T1	0.20	0.35	A	0.192	2.622	11	1	1	8.028	0.28	27.80	С
150.00-140.00			В	0.192	2.622		1	1	8.028			
			C	0.192	2.622		1	1	8.028			
T2	0.40	0.63	Α	0.177	2.674	10	1	1	14.447	0.53	26.25	C
140.00-120.00			В	0.177	2.674		1	1	14.447			

Job Page tnxTower 20 of 33 Buckeye Mt. - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125017.STR.8177 PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 15:00:36 03/25/25 Client Designed by Watauga County

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
İ			c			psf			l . i			
ft	K	K	e						ft²	K	plf	
			C	0.177	2.674		1	1	14.447			
T3	0.43	1.01	Α	0.211	2.559	10	1	1	16.356	0.56	27.94	C
120.00-100.00			В	0.211	2.559		1	1	16.356			
			С	0.211	2.559		1	1	16.356			
T4	0.44	1.27	Α	0.208	2.57	10	1	1	18.980	0.60	30.10	С
100.00-80.00			В	0.208	2.57		1	1	18.980			
i			C	0.208	2.57		1	1	18.980			
T5	0.50	1.34	Α	0.168	2.707	9	، 1	1	20.396	0.68	33.83	C
80.00-60.00			В	0.168	2.707		1	1	20.396			
			С	0.168	2.707	Ì	1	1	20.396			
Т6	0.51	1.81	Α	0.172	2.692	9	1	1	26.556	0.75	37.48	С
60.00-40.00			В	0.172	2.692		I	1	26.556			
			C	0.172	2.692		1	. 1	26.556			
T7	0.51	2.41	Α	0.171	2.696	8	1	1	29.748	0.73	36.50	С
40.00-20.00			В	0.171	2.696		1	1	29.748			
			C	0.171	2.696		1	1	29.748			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	7	1	1	31.650	0.63	31.60	С
]		В	0.153	2.759		1	1	31.650			
			C	0.153	2.759		` 1	1	31.650			
Sum Weight:	3.44	11.79	İ			ĺ	ı	OTM	337.28	4.75		
		_							kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-	,					Face
			c			psf	÷					
ft	K	K	е						ft ²	K	plf	
T1	0.20	0.35	Α	0.192	2.622	11	0.8	1	6.972	0.25	25.28	Α
150.00-140.00			В	0.192	2.622		0.8	1	6.972			i
			С	0.192	2.622	į į	0.8	1	6.972			
T2	0.40	0.63	Α	0.177	2.674	10	0.8	· 1	12.652	0.48	24.12	Α
140.00-120.00			В	0.177	2.674		0.8	1	12.652			
			C	0.177	2.674		0.8	1	12.652			
T3	0.43	1.01	Α	0.211	2.559	10	0.8	1	14.815	0.52	26.25	Α
120.00-100.00			В	0.211	2.559		0.8	1	14.815			
			C	0.211	2.559		0.8	1	14.815			
T4	0.44	1.27	Α	0.208	2.57	10	0.8	1	17.323	0.57	28.34	Α
100.00-80.00			В	0.208	2.57		8.0	1	17.323			
l			С	0.208	2.57		0.8	1	17.323			
T5	0.50	1.34	Α	0.168	2.707	9	0.8	1	18.433	0.64	31.75	Α
80.00-60.00			В	0.168	2.707		0.8	1	18.433			
			C	0.168	2.707		0.8	1	18.433			
Т6	0.51	1.81	A	0.172	2.692	9	0.8	. 1	23.716	0.69	34.69	Α
60.00-40.00			В	0.172	2.692		0.8	1	23.716		İ	
			C	0.172	2.692		0.8	1	23.716			
Т7	0.51	2.41	Α	0.171	2.696	8	0.8	1	26.810	0.68	33.91	Α
40.00-20.00			В	0.171	2.696		0.8	1	26.810	İ		
			C	0.171	2.696		0.8	1	26.810			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	7	0.8	1	28.384	0.58	29.05	Α
	ľ	i	В	0.153	2.759		0.8	1	28.384			
			C	0.153	2.759		0.8	1	28.384			
Sum Weight:	3.44	11.79			i			OTM	313.42	4.42		
									kip-ft			

hicham.anssar

Engineered Tower Solutions, PLLC 3227 Wellington Ct.

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	Buckeye Mt Viper	2025-08-89 BCC Meeting 21 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			-						Face
	-		с			psf						1
ft	K	K	е			. "			ft^2	K	plf	
T1	0.20	0.35	Α	0.192	2.622	11	0.85	1	7.236	0.27	27.02	В
150.00-140.00			В	0.192	2.622		0.85	1	7.236			
			C	0.192	2.622		0.85	1	7.236			
T2	0.40	0.63	Α	0.177	2.674	10	0.85	1	13.101	0.51	25.74	В
140.00-120.00			В	0.177	2.674		0.85	1	13.101			
			С	0.177	2.674		0.85	1	13.101			
T3	0.43	1.01	Α	0.211	2.559	10	0.85	1	15.200	0.56	27.86	В
120.00-100.00			В	0.211	2.559	*	0.85	1	15.200			
			С	0.211	2.559		0.85	1	15.200			
T4	0.44	1.27	Α	0.208	2.57	10	0.85	1	17.738	0.60	29.95	В
100.00-80.00			В	0.208	2.57		0.85	1	17.738			
			С	0.208	2.57		0.85	1	17.738			
T5	0.50	1.34	Α	0.168	2.707	9	0.85	1	18.923	0.67	33.30	В
80.00-60.00			В	0.168	2.707		0.85	1	18.923			
			С	0.168	2.707		0.85	1	18.923			
Т6	0.51	1.81	Α	0.172	2.692	9	0.85	1	24.426	0.73	36.34	В
60.00-40.00			В	0.172	2.692		0.85	1	24.426			
			С	0.172	2.692	· ·	0.85	1	24.426			
T7	0.51	2.41	Α	0.171	2.696	8	0.85	1	27.545	0.71	35.42	В
40.00-20.00			В	0.171	2.696	·	0.85	1	27.545			
			С	0.171	2.696		0.85	1	27.545			
T8 20.00-0.00	0.46	2.97	Α	0.153	2.759	7	0.85	1	29.201	0.61	30.37	В
l			В	0.153	2.759		0.85	1	29.201	1		
			С	0.153	2.759		0.85	1	29.201	1		
Sum Weight:	3.44	11.79	l					OTM	331.59	4.65		
· ·									kip-ft			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	7.51					
Bracing Weight	4.28					
Total Member Self-Weight	11.79			9.17	5.84	
Total Weight	17.90			9.17	5.84	
Wind 0 deg - No Ice		-0.01	-21.38	-1664.70	7.75	-2.08
Wind 30 deg - No Ice		9.60	-17.65	-1380.09	-746.09	7.21
Wind 60 deg - No Ice		15.80	-9.70	-753.99	-1231.38	12.33
Wind 90 deg - No Ice		17.80	0.14	21.38	-1384.64	12.80
Wind 120 deg - No Ice		17.63	10.60	839.04	-1369.34	16.85
Wind 150 deg - No Ice		10.22	17.72	1403.11	-796.84	13.68
Wind 180 deg - No Ice		0.12	19.53	1545.57	-4.46	3.60
Wind 210 deg - No Ice		-9.31	16.92	1339.72	734.84	-5.91
Wind 240 deg - No Ice		-16.72	9.95	785.65	1307.45	-11.15

			2025-08-05 BCC Meeting
tnxTower	Job	Buckeye Mt Viper	Page 22 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710	Client	Watauga County	Designed by hicham.anssar

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M _r	Moments, M.	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 270 deg - No Ice		-17.64	-0.36	-20.55	1383.50	-11.36
Wind 300 deg - No Ice		-16.53	-10.27	-801.43	1303.87	-13.45
Wind 330 deg - No Ice		-10.15	-18.20	-1424.33	803.49	-10.54
Member Ice	38.66					
Total Weight Ice	94.30			63.46	54.84	
Wind 0 deg - Ice		-0.00	-3.62	-227.58	54.99	-2.17
Wind 30 deg - Ice		1.74	`-3.09	-185.92	-85.37	-0.36
Wind 60 deg - Ice		2.91	1.73	-75.94	-180.26	1.33
Wind 90 deg - Ice		3.35	0.01	64.38	-215.28	2.60
Wind 120 deg - Ice		3.02	1.78	206.47	-188.18	3.60
Wind 150 deg - Ice		1.78	3.09	312.37	-88.70	3.57
Wind 180 deg - Ice		0.01	3.51	346.51	54.07	2.29
Wind 210 deg - Ice		-1.72	3.04	308.45	193.34	0.46
Wind 240 deg - Ice		-2.96	1.73	202.72	292.80	-1.24
Wind 270 deg - Ice		-3.34	-0.03	61.24	324.01	-2.50
Wind 300 deg - Ice		-2.97	-1.77	-79.25	294.08	-3.35
Wind 330 deg - Ice		-1.78	-3.13	-188.41	198.02	-3.34
Total Weight	17.90			9.17	5.84	
Wind 0 deg - Service		-0.00	-6.02	-462.57	-0.09	-0.56
Wind 30 deg - Service		2.72	4.98	-383.89	-211.00	1.97
Wind 60 deg - Service		4.49	-2.75	-209.57	-347.53	3.37
Wind 90 deg - Service		5.06	0.04	7.12	-390.96	3.50
Wind 120 deg - Service		4.98	2.99	235.15	-384.55	4.58
Wind 150 deg - Service		2.88	5.00	392.82	-224.62	3.71
Wind 180 deg - Service		0.03	5.53	433.35	-3.37	0.97
Wind 210 deg - Service		-2.64	4.79	375.80	203.63	-1.62
Wind 240 deg - Service		-4.73	2.81	220.82	363.59	-3.05
Wind 270 deg - Service		-5.02	-0.10	-4.14	386.30	-3.12
Wind 300 deg - Service		-4.68	-2.90	-222.30	362.63	-3.67
Wind 330 deg - Service		-2.87	-5:13	-395.76	222.06	-2.87

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	•
4	1.2 Dead+1.6 Wind 30 deg - No Ice	•
5	0.9 Dead+1.6 Wind 30 deg - No Ice	·
6	1.2 Dead+1.6 Wind 60 deg - No Ice	
7	0.9 Dead+1.6 Wind 60 deg - No Ice	•
8	1.2 Dead+1.6 Wind 90 deg - No Ice	
9	0.9 Dead+1.6 Wind 90 deg - No Ice	4
10	1.2 Dead+1.6 Wind 120 deg - No Ice	
11	0.9 Dead+1.6 Wind 120 deg - No Ice	
12	1.2 Dead+1.6 Wind 150 deg - No Ice	
13	0.9 Dead+1.6 Wind 150 deg - No Ice	
14	1.2 Dead+1.6 Wind 180 deg - No Ice	
15	0.9 Dead+1.6 Wind 180 deg - No Ice	•
16	1.2 Dead+1.6 Wind 210 deg - No Ice	•
17	0.9 Dead+1.6 Wind 210 deg - No Ice	4
18	1.2 Dead+1.6 Wind 240 deg - No Ice	
19	0.9 Dead+1.6 Wind 240 deg - No Ice	•
20	1.2 Dead+1.6 Wind 270 deg - No Ice	
21	0.9 Dead+1.6 Wind 270 deg - No Ice	

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	***	2025 08 49 BCC Meeting
	Buckeye Mt Viper	23 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Comb.	Description `
No.	
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
4 6	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
Tl	150 - 140	Leg	Max Tension	23	3.79	0.26	0.06
		5	Max. Compression	18	-4.64	-0.02	0.00
			Max, Mx	8	1.22	0.44	-0.05
			Max. My	3	0.65	-0.00	-0.41
			Max. Vy	20	-0.38	0.28	0.05
			Max. Vx	2	-0.35	-0.00	0.25
		Diagonal	Max Tension	22	1.38	0.00	0.00
		Č	Max. Compression	10	-1.43	0.00	0.00
			Max. Mx	33	0.22	0.03	-0.00
			Max. My	11	1.26	0.00	-0.00
			Max. Vy	33	-0.04	0.03	-0.00
			Max. Vx	11	-0.00	0.00	0.00
		Top Girt	Max Tension	23	0.03	0.00	0.00
		•	Max. Compression	27	-0.04	0.00	0.00
			Max. Mx	26	-0.04	-0.07	0.00
			Max. Vy	26	-0.06	0.00	0.00
T2	140 - 120	Leg	Max Tension	15	21.90	0.01	-0.05
		_	Max. Compression	2	-24.42	-0.01	0.18
			Max. Mx	10	10.59	-0.22	-0.20
			Max. My	24	-1.15	0.15	0.26
			Max. Vy	10	0.09	-0.22	-0.20
			Max. Vx	24	-0.10	0.15	0.26
		Diagonal	Max Tension	10	2.70	0.00	0.00
		-	Max. Compression	10	-2.73	0.00	0.00

Buckeye Mt. - Viper 24 of 33

Date
C Job No. 24125017.STR.8177 15:00:36 03/25/25

Engineered Tower Solutions,

tnxTower

Job

PLLC
3227 Wellington Ct.
Raleigh, NC 27615
Phone: (919) 782-2710
FAX: 919-782-2710

Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	-			Comb.	K	kip-ft	kip-ft
			Max. Mx	35	0.24	0.03	0.00
			Max. My	11	2.69	0.01	-0.00
			Max. Vy	35	-0.04	0.03	0.00
			Max. Vx	11	-0.00	0.00	0.00
T3	120 - 100	Leg	Max Tension	15	54.88	0.02	-0.09
			Max. Compression	2	-60.47	-0.01	0.90
			Max. Mx	10	-59.95	-0.84	-0.31
			Max. My	٠ 2	-60.47	-0.01	0.90
			Max. Vy	, 8	0.31	-0.53	-0.04
			Max. Vx	2	-0.29	-0.01	0.60
		Diagonal	Max Tension	23	5.76	0.03	-0.00
		_	Max. Compression	10	-6.12	0.00	0.00
			Max. Mx	35	0.33	0.04	-0.00
			Max. My	25	-4.53	-0.03	0.01
			Max. Vy	35	-0.04	0.04	-0.00
			Max. Vx	25	0.00	0.00	0.00
T4	100 - 80	Leg	Max Tension	15	79.21	-0.76	-0.04
- '	100 00	248	Max. Compression	2	-87.24	1.03	-0.31
			Max, Mx	2.	-79.58	1.03	-0.31
			Max. My	- 25	-1.71	-0.00	1.07
			Max. Vy	, 2	0.73	1.03	-0.31
			Max. Vx	, 2 4	-1,11	-0.14	-1.05
		Diagonal	Max Tension	7	4.20	0.00	0.00
		Diagoliai		18			
			Max. Compression Max. Mx		-4.42	0.00	0.00
			Max. My	33 10	0.05	0.05	-0.01
			Max. My Max. Vy		-3.68	-0.01	-0.01
				33	0.05	0.05	-0.01
TE	00 (0	Y	Max. Vx	31	0.00	0.00	0.00
T5	80 - 60	Leg	Max Tension	15	107.69	-0.55	-0.01
			Max. Compression	2	-120.69	0.83	0.01
			Max. Mx	3 -	-120.03	0.83	0.02
			Max. My	- 12	-3.72	-0.03	-0.90
			Max. Vy	, 3	0.85	0.83	-0.00
		n: 1	Max. Vx	5	-1.31	-0.07	-0.79
		Diagonal	Max Tension	8	5.68	0.00	0.00
			Max. Compression	8	-5.65	0.00	0.00
			Max. Mx	33	0.09	0.07	0.01
			Max. My	31	-0.04	0.07	-0.01
			Max. Vy	33	0.06	0.07	0.01
			Max. Vx	31	0.00	0.00	0.00
T6	60 - 40	Leg	Max Tension	15	133.76	-0.77	-0.02
			Max. Compression	2	-151.51	1.35	0.02
			Max. Mx	2 -	-151.51	1.35	0.02
			Max. My	- 25	-1.87	-0.01	1.21
			Max. Vy	. 3	-0.17	1.35	0.02
			Max. Vx	` 12	0.20	0.01	-1.21
		Diagonal	Max Tension	8	5.43	0.00	0.00
			Max. Compression	10	-5.57	0.00	0.00
			Max. Mx	33	0.32	0.10	-0.01
			Max. My	37	-0.39	0.09	0.01
			Max. Vy	33	0.08	0.10	-0.01
			Max. Vx	37	-0.00	0.00	0.00
T7	40 - 20	Leg	Max Tension	15	155.69	-1.33	-0.03
		Ü	Max. Compression	2	-177.66	2.41	0.04
			Max. Mx	2.	-177.66	2.41	0.04
			Max. My	- 25	-2.05	-0.08	2.33
			Max. Vy	29	0.31	-1.78	-0.01
			Max. Vx	25	0.35	-0.08	2.33
		Diagonal	Max Tension	8	6.40	0.00	0.00
		- mPour			-6.88		
			Max. Compression	10	-h xx	0.00	0.00

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	Buckeye Mt Viper	2025-08-09-BCC Meeting 25 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by

Section No.	Elevation ft	Component Type	Condition	Gov Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
			Max. My	32	0.84	0.16	-0.02
			Max. Vy	33	0.10	0.16	0.02
			Max. Vx	32	0.01	0.00	0.00
T8	20 - 0	Leg	Max Tension	15	178.33	-1.37	-0.01
			Max. Compression	2	-205.00	0.00	-0.00
			Max. Mx	2	-192.03	2.41	0.04
			Max. My	25	-2.47	-0.10	3.41
			Max, Vy	29	-0.38	-1.78	-0.01
			Max. Vx	25	0.50	-0.10	3.41
		Diagonal	Max Tension	' 23	6.96	0.00	0.00
		•	Max. Compression	- 10	-7.81	0.00	0.00
			Max. Mx	33	-0.84	0.21	-0.02
			Max. My	32	1.51	0.17	-0.03
			Max. Vy	34	0.11	0.17	0.03
			Max. Vx	32	0.01	0.00	0.00

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, 2 K
		Comb.		Α	
Leg C	Max. Vert	18	194.71	17.55	-9.35
	Max. H _x	18	194.71	17.55	-9.35
	Max. H _z	5	-159.72	-14.16	8.56
	Min. Vert	7	-172.93	-15.88	8.33
	Min. H _x	7	-172.93	-15.88	8.33
	Min. Hz	18	194.71	17.55	-9.35
Leg B	Max. Vert	10	204.91	-18.68	-9.59
	Max. H _x	23	-183.04	16.72	8.76
	Max. H _z	25	-168.03	14.91	8.79
	Min. Vert	23	-183.04	16.72	8.76
	Min. H _x	10	204.91	-18.68	-9.59
	Min. Hz	10	204.91	-18.68	-9.59
Leg A	Max. Vert	2	212.48	-0.14	21.77
_	Max. H _x	21	8.39	0.63	0.79
	Max. Hz	2	212.48	-0.14	21.77
	Min. Vert	15	-184.50	0.21	-18.95
	Min. H _x	8	4.81	-0.57	0.43
	Min. Hz	15	-184.50	0.21	-18.95

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M ₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	17.90	0.00	-0.00	9.17	5.84	0.00
1.2 Dead+1.6 Wind 0 deg - No	21.48	-0.02	-34.21	-2667.19	10.07	-3.32
Ice						
0.9 Dead+1.6 Wind 0 deg - No	16.11	-0.02	-34.21	-2669.94	8.31	-3.32
Ice						
1.2 Dead+1.6 Wind 30 deg - No	21.48	15.36	-28.24	-2211.81	-1196.08	11.53
Ice						
0.9 Dead+1.6 Wind 30 deg - No	16.11	15.36	-28.24	-2214.56	-I 197.83	11.53

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025-08-05 RCC Meeting
Job		Page
	Buckeye Mt Viper	26 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham anssar

Load Combination	Vertical	$Shear_x$	Shear <u>:</u>	Overturning Moment, M_x	Overturning Moment, M <u>-</u>	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Ice 1,2 Dead+1.6 Wind 60 deg - No Ice	21.48	25.27	-15.52	-1210.05	-1972.54	19.73
0.9 Dead+1.6 Wind 60 deg - No Ice	16.11	25.27	-15.52	-1212.80	-1974.30	19.73
1.2 Dead+1.6 Wind 90 deg - No Ice	21.48	28.49	0.22	30.54	-2217.75	20.47
0.9 Dead+1.6 Wind 90 deg - No Ice	16.11	28.49	0.22	27.79	-2219.50	20.47
1.2 Dead+1.6 Wind 120 deg - No Ice	21.48	28.21	16.95	1338.80	-2193.27	26.95
0.9 Dead+1.6 Wind 120 deg - No Ice	16.11	28.21	16.95	1336.05	-2195.02	26.95
1.2 Dead+1.6 Wind 150 deg - No Ice	21.48	16.35	28.36	2241.30	-1277.28	21.89
0.9 Dead+1.6 Wind 150 deg - No Ice	16.11	16.35	28.36	2238.55	-1279.03	21.89
1.2 Dead+1.6 Wind 180 deg - No Ice	21.48	0.20	31.25	2469.24	-9.47	5.76
0.9 Dead+1.6 Wind 180 deg - No Ice	16.11	0.20	-31.25	2466.49	-11.22	5.76
1.2 Dead+1.6 Wind 210 deg - No Ice	21.48	-14.90	27.08	2139.87	1173.40	-9.45
0.9 Dead+1.6 Wind 210 deg - No Ice	16.11	-14.90	27.08	2137.12	1171.65	-9.45
1.2 Dead+1.6 Wind 240 deg - No Ice	21.48	-26.75	15.91	1253.36	2089.58	-17.83
0.9 Dead+1.6 Wind 240 deg - No Ice	16.11	-26.75	15.91	1250.61	2087.83	-17.83
1.2 Dead+1.6 Wind 270 deg - No Ice	21.48	-28.23	-0.57	-36.55	2211.26	-18.18
0.9 Dead+1.6 Wind 270 deg - No Ice	16.11	-28.23	0.57	-39.30	2209.51	-18.18
1.2 Dead+1.6 Wind 300 deg - No Ice	21.48	-26.46	-16.43	-1285.96	2083.86	-21.51
0.9 Dead+1.6 Wind 300 deg - No Ice	16.11	-26.46	-16.43	-1288.71	2082.11	-21.51
1.2 Dead+1.6 Wind 330 deg - No Ice	21.48	-16.24	-29.12	-2282.59	1283.25	-16.87
0.9 Dead+1.6 Wind 330 deg - No Ice	16.11	-16.24	-29.12	-2285.35	1281.50	-16.87
.2 Dead+1.0 Ice+1.0 Temp	97.88	0.00	-0.00	65.29	56.01	0.00
.2 Dead+1.0 Wind 0 deg+1.0	97.88	-0.00	-3.62	-225.76	56.16	-2.17
ce+1.0 Temp .2 Dead+1.0 Wind 30 deg+1.0	97.88	1.74	-3.09	-184.09	-84.20	-0.36
ce+1.0 Temp .2 Dead+1.0 Wind 60 deg+1.0	97.88	2.91	-1.73	-74.11	-179.09	1.33
ce+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0	97.88	3.35	0.01	66.21	-214.11	2.60
ce+1.0 Temp .2 Dead+1.0 Wind 120	97.88	3.02	1.78	208.30	-187.01	3.60
leg+1.0 Ice+1.0 Temp .2 Dead+1.0 Wind 150 leg+1.0 Ice+1.0 Temp	97.88	1.78	3.09	314.20	-87.53	3.57
1.2 Dead+1.0 Wind 180 leg+1.0 Ice+1.0 Temp	97.88	0.01	3,51	348.33	55.24	2.29
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	97.88	-1.72	3.04	310.28	194.51	0.46
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	97.88	-2.96	1.73	204.55	293.96	-1.24
1.2 Dead+1.0 Wind 270	97.88	-3.34	-0.03	63.07	325.18	-2.50

Engineered Tower Solutions, PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	,	2025-08 -999 BCC Meeting
	Buckeye Mt Viper	27 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Load	Vertical	$Shear_x$	Shear _z	Overturning	Overturning	Torque
Combination	K	K	· K	Moment, M_x kip-ft	Moment, M _z kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	97.88	-2.97	-1.77	-77.42	295.25	-3.35
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	97.88	-1.78	-3.13	-186.58	199.19	-3.34
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	17.90	-0.00	-6.02	-457.24	6.35	-0.56
Dead+Wind 30 deg - Service	17.90	2.72	-4.98	-378.55	-204.55	1.97
Dead+Wind 60 deg - Service	17.90	4.49	-2.75	-204.24	-341.08	3.37
Dead+Wind 90 deg - Service	17.90	5.06	0.04	12.45	-384.51	3.50
Dead+Wind 120 deg - Service	17.90	4.98	2.99	240.48	-378.11	4.58
Dead+Wind 150 deg - Service	17.90	2.88	5.00	398.15	-218.17	3.71
Dead+Wind 180 deg - Service	17.90	0.03	5.53	438.68	3.07	0.97
Dead+Wind 210 deg - Service	17.90	-2.64	4.79	381.14	210.07	-1.62
Dead+Wind 240 deg - Service	17.90	-4.73	2.81	226.15	370.04	-3.05
Dead+Wind 270 deg - Service	17.90	-5.02	-0.10	1.19	392.75	-3.12
Dead+Wind 300 deg - Service	17.90	-4.68	-2.90	-216.97	369.08	-3.67
Dead+Wind 330 deg - Service	17.90	-2.87	-5.13	-390.43	228.50	-2.87

Solution Summary

		n of Applied Force.			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-17.90	0.00	-0.00	17.90	0.00	0.000%
2	-0.02	-21.48	-34.21	0.02	21.48	34.21	0.000%
3	-0.02	-16.11	-34.21	0.02	16.11	34.21	0.000%
4	15.36	-21.48	-28.24	-15.36	21.48	28.24	0.000%
5	15.36	-16.11	-28.24	-15.36	16.11	28.24	0.000%
6	25.27	-21.48	-15.52	-25.27	21.48	15.52	0.000%
7	25.27	-16.11	-15.52	-25.27	16.11	15.52	0.000%
8	28.49	-21.48	0.22	-28.49	21.48	-0.22	0.000%
9	28.49	-16.11	0.22	-28.49	16.11	-0.22	0.000%
10	28.21	-21.48	16.95	-28.21	21.48	-16.95	0.000%
11	28.21	-16.11	16.95	-28.21	16.11	-16.95	0.000%
12	16.35	-21.48	28.36	-16.35	21.48	-28.36	0.000%
13	16.35	-16.11	28.36	-16.35	16.11	-28.36	0.000%
14	0.20	-21.48	31.25	-0.20	21.48	-31.25	0.000%
15	0.20	-16.11	31.25	-0.20	16.11	-31.25	0.000%
16	-14.90	-21.48	27.08	14.90	21.48	-27.08	0.000%
17	-14.90	-16.11	27.08	14.90	16.11	-27.08	0.000%
18	-26.75	-21.48	15.91	26.75	21.48	-15.91	0.000%
19	-26.75	-16.11	15.91	26.75	16.11	-15.91	0.000%
20	-28.23	-21.48	-0.57	28.23	21.48	0.57	0.000%
21	-28.23	-16.11	-0.57	28.23	16.11	0.57	0.000%
22	-26.46	-21.48	-16.43	26.46	21.48	16.43	0.000%
23	-26.46	-16.11	-16.43	26.46	16.11	16.43	0.000%
24	-16.24	-21.48	-29.12	16.24	21.48	29.12	0.000%
25	-16.24	-16.11	-29.12	16.24	16.11	29.12	0.000%
.26	0.00	-97.88	0.00	-0.00	97.88	0.00	0.000%
27	-0.00	-97.88	-3.62	0.00	97.88	3.62	0.000%
28	1.74	-97.88	-3.09	-1.74	97.88	3.09	0.000%
29	2.91	-97.88	-1.73	-2.91	97.88	1.73	0.000%
30	3.35	-97.88	0.01	-3.35	97.88	-0.01	0.000%
31	3.02	-97.88	1.78	-3.02	97.88	-1.78	0.000%
32	1.78	-97.88	3.09	-1.78	97.88	-3.09	0.000%
33	0.01	-97.88	3.51	-0.01	97.88	-3.51	0.000%
34	-1.72	-97.88	3.04	1.72	97.88	-3.04	0.000%
35	-2.96	-97.88	1.73	2.96	97.88	-1.73	0.000%

Job Page *tnxTower* 28 of 33 Buckeye Mt. - Viper **Project** Date Engineered Tower Solutions, ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 Client Designed by Watauga County hicham.anssar FAX: 919-782-2710

	Su	m of Applied Forces	7		S		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
36	-3.34	-97.88	-0.03	3.34	97.88	0.03	0.000%
37	-2.97	-97.88	-1.77	2.97	97.88	1.77	0.000%
38	-1.78	-97.88	-3.13	1.78	97.88	3.13	0.000%
39	-0.00	-17.90	-6.02	0.00	17.90	6.02	0.000%
40	2.72	-17.90	-4.98	-2.72	17.90	4.98	0.000%
41	4.49	-17.90	-2.75	-4.49	17.90	2.75	0.000%
42	5.06	-17.90	0.04	-5.06	17.90	-0.04	0.000%
43	4.98	-17.90	2.99	-4.98	17.90	-2.99	0.000%
44	2.88	-17.90	5.00	-2.88	17.90	-5.00	0.000%
45	0.03	-17.90	5.53	-0.03	17.90	-5.53	0.000%
46	-2.64	-17.90	4.79	2.64	17.90	-4.79	0.000%
47	-4.73	-17.90	2.81	4.73	17.90	-2.81	0.000%
48	-5.02	-17.90	-0.10	5.02	17.90	0.10	0.000%
49	-4.68	-17.90	-2.90	4.68	17.90	2.90	0.000%
50	-2.87	-17.90	-5.13	2.87	17.90	5.13	0.000%

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥ .	o
T1	150 - 140	3.153	44	0.19	0.06
T2	140 - 120	2.746	44	0.19	0.06
T3	120 - 100	1.965	44	0.17	0.05
T4	100 - 80	1.292	44	0.14	0.04
T5	80 - 60	0.781	44	0.10	0.03
T6	60 - 40	0.415	39	0.07	0.01
T7	40 - 20	0.183	39	0.04	0.01
T8	20 - 0	0.049	39	, 0.02	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in .	0	0	ft
159.00	5/8-in x 4-ft Lightning Rod	44	3.153	0.19	0.06	301225
149.00	20'x3" pipe	44	3.112	0.19	0.06	301225
147.00	Side Arm Mount [SO 303-3]	44	3.030	0.19	0.06	301225
117.00	Side Arm Mount [SO 303-3]	44	1.855	0.17	0.05	39255
92.00	6' Dish Ice Shield	44	1.069	0.12	0.03	29786
86.00	8' Dish Ice Shield	44	0.918	0.11	0.03	32843
85.00	HX6-6W-6WH	44	0.894	0.11	0.03	33414
80.00	PL6-65-PXA	44	0.781	0.10	0.03	35799
79.00	PL6-65-PXA	44	0.759	0.10	0.03	35910

Maximum Tower Deflections - Design Wind

tnxTower Job 2025 08489BCC Meeting 29 of 33 Engineered Tower Solutions, PLLC Project Date 3227 Wellington Ct. ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710 Watauga County Designed by hicham.anssar

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load	•	
	ft	in	Comb.	· о	0
T1	150 - 140	18.301	3	1.12	0.34
T2	140 - 120	15.946	3	1.11	0.33
T3	120 - 100	11.422	3	0.99	0.29
T4	100 - 80	7.533	3 .	0.79	0.22
T5	80 - 60	4.580	3	0.59	0.17
T6	60 - 40	2.426	3	0.38	0.09
T7	40 - 20	1.065	3	0.22	0.04
T8	20 - 0	0.284	3	0.11	0.02

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	o	ft
159.00	5/8-in x 4-ft Lightning Rod	3	18.301	1.12	0.34	59163
149.00	20'x3" pipe	3	18.064	1.12	0.33	59163
147.00	Side Arm Mount [SO 303-3]	3	17.592	1.12	0.33	59163
117.00	Side Arm Mount [SO 303-3]	3	10.787	0.96	0.28	6766
92.00	6' Dish Ice Shield	3	6.244	0.71	0.20	5198
86.00	8' Dish Ice Shield	3	5.375	0.65	0.19	5807
85.00	HX6-6W-6WH	3	5.238	0.64	0.18	5923
80.00	PL6-65-PXA	3	4.580	0.59	0.17	6410
79.00	PL6-65-PXA	3	4.454	0.58	0.16	6433

	Bol	t De	esigr	ı Da	ata
--	-----	------	-------	------	-----

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	` Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable	•	
TI	150	Leg	A325N	0.7500	4	0.95	29.82	0.032	1	Bolt Tension
		Diagonal	A325N	0.7500	1	1.38	4.62	0.298	1	Member Block Shear
		Top Girt	A325N	0.7500	1	0.08	7.37	0.011	1	Member Block Shear
T2	140	Leg	A325N	0.7500	4	5.48	29.82	0.184	1	Bolt Tension
		Diagonal	A325N	0.7500	1	2.70	4.62	0.583	1	Member Block Shear
T3	120	Leg	A325N	0.7500	6	9.15	29.82	0.307	1	Bolt Tension
		Diagonal	A325X	0.7500	1	5.76	7.77	0.741	İ	Member Block Shear
T4	100	Leg	A325N	0.7500	8	9.90	29.82	0.332	ľ	Bolt Tension
		Diagonal	A325N	0.7500	1	4.20	6.93	0.606	1	Member Block Shear
T5	80	Leg	A325N	0.7500	8	13.46	29.82	0.451	1	Bolt Tension
		Diagonal	A325N	0.7500	1	5.68	6.93	0.819	1	Member Block Shear
T6	60	Leg	A325N	1.0000	8	16.72	53.01	0.315	1	Bolt Tension
		Diagonal	A325N	0.7500	1	5.43	8.97	0.605	1	Member Block Shear
T7	40	Leg	A325N	1.0000	8	19.46	53.01	0.367	1	Bolt Tension
		Diagonal	A325N	1.0000	1	6.40	10.16	0.630	1	Member Block

Job Page *tnxTower* 30 of 33 Buckeye Mt. - Viper Project Date Engineered Tower Solutions, ETS, PLLC Job No. 24125017.STR.8177 15:00:36 03/25/25 **PLLC** 3227 Wellington Ct. Raleigh, NC 27615 Client Designed by Phone: (919) 782-2710 FAX: 919-782-2710 Watauga County hicham.anssar

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load Allowable	Allowable Ratio	Criteria
Т8	20	Diagonal	A325N	1.0000	1	6.96	16.94	0.411	1	Shear Member Block Shear

Compression Checks

Leg Design Data (Compression) Kl/r Section Elevation Size L L_u A P_u ϕP_n Ratio P_u fŧ ft ft in^2 K K ϕP_n 150 - 140 P2.5x.203 (2.875 OD) 0.081 T1 10.00 5.00 63.3 1.7040 -4.64 57.19 K=1.00T2 140 - 120 P2.5x.203 (2.875 OD) 20.00 5.00 63.3 1.7040 -24.42 57.19 0.427^{-1} K=1.00T3 120 - 100 P4x.237 (4.50 OD) 20.00 6.67 53.0 3.1741 -60.47 116.32 0.520^{-1} K=1.00 P5x.258 (5.563 OD) 0.515^{-1} T4 100 - 80 20.03 6.68 42.7 4.2999 -87.24 169.37 K = 1.00T5 80 - 60 P5x.258 (5.563 OD) 20.03 6.68 42.7 4.2999 -120.69 169.37 0.713^{-1} K=1.00P6x.28 (6.625 OD) T6 60 - 40 20.03 6.68 35.7 5.5813 -151.51 228.83 0.662^{-1} K=1.00 T7 Pipe 8.625"ODx0.322" 40 - 20 20.03 10.02 40.9 8.3993 -177.66 334.42 0.531^{-1} K=1.0020 - 0 Pipe 8.625"ODx0.322" T8 20.03 10.02 40.9 8.3993 -205.00 334.42 0.613 1 K=1.00

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Diagonal Design Data (Compression)									
Section No.	Elevation	Size	L	L _u '	Kl/r	A	P_u	φ <i>P</i> _n	Ratio Pu
	ft		ft	ft		in^2	K	K	ϕP_n
T1	150 - 140	L2x2x1/8	7.07	3.23	103.1 K=1.06	0.4844	-1.43	8.83	0.162
T2	140 - 120	L2x2x1/8	7.07	3.23	103.1 K=1.06	0.4844	-2.73	8.83	0.310 1
Т3	120 - 100	L2x2x3/16	8.33	3.72	114.9 K=1.01	0.7150	-6.12	12.23	0.501
T4	100 - 80	L2x2x3/16	9.43	4.49	· 136.7 K=1.00	0.7150	-4.42	8.65	0.512 1
T5	80 - 60	L2x2x3/16	10.94	5.25	159.9 K=1.00	0.7150	-5.43	6.32	0.859 1
Т6	60 - 40	L2 1/2x2 1/2x3/16	12.58	6.03	146.1 K=1.00	0.9020	-5.39	9.55	0.565 1

tnxTower

Engineered Tower Solutions, PLLC

3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

Job	Buckeye Mt Viper	2025-08-98-9BCC Meeting 31 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

Section	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_{μ}	Ratio
No.								,	P_u
	ft		ft	ft		in ²	K	K	ϕP_n
T7	40 - 20	L3x3x3/16	16.01	7.70	155.0 K=1.00	1.0900	-6.88	10.25	0.671 ¹
Т8	20 - 0	L3x3x5/16	17.62	8.51	173.4 K=1.00	1.7800	-7.81	13.38	0.583 1

 $^{^{1}}P_{u}/_{\phi}P_{n}$ controls

Section Elevation Size L L_u Kl/r A P_u ϕP_n Ratio P_u P_u		Top Girt Design Data (Compression)									
0 0 12 V V		Elevation	Size	L	L_u	Kl/r	A	P_u	φP _n	Ratio P _"	
Ji Ji Ji Ii K K ϕP_n		ft		ft	ft		in ²	K	K	ϕP_n	
T1 150 - 140 L2x2x3/16 5.00 4.47 136.1 0.7150 -0.08 8.72 0.009 ¹ K=1.00	T1	150 - 140	L2x2x3/16	5.00	4.47		0.7150	-0.08	8.72	0.009 1	

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Tension Checks

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in²	K	K	${\phi P_n}$
TI	150 - 140	P2.5x.203 (2.875 OD)	10.00	5.00	63.3	1.7040	3.79	76.68	0.049
T2	140 - 120	P2.5x.203 (2.875 OD)	20.00	5.00	63.3	1.7040	21.90	76.68	0.286
T3	120 - 100	P4x.237 (4.50 OD)	20.00	6.67	53.0	3.1741	54.88	142.83	0.384
T4	100 - 80	P5x.258 (5.563 OD)	20.03	6.68	42.7	4.2999	79.21	193.49	0.409
T5	80 - 60	P5x.258 (5.563 OD)	20.03	6.68	42.7	4.2999	107.69	193.49	0.557
T6	60 - 40	P6x.28 (6.625 OD)	20.03	6.68	35.7	5.5813	133.76	251.16	0.533
T7	40 - 20	Pipe 8.625"ODx0.322"	20.03	10.02	40.9	8.3993	155.69	377.97	0.412
T8	20 - 0	Pipe 8.625"ODx0.322"	20.03	10.02	40.9	8.3993	178.33	377.97	0.472

¹ P_u / ϕP_n controls

Diagonal Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
110.	ft		ft	ft		in ²	K	K	$\frac{1}{\phi P_n}$
T1	150 - 140	L2x2x1/8	7.07	3.23	64.5	0.2812	1.38	12.23	0.113 1
T2	140 - 120	L2x2x1/8	7.07	3.23	64.5	0.2812	2.70	12.23	0.220^{-1}
T3	120 - 100	L2x2x3/16	8.33	3.72	75.0	0.4132	5.76	20.14	0.286 1
T4	100 - 80	L2x2x3/16	9.43	4.49	89.9	0.4132	4.20	17.97	0.234 ¹

tnxTower

Engineered Tower Solutions, PLLC

PLLC 3227 Wellington Ct. Raleigh, NC 27615 Phone: (919) 782-2710 FAX: 919-782-2710

		2025-08-05 RCC Meeting
Job	· · · · · · · · · · · · · · · · · · ·	Page
	Buckeye Mt Viper	32 of 33
Project	ETS, PLLC Job No. 24125017.STR.8177	Date 15:00:36 03/25/25
Client	Watauga County	Designed by hicham.anssar

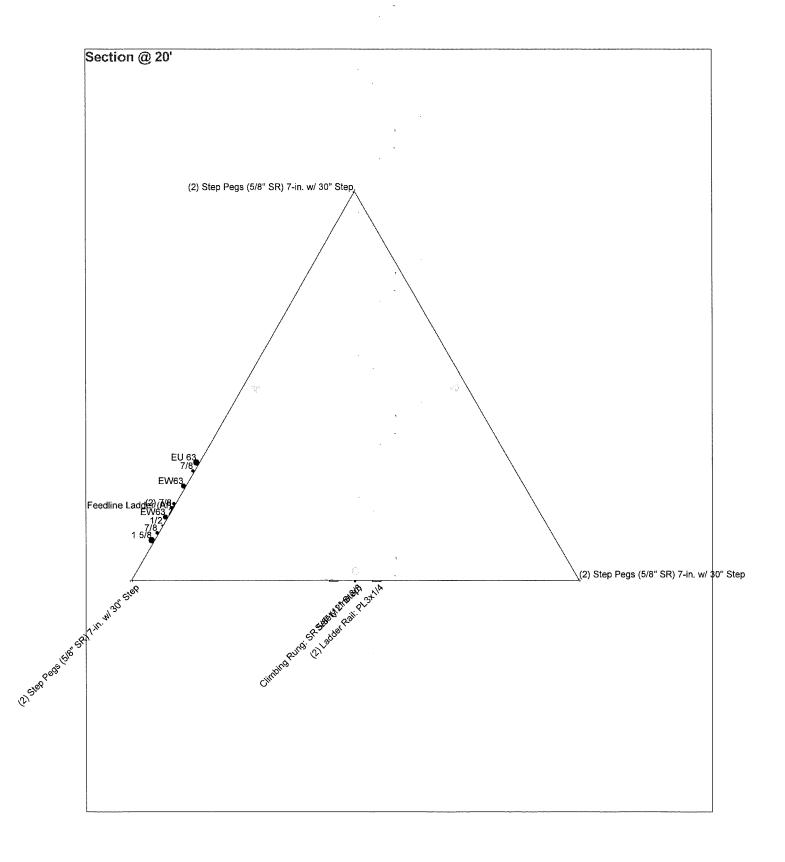
Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.								t - "	P_u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
T5	80 - 60	L2x2x3/16	9.91	4.75	95.1	0.4132	5.68	17.97	0.316 1
Т6	60 - 40	L2 1/2x2 1/2x3/16	12.02	5.75	90.8	0.5535	5.43	24.08	0.226^{-1}
T7	40 - 20	L3x3x3/16	16.01	7.70	100.5	0.6593	6.40	28.68	0.223^{-1}
T8	20 - 0	L3x3x5/16	17.62	8.51	112.9	1.0713	6.96	46.60	0.149 1

 $^{^{-1}} P_u / \phi P_n$ controls

Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P
	ft		ft	ft		in^2	K	K	$\frac{1}{\phi P_n}$
TI	150 - 140	L2x2x3/16	5.00	4.47	92.6	0.4132	0.08	17.97	0.004 1
TI	150 - 140	L2x2x3/16	5.00	4.47	92.6	***************************************	0.08	17.97	

¹ P_u / ϕP_n controls

Section Capacity Table


Section	Elevation	Component	Size	Critical	Р	$øP_{allow}$	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
T1	150 - 140	Leg	P2.5x.203 (2.875 OD)	1	-4.64	57.19	8.1	Pass
T2	140 - 120	Leg	P2.5x.203 (2.875 OD)	- 21	-24.42	57.19	42.7	Pass
T3	120 - 100	Leg	P4x.237 (4.50 OD)	48	-60.47	116.32	52.0	Pass
T4	100 - 80	Leg	P5x.258 (5.563 OD)	69	-87.24	169.37	51.5	Pass
T5	80 - 60	Leg	P5x.258 (5.563 OD)	90	-120.69	169.37	71.3	Pass
T6	60 - 40	Leg	P6x.28 (6.625 OD)	111	-151.51	228.83	66.2	Pass
T 7	40 - 20	Leg	Pipe 8.625"ODx0.322"	132	-177.66	334.42	53.1	Pass
T8	20 - 0	Leg	Pipe 8.625"ODx0.322"	. 147	-205.00	334.42	61.3	Pass
Τl	150 - 140	Diagonal	L2x2x1/8	8	-1.43	8.83	16.2	Pass
							29.8 (b)	
T2	140 - 120	Diagonal	L2x2x1/8	23	-2.73	8.83	31.0	Pass
							58.3 (b)	
T3	120 - 100	Diagonal	L2x2x3/16	50	-6.12	12.23	50.1	Pass
							74.1 (b)	
T4	100 - 80	Diagonal	L2x2x3/16	70	-4.42	8.65	51.2	Pass
							60.6 (b)	
T5	80 - 60	Diagonal	L2x2x3/16	92	-5.43	6.32	85.9	Pass
T6	60 - 40	Diagonal	L2 1/2x2 1/2x3/16	113	-5.39	9.55	56.5	Pass
							60.5 (b)	
T7	40 - 20	Diagonal	L3x3x3/16	134	-6.88	10.25	67.1	Pass
T8	20 - 0	Diagonal	L3x3x5/16	149	-7.81	13.38	58.3	Pass
T1	150 - 140	Top Girt	L2x2x3/16	. 4	-0.08	8.72	0.9	Pass
							1.1 (b)	
							Summary	
						Leg (T5)	71.3	Pass
						Diagonal	85.9	Pass
						(T5)		
						Top Girt	1.1	Pass
			¢			(T1)		
			•			Bolt Checks	81.9	Pass
						RATING =	85.9	Pass

tnxTower	Job	Buckeye Mt Viper	2025-	0 8-99-9 BCC Meeting 33 of 33
Engineered Tower Solutions, PLLC 3227 Wellington Ct.	Project	ETS, PLLC Job No. 24125017.STR.8177		Date 15:00:36 03/25/25
Raleigh, NC 27615 Phone: (919) 782-2710 F4Y: 010-782-7710	Client	Watauga County		Designed by hicham.anssar

Program Version 8.3.1.2 - 12/11/2024 File:C:/Users/hicham.anssar/OneDrive - Engineered Tower Solutions/Desktop/125017_1018_Buckeye_Mapping Geo SA/SE/8177_Tower Modification Drawings/Analysis/Tower/Buckeye Mt. - Viper.eri

150.0 Ft Self Support Structural Modification Analysis ETS, PLLC Job Number: 24125017.STR.8177

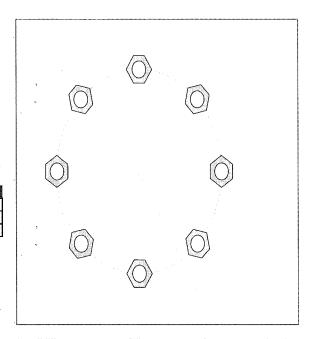
APPENDIX B BASE LEVEL DRAWING

Engineered Tower Solutions, PLLC	l ^{lob:} Buckeye Mt Viper	
3227 Wellington Ct.	Project: ETS, PLLC Job No. 24125017.STR.8177	
Raleigh, NC 27615	Client: Watauga County Drawn by: hicham.anssar	App'd:
Phone: (919) 782-2710	Code: TIA-222-G Date: 03/25/25	Scale: NTS
FAX: 919-782-2710	Path:	Dwg No. E-7

150.0 Ft Self Support Structural Modification Analysis ETS, PLLC Job Number: 24125017.STR.8177

APPENDIX C ADDITIONAL CALCULATIONS

Self Support Anchor Rod Capacity


Site Info				
Site #	HP-1343			
Site Name	Buckeye Mt Viper			
ETS, PLLC#	24125017.STR.8177			

Analysis Considerations	
TIA-222 Revision	G
Grout Considered:	Yes
l _{ar} (in)	0
Eta Factor, η	0.55

Applied Loads					
	Comp.	Uplift			
Axial Force (kips)	212.00	185.00			
Shear Force (kips)	22.00	19.00			

Considered Eccentricity				
Leg Mod Eccentricity (in)	0.000			
Anchor Rod N.A Shift (in)	0.000			
Total Eccentricity (in)	0.000			

^{*}Anchor Rod Eccentricity Applied

Connection Properties	1# 4g		Analysis Results	3
Anchor Rod Data		Anchor Rod Summary		(units of kips, kip-in)
(8) 1" ø bolts (F1554-55 N; Fy=55 ksi, Fu=75 ksi)	•	Pu_t = 23.13	φPn_t = 36.36	Stress Rating
l _{ar} (in): O		Vu = 2.38	φVn = n/a	75.5%
		Mu = n/a	φMn = n/a	Pass

SST Unit Base Foundation

Site # : HP-1343
Site Name: Buckeye Mt. - Viper
ETS, PLLC #: 24125017.STR.8177

TIA-222 Revision: G

Top & Bot. Pad Rein. Different?:	
Tower Centroid Offset?:	7, 1
Block Foundation?:	
Rectangular Pad?:	- Seo.

Superstructure Analysis	Reactions	
Global Moment, M:	2670	ft-kips
Global Axial, P:	21	kips
Global Shear, V:	34	kips
Leg Compression, P _{comp} :	212	kips
Leg Comp. Shear, V _{u_comp} :	22	kips
Leg Uplift, Puplift:	185	kips
Leg Uplift. Shear, V u_uplift:	19	kips
Tower Height, H :	150	ft
Base Face Width, BW :	15	ft
BP Dist. Above Fdn, bp _{dist} :	3	in

Foundation Analysis Checks					
	Capacity	Demand	Rating	Check	
Lateral (Sliding) (kips)	209.40	34.00	16.2%	Pass	
Bearing Pressure (ksf)	4.31	1.95	45.4%	Pass	
Overturning (kip*ft)	5011.94	3019.70	60.3%	Pass	
Pier Flexure (Comp.) (kip*ft)	1094.56	121.00	11.1%	Pass	
Pier Flexure (Tension) (kip*ft)	592.82	104.50	17.6%	Pass	
Pier Compression (kip)	5998.68	224.44	3.7%	Pass	
Pad Flexure (kip*ft)	1815.06	215.38	11.9%	Pass	
Pad Shear - 1-way (kips)	394.85	74.99	19.0%	Pass	
Pad Shear - Comp 2-way (ksi)	0.164	0.070	42.6%	Pass	

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier :	4.0	ft
Ext. Above Grade, E:	0.50	ft
Pier Rebar Size, Sc :	7	
Pier Rebar Quantity, mc:	16	
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, mt:	7	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Structural Rating:	42.6%
Soil Rating:	60.3%

Pad Properties		un e e e e e
Depth, D:	6.75	ft
Pad Width, W ₁ :	24.00	ft
Pad Thickness, T:	1.75	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	7	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	43	
Pad Clear Cover, cc _{pad} :	3	in

Material Properti	es	
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3.0	ksi
Dry Concrete Density, δ c :	150	pcf

Soil Properties		
Total Soil Unit Weight, γ :	110	pcf
Ultimate Net Bearing, Qnet:	5.000	ksf
Cohesion, Cu:	0.000	ksf .
Friction Angle, $arphi$:	30	degrees
SPT Blow Count, N _{blows} :	12	
Base Friction, μ :	0.35	
Neglected Depth, N:	2.0	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	N/A	ft

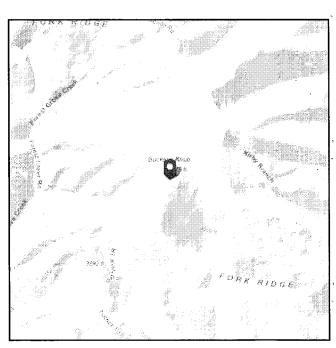
Address:

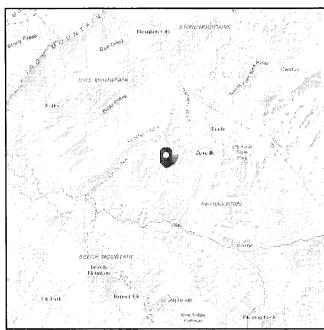
No Address at This Location

ASCE Hazards Report

Standard: ASCE/SEI 7-10

Risk Category: Ⅳ


Soil Class: D - Stiff Soil


Latitude: 36.31608

Longitude: -81.79151

Elevation: 4364.061870703125 ft

(NAVD 88)

Wind

Results:

Wind Speed 120 Vmph
10-year MRI 76 Vmph
25-year MRI 84 Vmph

50-year MRI 90 Vmph

96 Vmph

Special

100-year MRI

140 Vmph for elevations between 3500 ft and 4500 ft, Topographic effects do not need to be considered with the required wind speeds per Jurisdiction guidances.

Special Wind Region -- Mountainous terrain, gorges, and special wind regions shown in Fig. 26.5-1 shall be examined for unusual wind conditions. The Authority Having Jurisdiction shall, if necessary, adjust the values given in Fig. 26.5-1 to account for higher local wind speeds. Such adjustment shall be based on meteorological information and an estimate of the basic wind speed obtained

in accordance with the provisions in Section 26.5.3.

Data Source:

ASCE/SEI 7-10, Fig. 26.5-1B and Figs. CC-1-CC-4, and Section 26.5.2,

Date Accessed:

incorporating or March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2.

Seismic

Site Soil Class:	D - Stiff Soil					
Results:		2				
S _s :	0.272	S _{D1} :	0.157			
S ₁ :	0.098	T_L :	12			
F _a :	1.582	PGA:	0.145			
F _v :	2.4	PGA _M :	0.219			
S _{MS} :	0.431	F _{PGA} :	1.51			
S _{M1} :	0.236	l _e :	1.5			
S _{DS} :	0.287	1				
Seismic Design Catego	Response Spectrum	0.30	Design Respo	nse Spectru	m	
0.40		0.25				
0.30		0.20				
0.25		0.15				
0.15		· 0.10				
0.10	* Hx 10p	· 0 05				
0 2 4 S _a (g) v	6 8 10 12 e T/e)	0 <u>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>	² S _a (g) vs T(s)	8 10	12	14

Data Accessed:

Tue Mar 25 2025

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:

0.75 in.

Concurrent Temperature:

15 F

Gust Speed

30 mph

Data Source:
Date Accessed:

Tue Mar 25 2025

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

In the Appalachian Mountains, ice thicknesses may vary significantly over short distances.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

APPENDIX D MODIFICATION DESIGN DRAWINGS

TOWER MODIFICATION DRAWINGS

	SITE INFORMATION
SITE NAME	BUCKEYE MT VIPER
SITE NUMBER	HP-1343
SITE ADDRESS	2542 FOREST GROVE ROAD VILAS, NC 2859à WATAUGA COUNTY
LAT. / LONG,	N 36.3160817, W 61.79151177
ETS JOB#	24125017.STR.8177
TOWER MANUFACTURER	VALMONT
TOWER TYPE	SELF SUPPORT TOWER
TOWER HEIGHT	150.0 FT

DRIN		

FROM VILAS, HEAD SOUTH ON ABBY LN TOWARD US-321 SAUS-421 S (125 FT).
SHAPP RIGHT FONTO US-321 MAN-241 N (102 M M). TURN LET FONTO BULLDOS RO
(3.0 M), TURN LEFT ONTO NFORK RD (0.8 M). CONTINUE STRAIGHT ONTO FORK
(DOE RD (1.4 M)). TURN LEFT ONTO BUCKETE RIDISE ROWNDODS RD (0.7 M), TUR
RIGHT ONTO FORK RIDGE RD (0.4 M), TOWER WILL BE ON THE RIGHT.

. 7	PROJECT CONTACTS	
1.	CLIENT REPRESENTATIVE	
	MARTY RANDALL	
	10-18 CONSULTING MOBILE (828) 527-2416	
	MARTY.RANDALL@1018CONSULTING.COM	
2.	CONSTRUCTION MANAGER TBD	
3.	ENGINEER OF REGORD (EOR)	
	J, SCOTT HILGOE, P.E.	
	3227 WELLINGTON CT. RALEIGH, NC 27615 OFFICE: (919) 792-2710	4
	SCOTT.HILGOE@ETS-PLLC.COM ·	

ETS OFFERS REVIEW OF CONTRACTOR-PREPARED CLASS IV RIGGING PLANS FOR A FEE. CONTACT RIGGING PETS-PLLC.COM FOR PRICING AT TIMELINE.

NOTE FOR CONTRACTOR

SUFFICIENT OETALS. ARE PROVIDED FOR ALL PETCHTNE AND CONSTRUCTIBLE ESSIGN BASEG ON THE AVAILABLE PROGNATION AT THE TIME OF THE DESIGN, IF NEW INFORMATION RECOMES AND ALL PROVIDED THE PROVIDED THE PROVIDED THE PROVIDED THE PROVIDED TO MATERIAL ORDERS, FARRICATION/OR CONSTRUCTION OF ESSIEN, HOWEVER, AND FEMATION FROM THIS PRIOR TO MATERIAL ORDERS, FARRICATION/OR CONSTRUCTION OF ESSIEN, HOWEVER, AND FEMATION FROM THE PROVIDED TO MATERIAL ORDERS, FARRICATION/OR CONSTRUCTION OF ESSIEN, HOWEVER, AND FEMATION FROM THE PROVIDED TO MATERIAL ORDERS, FARRICATION/OR CONSTRUCTION OF ESSIEN, HOWEVER, AND FEMATION FROM THE RIGHT OF THE PROVIDED THE RIGHT OF THE PROVIDED THE

	CODE COMPLIANCE
	BASED ON THE REQUIREMENTS OF TIA STRUCTURAL STANDARDS FOR STEEL WERS AND ANTENNA SUPPORTING STRUCTURES USING:
TIA CODE	TIA-222-G
BUILDING CODE	2018 NORTH CAROLINA STATE BUILDING CODE (2015 IBC)
NOMINAL WIND SPEED	108 MPH (AS REQUIRED BY WATAUGA COUNTY)
ICE THICKNESS	1,00 IN
WIND SPEED WITH ICE	30 MPH
SERVICE LOAD WIND SPEED	60 MPH
EXPOSURE CATEGORY	с
STRUCTURE CLASS	10
TOPOGRAPHIC CATEGORY	1
SPECIAL NOTES	

REV. (DATE) 0-03/25/2025 0-03/25/2025 0-03/25/2025 0-03/25/2025 0-03/25/2025	DESCRIPTION TITLE PAGE MODIFICATION INSPECTION CHECKLIST PROJECT NOTES BILL OF MATERIALS
0 - 03/25/2025 0 - 03/25/2025 0 - 03/25/2025	MODIFICATION INSPECTION CHECKLIST PROJECT NOTES BILL OF MATERIALS
0 · 03/25/2025 0 · 03/25/2026	PROJECT NOTES BILL OF MATERIALS
0-03/25/2025	BILL OF MATERIALS
0.03/25/2025	
	TOWER ELEVATION AND MODIFICATION SCHEDULE
0-03/25/2025	SITE PLAN
0-03/25/2025	DIAGONAL REPLACEMENT DETAILS
0-03/25/2025	PHOTOS
	-
-	-
-	
-	
- "	
-	
-	•
-	
-	
	- 03/25/2025

	PREPARED BY:	l	
	ENGINEERED TOWER SOLUTIONS		
77	3227 WELLINGTON COURT RALEIGH, NC 27815 a: 919-782-2710, f: 919-435-0631 www.ets-pilc.com		
TEEL	PREPARED FOR		
	BUCKEYE MT VIPER		
	SITE NUMBER		
	HP-1343 SITE ADDRESS:	l	
	SITE ADDRESS: 2542 FOREST GROVE ROAD VILAS, NC 28698		
-	LATITUDEA.ONGITUDE N 38,316081*, W 81,791511*		
	SEAL CAROLLING ESSION		
	SEAL 7: E		
	COTT HIGH	ļ	
	03/25/2025		
	REV DATE DETAILS 0 03/25/2025 FOR CONSTRUCTION	l	
	1	l	
	3		
	4	l	
_	6	l	
	7	l	
	9	l	
	10	l	
	12		
	14		
	DRAWN BY: EDR CHECKED BY: HA		
	SHEET TITLE	l	

TITLE PAGE

	,	MI CHECKLIST
REQUIRED	REPORT ITEM	BRIEF DESCRIPTION
		PRE-CONSTRUCTION
N/A	EOR APPROVED SHOP DRAWINGS	ONCE THE PRE-MODIFICATION MAPPING IS COMPLETE AND PRIOR TO FARRICATION, THE CONTRACTOR SHALL PROVIDE DETAILED ASSEMBLY DRAWING ANDOR SHOP DRAWINGS ALONG WITH EOR RRI FORM DETAILING ANY CHANGES FROM THE ORIGINAL DESIGN TO THE EOR FOR REVIEW AND APPROVAL.
N/A	FABRICATION INSPECTION	A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THE CONTRACT DOCUMENTS, SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	FABRICATOR CERTIFIED WELD INSPECTION	A CWI SHALL INSPECT ALL WELDING PERFORMED ON STRUCTURAL MEMBERS DURING FABRICATION, A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
×	MATERIAL TEST REPORTS (MTR)	MATERIAL TEST REPORTS SHALL BE PROVIDED FOR MATERIAL USED. MTRS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	FABRICATOR NDE INSPECTION REPORT	CRITICAL SHOP WELDS THAT REQUIRE TESTING ARE NOTED ON THESE CONTRACT DRAWINGS. A CERTIFIED NOT INSPECTOR SHALL PERFORM NON-CESTRUCTIVE EXAMINATION AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.
N/A	NDE OF MONOPOLE BASE PLATE	A NDE OF THE POLE TO BASE PLATE CONNECTION IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION I THE MI REPORT.
×	PACKING SLIPS	PACKING/SHIPPING LIST FOR ALL MATERIAL USED DURING CONSTRUCTION OF THE MODIFICATION.
	STING AND INSPECTIONS:	
N/A		
		CONSTRUCTION
N/A	FOUNDATION INSPECTIONS	A VISUAL DESERVATION OF THE EXCAVATION AND REBAR SHALL BE PERFORMED BEFORE PLACING THE CONCRETE. A VISUAL DESERVATION OF THE REBAR SHALL BE PROVIDED THE DEFORE PLACING THE BROXY, A SEALED VIRITIEN REPORT SHALL BE PROVIDED TO THE MINISPECTOR FOR INCLUSION THE MIRRORIT.
NVA	CONCRETE COMP, STRENGTH AND SLUMP TEST	THE CONCRETE MIX DESIGN, SLUMP TEST, AND COMPRESSIVE STRENGTH TESTS SHALL BE PROVIDED AS PART OF THE FOUNDATION REPORT.
NJA	EARTHWORK: SOIL COMPACTION	FOUNDATION SOIL COMPACTION SHALL BE INSPECTED AND APPROVED BY AN APPROVED FOUNDATION INSPECTOR AND RESULTS INCLUDED AS PART OF THE FOUNDATION REPORT.
N/A	EARTHWORK: BEARING CAPACITY	FOUNDATION SUB-GRADES SHALL BE INSPECTED AND APPROVED BY AN APPROVED FOUNDATION INSPECTOR AND RESULTS INCLUDED AS PART OF TI FOUNDATION REPORT.
N/A	MICROPILE/ROCK ANCHOR	MICROPILES/ROCK ANCHORS SHALL BE INSPECTED BY THE FOUNDATION INSPECTION VENDOR AND SHALL BE INCLUDED AS PART OF THE FOUNDATION INSPECTION REPORT, ADDITIONAL TESTING AND/OR INSPECTION REQUIREMENTS ARE NOTED IN THE PROJECT NOTES.
N/A	POST-INSTALLED ANCHOR ROD VERIFICATION	POST INSTALLED ANCHOR ROD VERIFICATION SHALL BE PERFORMED IN ACCORDANCE WITH REQUIREMENTS AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT,
N/A	BASE PLATE GROUT VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR THAT CERTIFIES THAT THE GROUT WAS REMOVED AND/OR INSTALLED IN ACCORDANCE WITH APPLICABLE REQUIREMENTS FOR INCLUSION IN THE MI REPORT.
N/A	FIELO CERTIFIED WELD INSPECTION	A CERTIFIED WELD INSPECTOR SHALL INSPECT AND TEST PIELD WELDS PER THE WELDING NOTES ON SHIET N.Z. A REPORT SHALL BE PROVIDED, NO OF FILED WELDS SHALL BE PERFORMED AS REQUIRED BY APPLICABLE STANDARDS AND COMTRACT DOCUMENTS. THE NDE REPORT SHALL BE INCLUDED IN THE CYM REPORT.
N/A	FIELD NDE	A NDE OF THE FIELD WELDS AND ANY ADDITIONAL NDE REQUIREMENTS NOTED IN THESE DESIGN DOCUMENTS.
x	ON-SITE COLD GALVANIZING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE WRITTEN AND PHOTOGRAPHIC DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY ON-SITE COLD GALVANIZING WAS APPLIED PER MANUFACTURER SPECIFICATIONS AND APPLICABLE STANDARDS.
N/A	TENSION TWIST AND PLUMB	THE GENERAL CONTRACTOR SHALL PROVIDE A REPORT IN ACCORDANCE WITH APPLICABLE STANDARDS DOCUMENTING TENSION TWIST AND PLUMB.
N/A	TOWER PLUMB DELIVERABLES	THE CONTRACTOR SHALL PROVIDE WRITTEN AND PHOTOGRAPHIC DOCUMENTATION TO THE MITHSPECTOR VERIFYING THE TOWER PLUMB CONDITION
N/A	CANISTER DRAWINGS	THE CONTRACTOR SHALL SUBMIT A LEGIBLE COPY OF ANY FINAL FABRICATION OR PARTS DRAWINGS PROVIDED BY THE CANISTER VENDOR.
x	GC AS-BUILT DRAWINGS	THE GENERAL CONTRACTOR SHALL SUBMIT A LEGIBLE COPY OF THE ORIGINAL DESIGN DRAWINGS GITHER STATING TINSTALLED AS DESIGNED! OR NOTING ANY CHANGES THAT WERE REQUIRED AND APPROVED BY THE ENGINEER OF RECORD, EORRIFI FORMS APPROVING ALL CHANGES SHALL BE SUBMITTED.
	STING AND INSPECTIONS	
N/A	l	PORT CONSTONE TON
2. =	1 August 1860 1860 1860 1860 1860 1860 1860 1860	POST-CONSTRUCTION
х	CONSTRUCTION COMPLIANCE LETTER	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AN THESE CONTRACT DRAWNIGS.
N/A	POST-INSTALLED ANCHOR ROO PULL TESTS	POST-INSTALLED ANCHOR RODS SHALL BE TESTED BY AN APPROVED PULL TEST INSPECTOR AND A REPORT SHALL BE PROVIDED INDICATING TESTIM RESULTS.
х	PHOTOGRAPHS	PHOTOGRAPHS SHALL BE SUBMITTED TO THE MI, PHOTOS SHALL DOCUMENT ALL PHASES OF THE CONSTRUCTION. THE PHOTOS SHALL BE ORGANIZE IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO.
N/A	BOLT HOLE INSTALLATION VERIFICATION REPORT	THE MINSPECTOR SHALL VERIFY THE HOLE SIZE AND CONDITION OF 10M OF ALL NON PRE-TENSIONED BOLTS INSTALLED AS PART OF THE MODIFICATION, THE MIREPORT SHALL CONTAIN THE COMPLETED BOLT INSTALLATION VERIFICATION REPORT, INCLUDING THE SUPPORTING PHOTOGRAPHS.
×	PUNCH LIST DEVELOPMENT AND CORRECTION DOCUMENTATION	FINAL PUNCH LIST INDICATING ALL NONCONFORMANCE(S) IDENTIFIED AND THE FINAL RESOLUTION/APPROVAL.
x	MI INSPECTOR RECORD DRAWING(S)	THE MINSPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTOR'S REDLINE DRAWING AND THE ACTUAL COMPLETED INSTALLATION.
	STING AND INSPECTIONS.	
N/A	I .	

MODIFICATION INSPECTION NOTES

GENERAL

THE BIT IS ALL OWNETE VISION, AND LANDSON INSPECTION OF TOWER MODIFICATIONS MICHORISM PROPERTY OF THE PROPERTY

THE M IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN IT SELF, AND THE M INSPECTION DOES NOT MODIFICATION DESIGN FFECTIVENESS AND INTERSITY RESURSES WITH THE GOT AT ALL TIMES, THE M INSPECTION SHALL INSPECT AND NOTE CONFORMANCE/NONCONFORMANCE AND PROVIDE TO THE POINT OF CONFIATOR FOR EVALUATION.

TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GO, AND THE MI INSPECTOR BESIN COMMUNICATION AND COORDINATING ASSOCIAN SA PHORMAGE GOORS | FOUL IS RECEIVED. IT IS EXPECTED THAT EACH PARTY MUL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY, IF CONTACT INFORMATION IS NOT MOWN'N THE OR ADMINISHMENT OF SHALL CONTACT THE POINT OF CONTACT POOL.

SERVICE LEVEL COMMITMENT

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MIREPORT

- EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MIRROPORT

 11 FIG. OS. ALIAN, PROVIDE A MINIMAN OF SILBURISSO SINVA NOTICE, PREFERABLY 10, TO
 11-EM INSPECTIOR AS TO WHEN THE SITE VILL, BE REDAY FOR THE MIT O BE
 CONDUCTED.

 11 FIG. CAND MINISPECTOR COORDINATE CLOSER, Y THROUGHOUT THE ENTIRE
 PROJECT.

 16 FIG. CAND MINISPECTOR COORDINATE CLOSER, Y THROUGHOUT THE ENTIRE
 PROJECT.

 17 FIG. AND MINISPECTOR COORDINATE CLOSER, Y THROUGHOUT THE ENTIRE
 PROJECT.

 18 FIG. AND MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR ON MINISPECTOR IS ON MINISPECTOR IT MINISPECTOR. THE MINISPECTOR IS GONDAY OF MINISPECTOR IN SOURCE AND MINISPECTOR IS SOURCE AND MINISPECTOR IS SOURCE AND MINISPECTOR IS SOURCE AND MINISPECTOR IS SOURCE AND MINISPECTOR IS SOURCE AND MINISPECTOR IS MINISPECTOR IS ON MITTER ON MINISPECTOR IS ON MINISPECTOR IS ON MINISPECTOR IS ON MINISPECTOR IS ON MINISPECTOR IS ON MINISPECTOR IN MINISPECTOR IS ON MINISPECTOR IN MINISPECTOR IS ON MINISPECTOR IN MINISPECTO

REQUIRED PHOTOS

AGE TO BE TAKEN AND INCLUDED IN THE MI REPORT
PRE-CONSTRUCTION GENERAL SIZE CONDITION
PHOTOGRAPHED DURING THE REINFORCEMENT MODIFICATION
CONSTRUCTIONSECTION AND INSPECTION
RAWMATERIALS
PHOTOGRAPH OF THE REINFORCEMENT MODIFICATION
RAWMATERIALS
WELD PREPARATION
BUT INSTALLATION
FINAL INSTALLATION
FINAL INSTALLATION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PROTALED CONDITION
FINAL PHOTOS OF ELEVATED MODIFICATIONS TAKEN ONLY FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

BUCKEYE MT. -VIPER HP-1343 SITE ADDRESS. 2542 FOREST GROVE ROAD VILAS, NC 28698 LATITUDEA ONG/TUDE: N 36.316081*, W 81,791511*

REV	DATE		CETAILS	;
Đ	03/25/2025	FC	R CONSTRU	ICTION
1				
2				
3				
4				
5				
8				
7				
В				
9				
10				
11		L		
12				
13				
14				
DRAV	MN BY EDR	ā	CHECKED B	Y. HA

MODIFICATION INSPECTION CHECKLIST

SHEET N-1 CURRENT REV #: 0
ETS #: 24125017.STR.6177

GENERAL NOTES:

- ALL REFERENCES TO THE OWNER IN THESE DOCUMENTS SHALL BE CONSIDERED WATAUGA COUNTY OR ITS DESIGNATED REPRESENTATIVE.
- IS DEBIGNATED REPRESENTATIVE.

 ALL WORK PRESENTED ON THESE DAYMINGS MUST BE COMPLETED BY THE CONTRACTOR UNLESS NOTED THE REPRESENTED OF THE PROPERTY OF THE PR
- WORK SHALL BE COMPLETED IN ACCORDANCE WITH THE 2016 NORTH CAROLINA STATE BUILDING CODE (2016 IBC).
- , VAID BLOY, UNLESS SHOWN OR NOTED OTHERWISE ON THE CONTRACT DRAWINGS, OR IN THE SPECIFICATIONS, THE FOLLOWING NOTES SHALL APPLY TO THE MATERIALS LISTED HEREIN, AND TO THE PROCEDURES TO BE USED ON THIS PROJECT.
- GREAT OF THIS PROJECT.

 ALL HARDWARE ASSEMBLY MANUFACTURER'S INSTRUCTIONS SHALL BE FOLLOWED EXACTLY AND SHALL SUPERSEDE ANY CONFLICTING NOTES ENCLOSED MERSIN
- SWERSED ANY COMPLETION OF THE ENCLOSED INFERN.

 IT IS THE CONTRACTORS SOLE RESPONSIBILITY TO DETERMINE REPECTION PROCEDURE AND SEQUENCE
 TO INSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION AUDION
 FILE MODIFICATIONS. THE SACULUSE AND ITS COMPONENT PARTS DURING ERECTION AUDION
 FILE MODIFICATIONS. THE SACULUSE AND ITS COMPONENT PARTS DURING ERECTION AUDION
 THE PROPERTY OF THE COMPRACTOR AFTER THE COMPLETION OF THE PROJECT.

 AND DURING SINGLE EXCHANGINA AND SETTING CONTRACTOR SHOWN ON THE PROPERTY.

 VERYING BY THE CONTRACTOR PRIOR TO BEDINSING ANY MATERIALS ORDERING, FARRICATION OR

 CONTRACTION FOR WORK OF THIS PROJECT. CONTRACTOR SHALL NOT SCALE CONTRACTOR SHALL BY

 THE CONTRACTOR TO PROCEED THAT THE VORK. THE CONTRACTOR SHALL DO THE CONTRACTOR SHALL BY

 THE CONTRACTOR TO PROCEED WITH THE WORK. THE CONTRACTOR SHALL DO THE PROJECT THE WORK THE CONTRACTOR SHALL BY

 THE CONTRACTOR TO PROCEED WITH THE WORK. THE CONTRACTOR SHALL DO THE WORK AND DISCONTENED THE WORK THE CONTRACTOR SHALL BY

 PROCEDURES, BESERVATION METER TO THE SITE BY THE WORK THE CONTRACTOR SHALL BY

 PROCEDURES, BESERVATION METER TO THE SITE BY THE WORK AND FOR SHALL BENNIERS THALL NOT INCLUDE INSPECTION OF THE PROTECTIVE MESANIES ON THE PROCEDURES.

- ALL PERMITS THAT MUST BE DATAINED ARE THE RESPONSIBILITY OF THE CONTRACTOR, THE CONTRACTOR WILL BE RESPONSIBLE FOR ABIDING BY ALL CONDITIONS AND REQUIREMENTS OF THE PERMITS.
- PERMITS.

 12. IF APPLICABLE, ALL CONCRETE WORK SHALL COMPLY TO LOCAL CODES AND THE ACI 318-19, "BUILDING REQUIREMENTS FOR STRUCTURAL CONCRETE".
- Z4 HOURS PRIOR TO THE BEGINNING OF ANY CONSTRUCTION, THE CONTRACTOR MUST NOTIFY THE APPLICABLE JURISDICTIONAL (STATE, COUNTY OR CITY) ENGINEER.

WELDING NOTES:

- ALL WELDING SHALL BE IN ACCORDANCE WITH THE AWS D1.1/D1.1M 2015 "STRUCTURAL WELDICODE-STEEL".

- VANDS.
 FOR ALL WELDING, USE E70XX ELECTRODES.
 AFTER FRAIL INSPECTION, THE AREA OF THE WELDS, THE INSTALLATION AND ALL SURFACES DAMAGED BY
 AFTER FRAIL INSPECTION, THE AREA OF THE WELDS. THE INSTALLATION AND ALL SURFACES DAMAGED BY
 ENGLISH. THE GALVANIZING COMPOUND SHALL CONTAIN A MINIMUM OF 5% 12 PURE ZINC, THE PINISHED
 COLTING SHALL BE A MINIMUM THOROUGHS OF 3 MLS.

STRUCTURAL STEEL NOTES:

- THE FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC SPECIFICATION FOR MANAL, OF STEEL CONSTRUCTION, LOAD AND RESISTANCE FACTOR RESIGN, 15TH EDITION.

 LIKESS, OTHERWISE NOTED, ALL STRUCTURAL REMEMIS SHALL CONFORM TO THE POLICOMING REPORT OF THE POLICOMING REMEMIS SHALL STELL SHALL STELL SHALL STELL SHALL STELL SHALL STELL SHALL SH

 - PLATE ASTIMASTASS (INCNOPOLE)
 GUYED WIRES. ASTIMATS (INCLUDED.
 GUYED WIRES. ASTIMATS (INCLUDED.
 GUYED WIRES. ASTIMASS (INCLUDED.
 LABOLTS, ASTIMASS TOPE (IS AUT. WAMEDED HIGH STRENGTH BOLTS.
 ALL UJBOLTS. ASTIMASS CRADON AND ALLOY STEEL NUTS.
 ALL WASHERS, ASTIMASS CRADON AND ALLOY STEEL NUTS.
 ALL WASHERS, ASTIMASS ASTIMASS OF STEEL WASHERS.

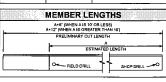
- ALL CONNECTIONS NOT FULLY DETAILED ON THESE FLANS SHALL BE DETAILED BY THE STEEL FABRICATOR IN ACCORDANCE WITH JUSC. SPECIFICATION FOR MANUAL OF STEEL CONSTRUCTION, LOAD AND RESISTANCE FULL DESIGNA, 1514 EDITION, LARGE SPROVED BY THE REDINIESE.

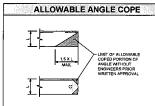
 HOT-DIP DIALWANGE ALL THESE UNLESS OTHERWISE INTEO, AFTER FARRICATION WHERE PRACTICABLE GALVANIZING AND THAT ALL AND ASSISTANCE AND ASSISTANCE AS PREJUABLE.
 REPAIR DIAMAGES DUFFACES WITH GALVANIZING REPAIR NETHOO, AND PAINT CONFORMING TO ASTEM ATTO OR BY APPLICABLE OF THE ASSISTANCE AND ASSISTANCE A

- YAMAN HE SHEAR RUANE.
 ALL PROPOSED ANDOR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT BE AT LEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELLOW THE FACE OF THE NUT AFFER THATENMOS IS COMPLETED.
 GALVANIZED ASTM AZSS BOLTS SHALL NOT BE RRUSED.

BOLT TIGHTENING PROCEDURE:

- CONNECTION BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIDITENED AS PER SECTION 2.2 OF THE ARC SMECRICATION FOR STRUCTURAL JOINTS USING ASSIGN AND BOLLS LOCATED IN THE ARC MARILLO OF STREET CONSTRUCTION THE INSTALLATION PROCEDURE IS PRAPHYMAKED AS FOLLOWS FASTENERS SHALL BE INSTALLED IN PROCESSAL VALCAGE HOLES AND TIGHTENED BY ONE OF THE MERITADOS DESCRIBED IN SUSSECTION 2.21 THROUGH 6.2.2.5
- METHODS DESCRIBED IN SUBSECTION A 2.1 THROUGH 6.2.4.

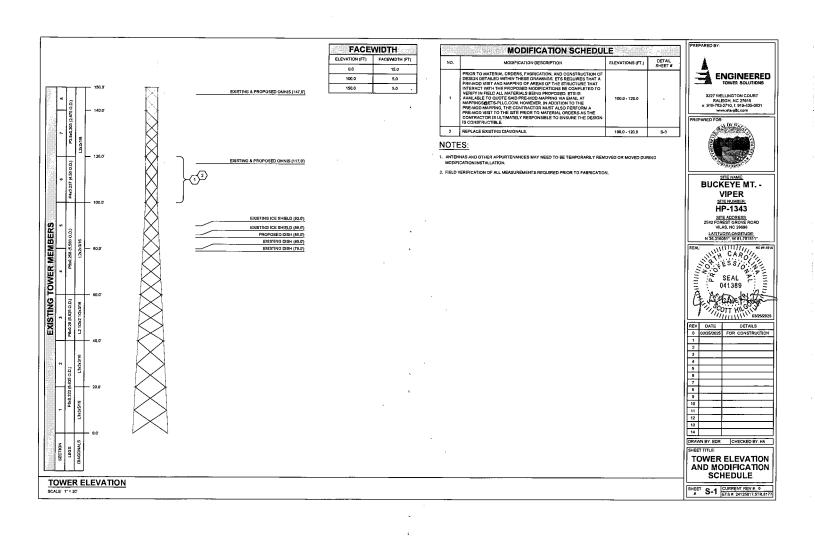

 2.1 TURNIGHT-THEN TIGHTERING
 BOITS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND BROUGHT TO A SNUG TIGHT
 CONNECTION AS PERVISION SECTION A.1. LINTIL ALL THE BOITS ARE SIMULTAREOUSLY SNUG TIGHT AND THE
 CONNECTION IS PULLY COMPACTED. POLLOWING THE INTILL OPERATION ALL BOLTS IN THE CONNECTION
 HELD THE THROUGH OF THE SHALL BE THEN THE SHAT OF REATION ALL DESCRIPTION AND THE CONNECTION
 HELD THROUGH OF THE SHALL BE THEN THE SHAT OF TURNED BY THE WHENCY.
 THAT YALL ANNIHOLD SECRETARY OF THE SHAT OF

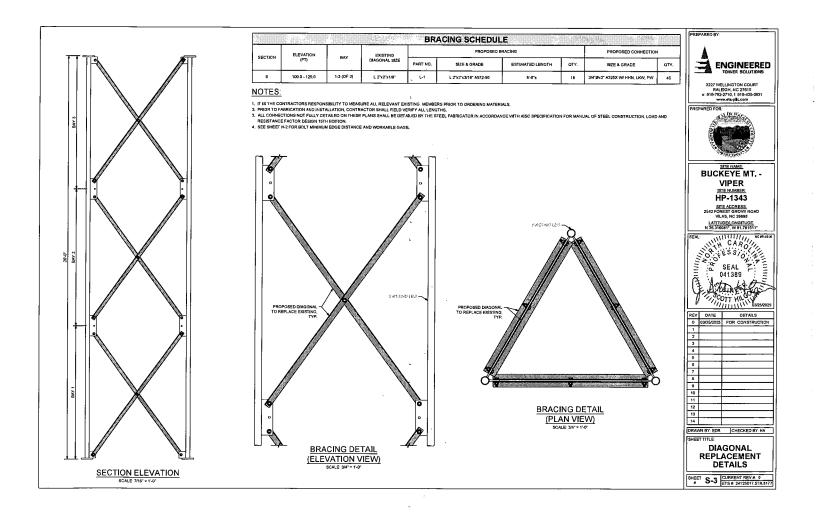

BOLTL	ENGTHS UP TO AND INCLUDING FOUR DIA.	
χ-	BOLTS UP TO AND INCLUDING 2.6 INCH LENGTH	+X TURN BEYOND SNUG TIGH
*	BOLTS UP TO AND INCLUDING 2.5 INCH LENGTH	+X TURN BEYOND SNUG TIGH
*"	BOLTS UP TO AND INCLUDING 3,0 INCH LENGTH 4	+K TURN BEYOND SNUG TIGH
%-	BOLTS UP TO AND INCLUDING 3,5 INCH LENGTH	+ 1/3 TURN BEYOND SNUG TIGH
17	BOLTS UP TO AND INCLUDING 4,0 INCH LENGTH	+K TURN BEYOND SNUG TIGH
BOLT L	ENGTHS OVER FOUR DIA. BUT NOT EXCEEDING EIGHT DIA.	
<i>y</i>	BOLTS 2,25 TO 4,0 INCH LENGTH	+½ TURN BEYOND SNUG TIGH

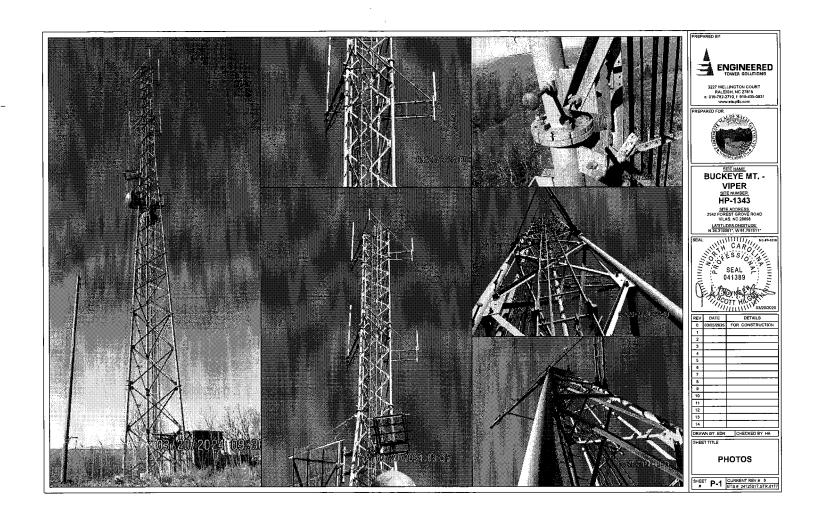
NOMINAL HOLE DIMENSIONS					
BOLT DIAMETER	STANDARD HOLE	SHORT SLOT			
У2	%,	%s × ¹%s			
*	¹X ₆	'%.×%			
×	13%	¹¾ ₆ x 1			
%	'%	19 ₄ × 18 ₄			
1	17/15	1% × 1%			

B(OLT EDGI	AND SP	ACING
BOLT DIAMETER	MIN EDGE	SPACING	
х	и	135	- HE MIN.
*	1%	11/4	EDGE
*	1%	21/4	البناا
%	135	2%	- SPACING
1	1%	3	1

VORKABLE GAGES			
GAGE			
21/2			
2	GAGE		
1%	شخ ا		
1%	U		
1%			
1			
	GAGE 2½ 2 1½ 1½		




PROJECT NOTES HEET N-2 CURRENT REV # 0 ETS # 24125017,STR,6177


PREPARED BY

				BILL OF MA	TERIALS				PREPARED BY:
ANTITY REQUIRED	MANUFACTURER	PART NUMBER	DESCRIPTION	LENGTH	DEYAIL SHEET #	PART WE(GHT (LB)	TOTAL WEIGHT (LB)	NOTES	∥ Δ
			DIAGONAL REPLACEMENT MATERIALS & HARDWARE		L				ENGINEERE TOWER SOLUTIONS
18	<u> </u>	Lif	L Z'x2'x3/16" A572-50	8'-0"±	S-3	20,56	389.00		
45	· · · · · · · · · · · · · · · · · · ·	· · ·	3/4'Ø A325X W/ HHN, LKW, FW	r	8-3	0,58	26.10		3227 WELLINGTON COURT RALEIGH, NC 27615
									o: 919-782-2710, f: 919-435-0631 www.ets-pilic.com
				 	 				PREPARED FOR:
									(A. 1997)
				 					
					 		-		
									Canority of
									BUCKEYE MT
	_			1 -				-	BUCKEYE MT
									VIPER SITE NUMBER
									HP-1343
					,				SITE ADDRESS: 2542 FOREST GROVE ROAD VILAS, NC 28698
									LATITUDE/LONGITUDE:
_					`				N 36,318081*, W 81,791511*
					<u> </u>				CAROLLING CAROLLING
					<u> </u>				SOFESSIO 1
	<u>.</u>	-				ļ			SEAL P
		-		 		1			SEAL CARDON WALL PROSTITUTE OF THE CARDON CA
		ļi		-					[Eliment
		-		+	 	-		-	COTT HILES
				+	 	 -	 		1 1/1/1/1/1/1/1/ 03/25
		-					-		REV DATE DETAILS 0 03/25/2025 FOR CONSTRUCT
		-		-					1
				<u> </u>		i .	<u> </u>		3
					,				4 5
			· · · · · · · · · · · · · · · · · · ·						8
									7 8
									Ð
									10
					ļ .				12
					ļ	ļ	<u> </u>		13
			<u></u>		ļ				DRAWN BY EDR CHECKED BY
		ļ <u>.</u>		 					SHEET TITLE:
				ļ. ———	<u> </u>	ļ			BILL OF MATERIA
		 -					 		BILL OF MATERIA
	L					TOTAL WEIGHT (LB):	905.40	PAGE 1 OF 1	Purey Cuppen nov #
			_			INT WEIGHT (LB):	395,10	PAGE 1 OF 1	SHEET BM CURRENT REV # 0 ETS # 24125017.ST

Pre Modification Inspection Report BUCKEYE MT. - VIPER (HP-1343) 150-ft± Self-Support Tower ETS # 24125017.Ins.8179 April 30, 2025 Page 1 of 5

PRE MODIFICATION INSPECTION REPORT

SITE NAME: BUCKEYE MT. - VIPER

Performed By:

Alex Meister Tower Engineer - Inspections Charlie Kluth
Tower Engineer - Inspections

2025-08-05 BCC Meeting

Pre Modification Inspection Report
BUCKEYE MT. - VIPER (HP-1343)
150-ft± Self-Support Tower
ETS # 24125017.Ins.8179
April 30, 2025
Page 2 of 5

1.0 ASSIGNMENT

Subject − Pre-modification inspection of a 150-ft± self-support tower.

Location – 2542 Forest Grove Rd, Vilas, NC 28692

Structure – 150-ft± Self-Support Tower

Purpose – The objective of the inspection was to determine the existing section dimensions from 100' to 120', and to perform a visual inspection of existing conditions and potential issues that may take place during the tower modification.

2.0 SCOPE OF SERVICES

1) Perform a pre-modification inspection

2) Prepare a report of observations and recommendations

3.0 PARTICIPATING PERSONNEL

Representatives: Mr. Marty Randall

10-18 Consulting (828) 527-2416

Consulting Engineers: Mr. Alex Meister

Mr. Charlie Kluth

Engineered Tower Solutions, PLLC (ETS)

3227 Wellington Ct. Raleigh, NC 27615 (919) 782-2710

Pre Modification Inspection Report BUCKEYE MT. - VIPER (HP-1343) 150-ft± Self-Support Tower ETS # 24125017.Ins.8179 April 30, 2025 Page 3 of 5

4.0 BACKGROUND INFORMATION

Watauga County requested that ETS conduct a pre modification inspection of the tower. The objective of the inspection was to determine the existing section dimensions from 100' to 120', and to perform a visual inspection of existing conditions and potential issues that may take place during the tower modification.

5.0 INVESTIGATION

Pre Modification Inspection – Alex Meister and Charlie Kluth performed the inspection on April 9, 2025. For the purpose of this inspection, the tower legs were named by letter according to the magnetic azimuth defined by a line from the center of tower to the leg. "A" leg is the leg closest to magnetic north, followed clockwise by "B" and "C."

6.0 RESULTS

- 1. Tower Section Details
- 2. Miscellaneous Obstructions

2025-08-05 BCC Meeting Pre Modification Inspection Report BUCKEYE MT. - VIPER (HP-1343) 150-ft± Self-Support Tower ETS # 24125017.Ins.8179 April 30, 2025 Page 4 of 5

EXECUTIVE SUMMARY Photograph 04/09/

Observations and Recommendations

Item 1 - Tower Section Details

Section 6 - 100'0"±-120'0"± (tapered 3 panel X bracing)

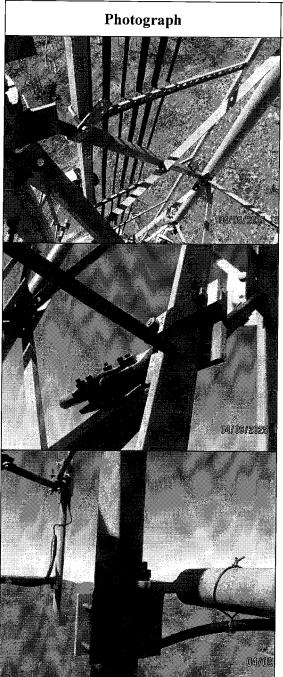
Leg: P4.5"Øx0.237"

Bottom Flange: PL 10 1/4"Øx7/8" w/ (6) 3/4"Ø

Top Flange: PL 9 1/4"Øx3/4" w/ (4) 3/4"Ø bolts

Section Height: 20'-0" O-O

Diagonals: L2"x2"x1/8" w/ (1) 3/4"Ø EB and (1)


5/8"Ø CB

Gusset: 1/4" THK

Pre Modification Inspection Report BUCKEYE MT. - VIPER (HP-1343) 150-ft± Self-Support Tower ETS # 24125017.Ins.8179 April 30, 2025 Page 5 of 5

EXECUTIVE SUMMARY

Observations and Recommendations

<u>Item 3 – Miscellaneous Obstructions</u>

Climbing Pegs

• C leg: spacing 2'-6"

Climbing Ladder

• BC face: width: 1'-1/2", step: 1'-0", J-hooks and J-plates to diagonals

Waveguide

- CA face near C leg
- J-hooks and J-plates to diagonals

Coax

• (1) 1 5/8 FHSM, (1) 7/8 FHSM, (1) 1/2 FHSM, (2) 7/8 FH, and (1) 1/2 FH attached to waveguide on CA face

Omni Mount at 117'-0"

- Location: All legs
- SO mount SO: 6'-0"
 - o Arm: (2) P2.4"Ø, VSep.: 2'-6"
 - o Bracing (1) SR 3/4"Ø (Vert.)
 - o MP (1) P2.4"Øx0.153"x4'-0"
- Equipment:
 - o A leg: (1) Unknown 3"Øx4'-0" Omni
 - o B leg: (1) Unknown 10'-0"x2 Element Dipole
 - o C leg: (1) Unknown 3"Øx15'-0" Omni
- Leg connections: (1) BPL 7"x6"x1/2" and (1) BPL 6.75"x5"x3/8"x7" w/(4) 1/2"Ø bolts @ 4" C-C V, 5" C-C H
- Stabilizer SR1.25"Ø connected back to diagonal members at 117'

Blank Page

AGENDA ITEM 10:

EMERGENCY SERVICES MATTERS

B. Emergency Services Facility Tower Engineering Contract

MANAGER'S COMMENTS:

As part of the development of the new Emergency Services Facility, a communications tower is required to connect to the public safety radio system. A quote of \$45,000 was received from Engineered Tower Solutions (ETS) for engineering services and management of the administrative approval process. ETS is a vendor on State contract and has already conducted a preliminary site walk and met with Greene Construction, Inc. to coordinate efforts. Adequate funds for this work have been budgeted.

Board approval is requested to authorize the \$45,000 agreement with ETS for tower engineering and administrative services.

July 18th, 2025

To: Board of Commissioners

CC: Deron Geouque, County Manager Katie Hancock, Clerk to the Board

Subject: Quote for engineering and administrative approvals of new facility tower

Board of Commissioners,

The new Emergency Services Facility will have a communications tower to connect to the public safety radio system. A quote was obtained from Engineered Towered Solutions (ETS) for the engineering costs along with the administrative approval process management in the amount of \$45,000. ETS is on State contract for tower construction and has conducted a preliminary site walk to gather information for this quote and has met Greene Construction, Inc. staff who they will be coordinating closely with. Funds have been budgeted for this project and your approval is requested.

Respectfully,

William Holt, MPA, CEM, NREMT-P Emergency Services Director

Contract #: 150694-ETS Engineering			
Site Name:	Emergency Services Center		
County:	Watauga	9	
Address:	TBD		

	Address. 100				
#	Rawland:	Qty	Unit Cost	Extended cost	
1	Site Visit	2	\$1,500.00	\$3,000.00	
2	Partial Boundary Survey with Topography and 1A	1	\$5,500.00	\$5,500.00	
3	Geotechnical/Resistivity Report (per boring location)		\$4,500.00	\$4,500.00	
4	Geotechnical Clearing Moderate Access		\$2,750.00	\$0.00	
4a	Geotechnical Clearing Difficult Access		\$3,500.00	\$0.00	
5	Site Zoning and Construction Drawings (ZD's)	1	\$1,750.00	\$1,750.00	
6	Detailed (DOI) Construction Drawings (CD's)	1	\$3,750.00	\$3,750.00	
7	FCC NEPA Checklist w/SHPO	1	\$5,500.00	\$5,500.00	
8	Tower Manufacturer Selection	1	\$1,500.00	\$1,500.00	
9	Tower bid document	1	\$1,100.00	\$1,100.00	
10	Tower bid review for up to 3 bids	1	\$1,000.00	\$1,000.00	
11	Cost to restake Tower prior to Construction	2	\$2,250.00	\$4,500.00	
12	Construction: Foundation Inspection	1	\$2,375.00	\$2,375.00	
13	Construction: Concrete testing (per site visit)	1	\$1,875.00	\$1,875.00	
14	Post construction inspection	1	\$2,500.00	\$2,500.00	
15	Construction: Bearing Check		\$3,000.00	\$0.00	
16	Construction: Soil Compaction Testing		\$3,000.00	\$0.00	
17	Construction: Private Utility Locates		\$2,700.00	\$0.00	
18	Construction: Lease Exhibit		\$1,500.00	\$0.00	
				\$38,850.00	
	Collocation:				
19	Structural Analysis		\$1,500.00	\$0.00	
20	Appurtenance Mapping		\$2,450.00	\$0.00	
21	Tower Mapping		\$2,850.00	\$0.00	
22	FCC Collocation NEPA		\$3,500.00	\$0.00	
23	30-Day Electrical Load Study with Data Loggers for SCO		\$2,750.00	\$0.00	
				\$0.00	
	Tower Modification:				
24	Pre-mod mapping		\$2,500.00	\$0.00	
25	Modification design/drawings - standard		\$3,500.00	\$0.00	
26	Modification design/drawings - extensive		\$6,000.00	\$0.00	
27	Foundation mapping		\$3,500.00	\$0.00	
	Geotechnical investigation (1 soil bore up to		+=,555.00	70.00	
28	60' depth on SS, 4 soil bores up to 20' for guyed towers)		\$4,500.00	\$0.00	
29	Geo: addition of rock coring or deep foundation		\$2,000.00	\$0.00	
30	Foundation drawings		\$2,000.00	\$0.00	
31	Temporary loading letter		\$600.00	\$0.00	
32	PMI		\$2,650.00	\$0.00	
33	Foundation construction inspection		\$3,500.00	\$0.00	
34	Cracked Foundation Mapping		\$3,500.00	\$0.00	
J4	cracked roundation mapping		73,300.00	70.00	

	1			
35	Construction Materials Testing (CMT)		\$2,375.00	\$0.00
	Foundation Inspection (existing foundation)			
36	CWI Inspection (includes before, during, and		\$3,500.00	\$0.00
27	after inspections per AWS guidelines)		ć4 0E0 00	¢0.00
37	NDE Weld Inspection		\$1,850.00	\$0.00
38	Rebar Mapping		\$3,750.00	\$0.00
39	Partial Boundary Survey with Topography		\$4,600.00	\$0.00
40	1A Letter		\$900.00	\$0.00
	Othersteeler			\$0.00
	Other tasks:		¢2.000.00	40.00
41	DHS EHP		\$3,000.00	\$0.00
42	DHS - EA/ESA		\$5,500.00	\$0.00
43	NEPA EA	1	\$3,250.00	\$3,250.00
44	Centerline Easement survey		\$5,500.00	\$0.00
45	Botantist site inspection and report on USFS land		\$3,500.00	\$0.00
46	Wildlife biologist inspection and report on		\$3,500.00	\$0.00
40	USFS land		\$3,300.00	Ş0.00
47	Balloon Test		\$3,500.00	\$0.00
48	Legal Description per State Property Office Requirements	1	\$2,000.00	\$2,000.00
49	Ownership Right of Access to Site		\$1,000.00	\$0.00
50	Site Candidate Information Package (SCIP)		\$3,500.00	\$0.00
51	Construction Monitoring at USFS sites (daily rate)		\$1,250.00	\$0.00
52	Public Notice	1	\$900.00	\$900.00
32	Fublic Notice	т_	\$300.00	
53	Tribal Reimbursement Fee (TCNS) - standard		\$3,000.00	\$0.00
54	Tribal Reimbursement Fee (TCNS) - moderate		\$8,000.00	\$0.00
55	Tribal Reimbursement Fee (TCNS) - extensive		\$14,000.00	\$0.00
56	Class IV Rigging Plan - standard		\$1,500.00	\$0.00
57	Class IV Rigging Plan - extensive		\$3,000.00	\$0.00
58	TIA Maintenance Drawings		\$1,250.00	\$0.00
59	EOR Review		\$900.00	\$0.00
60	Mount Analysis		\$1,000.00	\$0.00
61	Platform Design Drawings		\$2,500.00	\$0.00
62	Retaining Wall Design Drawings height less than 10-ft		\$4,000.00	\$0.00
63	Retaining Wall Design Drawings height greater than 10-ft, but less than 25-ft		\$7,500.00	\$0.00
64	Stormwater Control Measure Inspection		\$1,375.00	\$0.00
65	Special Use Permit - site plan		\$1,750.00	\$0.00
	Special Use Permit - (1) staff member in			
66	attendance at 1 meeting		\$1,250.00	\$0.00
	AA - Lili Li			\$6,150.00
	Mobilization		¢c22.22	60.00
67	East Zone		\$600.00	\$0.00
68	Central Zone		\$350.00	\$0.00
69	West Zone		\$850.00	\$0.00
	TIA logocation. Calf accounting to			\$0.00
	TIA Inspection - Self-supporting tower			

70	0' - 250'	\$1,900.00	\$0.00		
71	250' - 500'	\$2,150.00	\$0.00		
72	501' and above	\$2,400.00	\$0.00		
			\$0.00		
	TIA Inspection - Guyed tower				
73	0' - 300'	\$1,900.00	\$0.00		
74	301' - 600'	\$2,150.00	\$0.00		
75	601' - 1,000'	\$3,250.00	\$0.00		
			\$0.00		
	Guyed tower re-tensioning & re-plumbing				
76	0' - 300'	\$3,750.00	\$0.00		
77	301' - 600'	\$4,750.00	\$0.00		
78	601' - 1,000'	\$7,750.00	\$0.00		
			\$0.00		
	\$45,000.00				

Note: mobilization cost assessed by zone per week

Blank Page

AGENDA ITEM 10:

EMERGENCY SERVICES MATTERS

C. Radio System Maintenance Contract Renewal

MANAGER'S COMMENTS:

The annual maintenance contracts for the County's public safety radio systems are due for renewal. Mobile Communications America has submitted a renewal quote totaling \$111,512.31, which covers maintenance for the communications center systems (\$65,412.99), tower site equipment (\$38,260.68), and mobile radio units (\$7,838.64). This is a continuation of the existing contract, and funds are available for this purpose.

Board approval is requested to authorize the renewal of the maintenance contracts with Mobile Communications America in the amount of \$111,512.31.

July 18th, 2025

To: Board of Commissioners

CC: Deron Geouque, County Manager Katie Hancock, Clerk to the Board

Subject: Quote for engineering and administrative approvals of new facility tower

Board of Commissioners,

Please consider my request for \$111,512.31 for the renewal of three maintenance contracts with Mobile Communications America. This contract covers the maintenance agreement for all of our radio systems in the communications centers (\$65,412.99), at each tower site (\$38,260.68), and mobile equipment (\$7,838.64). This is a renewal of the current contract and funds are available for this purpose.

Respectfully,

William Holt, MPA, CEM, NREMT-P Emergency Services Director

500 W Monroe Street Chicago, IL. 60661 (888) 325-9336

Quote Number : QUOTE-3035403 Contract Number: USC000602956 Contract Modifier: R06-MAR-2025 19:31:42

Date:03/06/2025

Company Name: WATAUGA COUNTY SHERIFF'S DEPT

Attn:

Billing Address: 184 HODGES GAP

ROAD

City, State, Zip: BOONE, NC 28607

Customer Contact: Will Holt

Phone: 3369720145

Required P.O.:

PO#:

Customer #:1036494285

Bill to Tag #:

Contract Start Date :01-Jul-2025

Contract End Date: 30-Jun-2026

Payment Cycle : ANNUALLY

Qty	Service Name		Service Description	Monthly Ext	Extended Amt
	LSV01S01107A	ASTRO	SYSTEM ESSENTIAL PLUS PACKAGE	\$2,369.02	\$28,428.28
		DISI	PATCH		·
		ONS	SITE SYS SUPPORT-STD		
		PRE	VENTIVE MAINTENANCE1		
		REF	AIR AND RETURN		
		SEC	URITY UPDATE SERVICE		
		SYS	TEM TECH SUPPORT		
		ADV	ANCE EXCHANGE		
		NET	WORK MONITORING		
		REN	MOTE SUS MGT		
	LSV01S01107A	ASTRO	SYSTEM ESSENTIAL PLUS PACKAGE	\$3,082.06	\$36,984.71
		DISI	PATCH		
		ONS	SITE SYS SUPPORT-STD		
		PRE	VENTIVE MAINTENANCE1		
		REF	AIR AND RETURN		
		SEC	URITY UPDATE SERVICE		
		SYS	TEM TECH SUPPORT		
		ADV	ANCE EXCHANGE		
		NET	WORK MONITORING		
		REN	MOTE SUS MGT		
			Subtotal - Recurring Services	\$5,451.	08 \$65,412.99
	Subtotal - One-Time Event Services		\$0.	00 \$0.00	
	Total \$5,451.08 \$65			08 \$65,412.99	
	THIS SERVICE AMOUNT IS SUBJECT TO STATE AND LOCAL TAXING JURISDICTIONS WHERE APPLICABLE, TO BE VERIFIED BY MOTOROLA				

SPECIAL INSTRUCTIONS:

500 W Monroe Street Chicago, IL. 60661 (888) 325-9336 Quote Number : QUOTE-3035403 Contract Number: USC000602956 Contract Modifier: R06-MAR-2025 19:31:42

I have received Applicable Statements of Work which describe the Services and cybersecurity services provided on this Agreement. Motorola's Terms and Conditions, including the Cybersecurity Online Terms Acknowledgement, are attached hereto and incorporate the Cyber Addendum (available at https://www.motorolasolutions.com/en_us/managed-support-services/cybersecurity.html) by reference. By signing below Customer acknowledges these terms and conditions govern all Services under this Service Agreement.

AUTHORIZED CUSTOMER SIGNATURE	TITLE	DATE
CUSTOMER (PRINT NAME)		
MOTOROLA REPRESENTATIVE(SIGNATURE)	TITLE	DATE
Amber Seibert	704-657-2122	
MOTOROLA REPRESENTATIVE(PRINT NAME)	PHONE	

Company Name: WATAUGA COUNTY SHERIFF'S DEPT

Contract Number: USC000602956

Contract Modifier: R06-MAR-2025 19:31:42

Contract Start Date : 01-Jul-2025

Contract End Date : 30-Jun-2026

500 W Monroe Street Chicago, IL. 60661 (888) 325-9336 Quote Number : QUOTE-3035403 Contract Number: USC000602956 Contract Modifier: P06-MAR-2025 10:21:

Contract Modifier: R06-MAR-2025 19:31:42

Service Terms and Conditions

Motorola Solutions Inc. ("Motorola") and the customer named in this Agreement ("Customer") hereby agree as follows:

Section 1. APPLICABILITY

These Maintenance Service Terms and Conditions apply to service contracts whereby Motorola will provide to Customer either (1) maintenance, support, or other services under a Motorola Service Agreement, or (2) installation services under a Motorola Installation Agreement.

Section 2. DEFINITIONS AND INTERPRETATION

- 2.1 "Agreement" means these Maintenance Service Terms and Conditions; the cover page for the Service Agreement or the Installation Agreement, as applicable; and any other attachments, all of which are incorporated herein by this reference. In interpreting this Agreement and resolving any ambiguities, these Maintenance Service Terms and Conditions take precedence over any cover page, and the cover page takes precedence over any attachments, unless the cover page or attachment states otherwise.
- 2.2 "Equipment" means the equipment that is specified in the attachments or is subsequently added to this Agreement.
- 2.3 "Services" means those installation, maintenance, support, training, and other services described in this Agreement.

Section 3. ACCEPTANCE

Customer accepts these Maintenance Service Terms and Conditions and agrees to pay the prices set forth in the Agreement. This Agreement becomes binding only when accepted in writing by Motorola. The term of this Agreement begins on the "Start Date" indicated in this Agreement.

Section 4. SCOPE OF SERVICES

- 4.1 Motorola will provide the Services described in this Agreement or in a more detailed statement of work or other document attached to this Agreement. At Customer's request, Motorola may also provide additional services at Motorola's then-applicable rates for the services.
- 4.2 If Motorola is providing Services for Equipment, Motorola parts or parts of equal quality will be used; the Equipment will be serviced at levels set forth in the manufacturer's product manuals; and routine service procedures that are prescribed by Motorola will be followed
- 4.3 If Customer purchases from Motorola additional equipment that becomes part of the same system as the initial Equipment, the additional equipment may be added to this Agreement and will be billed at the applicable rates after the warranty for that additional equipment expires.
- 4.4 All Equipment must be in good working order on the Start Date or when additional equipment is added to the Agreement. Upon reasonable request by Motorola, Customer will provide a complete serial and model number list of the Equipment. Customer must promptly notify Motorola in writing when any Equipment is lost, damaged, stolen or taken out of service. Customer's obligation to pay Service fees for this Equipment will terminate at the end of the month in which Motorola receives the written notice.
- 4.5 Customer must specifically identify any Equipment that is labeled intrinsically safe for use in hazardous environments.
- 4.6 If Equipment cannot, in Motorola's reasonable opinion, be properly or economically serviced for any reason, Motorola may modify the scope of Services related to that Equipment; remove that Equipment from the Agreement; or increase the price to Service that Equipment.
- 4.7 Customer must promptly notify Motorola of any Equipment failure. Motorola will respond to Customer's notification in a manner consistent with the level of Service purchased as indicated in this.

Section 5. EXCLUDED SERVICES

- 5.1 Service excludes the repair or replacement of Equipment that has become defective or damaged from use in other than the normal, customary, intended, and authorized manner; use not in compliance with applicable industry standards; excessive wear and tear; or accident, liquids, power surges, neglect, acts of God or other force majeure events.
- 5.2 Unless specifically included in this Agreement, Service excludes items that are consumed in the normal operation of the Equipment, such as batteries or magnetic tapes.; upgrading or reprogramming Equipment; accessories, belt clips, battery chargers, custom or special products, modified units, or software; and repair or maintenance of any transmission line, antenna, microwave equipment, tower or tower lighting, duplexer, combiner, or multicoupler. Motorola has no obligations for any transmission medium, such as telephone lines, computer networks, the internet or the worldwide web, or for Equipment malfunction caused by the transmission medium.

500 W Monroe Street Chicago, IL. 60661 (888) 325-9336

Quote Number : QUOTE-3035403 Contract Number: USC000602956 Contract Modifier: R06-MAR-2025 19:31:42

This Agreement pricing provided does not take into account prevailing wage requirement. Should prevailing wage regulations be applicable to this project, the pricing shall be subject to change to reflect compliance with those regulations.

Section 6. TIME AND PLACE OF SERVICE

Service will be provided at the location specified in this Agreement. When Motorola performs service at Customer's location, Customer will provide Motorola, at no charge, a non-hazardous work environment with adequate shelter, heat, light, and power and with full and free access to the Equipment. Waivers of liability from Motorola or its subcontractors will not be imposed as a site access requirement. Customer will provide all information pertaining to the hardware and software elements of any system with which the Equipment is interfacing so that Motorola may perform its Services. Unless otherwise stated in this Agreement, the hours of Service will be 8:30 a.m. to 4:30 p.m., local time, excluding weekends and holidays. Unless otherwise stated in this Agreement, the price for the Services exclude any charges or expenses associated with helicopter or other unusual access requirements; if these charges or expenses are reasonably incurred by Motorola in rendering the Services, Customer agrees to reimburse Motorola for those charges and expenses.

Section 7. CUSTOMER CONTACT

Customer will provide Motorola with designated points of contact (list of names and phone numbers) that will be available twenty-four (24) hours per day, seven (7) days per week, and an escalation procedure to enable Customer's personnel to maintain contact, as needed, with Motorola.

Section 8. INVOICING AND PAYMENT

- Customer affirms that a purchase order or notice to proceed is not required for the duration of this service contract and will appropriate funds each year through the contract end date. Unless alternative payment terms are stated in this Agreement, Motorola will invoice Customer in advance for each payment period. All other charges will be billed monthly, and Customer must pay each invoice in U.S. dollars within twenty (20) days of the invoice date
- Customer will reimburse Motorola for all property taxes, sales and use taxes, excise taxes, and other taxes or assessments that are levied as a result of Services rendered under this Agreement (except income, profit, and franchise taxes of Motorola) by any governmental entity. The Customer will pay all invoices as received from Motorola. At the time of execution of this Agreement, the Customer will provide all necessary reference information to include on invoices for payment in accordance with this Agreement.
- For multi-year service agreements, at the end of the first year of the Agreement and each year thereafter, a CPI percentage change calculation shall be performed using the U.S.Department of Labor, Consumer Price Index, all Items, Unadjusted Urban Areas (CPI-U). Should the annual inflation rate increase greater than 3% during the previous year, Motorola shall have the right to increase all future maintenance prices by the CPI increase amount exceeding 3%. All items, not seasonally adjusted shall be used as the measure of CPI for this price adjustment. Measurement will take place once the annual average for the new year has been posted by the Bureau of Labor Statistics. For purposes of illustration, if in year 5 the CPI reported an increase of 8%, Motorola may increase the Year 6 price by 5% (8%-3% base).

Section 9. WARRANTY

Motorola warrants that its Services under this Agreement will be free of defects in materials and workmanship for a period of ninety (90) days from the date the performance of the Services are completed. In the event of a breach of this warranty, Customer's sole remedy is to require Motorola to re-perform the non-conforming Service or to refund, on a pro-rata basis, the fees paid for the non-conforming Service. MOTOROLA DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Section 10. DEFAULT/TERMINATION

- If either party defaults in the performance of this Agreement, the other party will give to the non-performing party a written and detailed notice of the default. The non-performing party will have thirty (30) days thereafter to provide a written plan to cure the default that is acceptable to the other party and begin implementing the cure plan immediately after plan approval. If the non-performing party fails to provide or implement the cure plan, then the injured party, in addition to any other rights available to it under law, may immediately terminate this Agreement effective upon giving a written notice of termination to the defaulting party.
- 10.2 Any termination of this Agreement will not relieve either party of obligations previously incurred pursuant to this Agreement, including payments which may be due and owing at the time of termination. All sums owed by Customer to Motorola will become due and payable immediately upon termination of this Agreement. Upon the effective date of termination, Motorola will have no further obligation to provide Services.
- If the Customer terminates this Agreement before the end of the Term, for any reason other than Motorola default, then the Customer will pay to Motorola an early termination fee equal to the discount applied to the last three (3) years of Service payments for the original Term.

500 W Monroe Street Chicago, IL. 60661 (888) 325-9336

SERVICE AGREEMENT

Quote Number : QUOTE-3035403 Contract Number: USC000602956

Contract Modifier: R06-MAR-2025 19:31:42

Section 11. LIMITATION OF LIABILITY

Except for personal injury or death, Motorola's total liability, whether for breach of contract, warranty, negligence, strict liability in tort, or otherwise, will be limited to the direct damages recoverable under law, but not to exceed the price of twelve (12) months of Service provided under this Agreement. ALTHOUGH THE PARTIES ACKNOWLEDGE THE POSSIBILITY OF SUCH LOSSES OR DAMAGES, THEY AGREE THAT MOTOROLA WILL NOT BE LIABLE FOR ANY COMMERCIAL LOSS; INCONVENIENCE; LOSS OF USE, TIME, DATA, GOOD WILL, REVENUES, PROFITS OR SAVINGS; OR OTHER SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES IN ANY WAY RELATED TO OR ARISING FROM THIS AGREEMENT OR THE PERFORMANCE OF SERVICES BY MOTOROLA PURSUANT TO THIS AGREEMENT. No action for contract breach or otherwise relating to the transactions contemplated by this Agreement may be brought more than one (1) year after the accrual of the cause of action, except for money due upon an open account. This limitation of liability will survive the expiration or termination of this Agreement and applies notwithstanding any contrary provision.

Section 12. EXCLUSIVE TERMS AND CONDITIONS

- 12.1 This Agreement supersedes all prior and concurrent agreements and understandings between the parties, whether written or oral, related to the Services, and there are no agreements or representations concerning the subject matter of this Agreement except for those expressed herein. The Agreement may not be amended or modified except by a written agreement signed by authorized representatives of both parties.
- 12.2 Customer agrees to reference this Agreement on any purchase order issued in furtherance of this Agreement, however, an omission of the reference to this Agreement will not affect its applicability. In no event will either party be bound by any terms contained in a Customer purchase order, acknowledgement, or other writings unless: the purchase order, acknowledgement, or other writing specifically refers to this Agreement; clearly indicate the intention of both parties to override and modify this Agreement; and the purchase order, acknowledgement, or other writing is signed by authorized representatives of both parties.

Section 13. PROPRIETARY INFORMATION; CONFIDENTIALITY; INTELLECTUAL PROPERTY RIGHTS

- 13.1 Any information or data in the form of specifications, drawings, reprints, technical information or otherwise furnished to Customer under this Agreement will remain Motorola's property, will be deemed proprietary, will be kept confidential, and will be promptly returned at Motorola's request. Customer may not disclose, without Motorola's written permission or as required by law, any confidential information or data to any person, or use confidential information or data for any purpose other than performing its obligations under this Agreement. The obligations set forth in this Section survive the expiration or termination of this Agreement.
- 13.2 Unless otherwise agreed in writing, no commercial or technical information disclosed in any manner or at any time by Customer to Motorola will be deemed secret or confidential. Motorola will have no obligation to provide Customer with access to its confidential and proprietary information, including cost and pricing data.
- 13.3 This Agreement does not grant directly or by implication, estoppel, or otherwise, any ownership right or license under any Motorola patent, copyright, trade secret, or other intellectual property, including any intellectual property created as a result of or related to the Equipment sold or Services performed under this Agreement.

Section 14. FCC LICENSES AND OTHER AUTHORIZATIONS

Customer is solely responsible for obtaining licenses or other authorizations required by the Federal Communications Commission or any other federal, state, or local government agency and for complying with all rules and regulations required by governmental agencies. Neither Motorola nor any of its employees is an agent or representative of Customer in any governmental matters.

Section 15. COVENANT NOT TO EMPLOY

During the term of this Agreement and continuing for a period of two (2) years thereafter, Customer will not hire, engage on contract, solicit the employment of, or recommend employment to any third party of any employee of Motorola or its subcontractors without the prior written authorization of Motorola. This provision applies only to those employees of Motorola or its subcontractors who are responsible for rendering services under this Agreement. If this provision is found to be overly broad under applicable law, it will be modified as necessary to conform to applicable law.

Section 16. MATERIALS, TOOLS AND EQUIPMENT

All tools, equipment, dies, gauges, models, drawings or other materials paid for or furnished by Motorola for the purpose of this Agreement will be and remain the sole property of Motorola. Customer will safeguard all such property while it is in Customer's custody or control, be liable for any loss or damage to this property, and return it to Motorola upon request. This property will be held by Customer for Motorola's use without charge and may be removed from Customer's premises by Motorola at any time without restriction.

Section 17. GENERAL TERMS

17.1 If any court renders any portion of this Agreement unenforceable, the remaining terms will continue in full force and effect.

500 W Monroe Street Chicago, IL. 60661 (888) 325-9336

Quote Number : QUOTE-3035403 Contract Number: USC000602956

Contract Modifier: R06-MAR-2025 19:31:42

- This Agreement and the rights and duties of the parties will be interpreted in accordance with the laws of the State in which the Services are performed.
- Failure to exercise any right will not operate as a waiver of that right, power, or privilege. 17.3
- Neither party is liable for delays or lack of performance resulting from any causes that are beyond that party's reasonable control, such as strikes, material shortages, or acts of God.
- 17.5 Motorola may subcontract any of the work, but subcontracting will not relieve Motorola of its duties under this Agreement.
- Except as provided herein, neither Party may assign this Agreement or any of its rights or obligations hereunder without the prior written consent of the other Party, which consent will not be unreasonably withheld. Any attempted assignment, delegation, or transfer without the necessary consent will be void. Notwithstanding the foregoing, Motorola may assign this Agreement to any of its affiliates or its right to receive payment without the prior consent of Customer. In addition, in the event Motorola separates one or more of its businesses (each a "Separated Business"), whether by way of a sale, establishment of a joint venture, spin-off or otherwise (each a "Separation Event"), Motorola may, without the prior written consent of the other Party and at no additional cost to Motorola, assign this Agreement such that it will continue to benefit the Separated Business and its affiliates (and Motorola and its affiliates, to the extent applicable) following the Separation Event.
- THIS AGREEMENT WILL RENEW, FOR AN ADDITIONAL ONE (1) YEAR TERM, ON EVERY ANNIVERSARY OF THE START DATE UNLESS EITHER THE COVER PAGE SPECIFICALLY STATES A TERMINATION DATE OR ONE PARTY NOTIFIES THE OTHER IN WRITING OF ITS INTENTION TO DISCONTINUE THE AGREEMENT NOT LESS THAN THIRTY (30) DAYS OF THAT ANNIVERSARY DATE. At the anniversary date, Motorola may adjust the price of the Services to reflect its current rates.
- If Motorola provides Services after the termination or expiration of this Agreement, the terms and conditions in effect at the time of the termination or expiration will apply to those Services and Customer agrees to pay for those services on a time and materials basis at Motorola's then effective hourly rates.
- This Agreement may be executed in one or more counterparts, all of which shall be considered part of the Agreement. The parties may execute this Agreement in writing, or by electronic signature, and any such electronic signature shall have the same legal effect as a handwritten signature for the purposes of validity, enforceability and admissibility. In addition, an electronic signature, a true and correct facsimile copy or computer image of this Agreement shall be treated as and shall have the same effect as an original signed copy of this document.

Revised Sept 03, 2022

500 W Monroe Street Chicago, IL. 60661 (888) 325-9336 Quote Number : QUOTE-3035403 Contract Number: USC000602956 Contract Modifier: R06-MAR-2025 19:31:42

Contract Modiller: Rub-MAR-2025 19:31:42

Cybersecurity Online Terms Acknowledgement

This Cybersecurity Online Terms Acknowledgement (this "Acknowledgement") is entered into between Motorola Solutions, Inc. ("Motorola") and the entity set forth in the signature block below ("Customer").

1. <u>Applicability and Self Deletion</u>. This Cybersecurity Online Terms Acknowledgement applies to the extent cybersecurity products and services, including Remote Security Update Service, Security Update Service, and Managed Detection & Response subscription services, are purchased by or otherwise provided to Customer, including through bundled or integrated offerings or otherwise.

NOTE: This Acknowledgement is self deleting if not applicable under this Section 1.

- 2. Online Terms Acknowledgement. The Parties acknowledge and agree that the terms of the *Cyber Subscription Renewals and Integrations*Addendum available at http://www.motorolasolutions.com/cyber-renewals-integrations are incorporated in and form part of the Parties' agreement as it relates to any cybersecurity products or services sold or provided to Customer. By signing the signature block below, Customer certifies that it has read and agrees to the provisions set forth and linked on-line in this Acknowledgement. To the extent Customer is unable to access the above referenced online terms for any reason, Customer may request a paper copy from Motorola. The signatory to this Acknowledgement represents and warrants that he or she has the requisite authority to bind Customer to this Acknowledgement and referenced online terms.
- 3. Entire Agreement. This Acknowledgement supplements any and all applicable and existing agreements and supersedes any contrary terms as it relates to Customer's purchase of cybersecurity products and services. This Acknowledgement and referenced terms constitute the entire agreement of the parties regarding the subject matter hereof and as set out in the referenced terms, and supersedes all previous agreements, proposals, and understandings, whether written or oral, relating to this subject matter.
- 4. Execution and Amendments. This Acknowledgement may be executed in multiple counterparts, and will have the same legal force and effect as if the Parties had executed it as a single document. The Parties may sign in writing or by electronic signature. An electronic signature, facsimile copy, or computer image of a signature, will be treated, and will have the same effect as an original signature, and will have the same effect, as an original signed copy of this document. This Acknowledgement may be amended or modified only by a written instrument signed by authorized representatives of both Parties. The Parties hereby enter into this Acknowledgement as of the last signature date below.

Revised Sept 03, 2022

EXHIBIT A: System Configuration

Customer Name: Watauga County
Customer Number: 1036494285
Contract Number: USC000602956
Start Date: 1-Jul-25
End Date: 30-Jun-26

System ID: SZ01FC2D20/SZ01FC2D30

QTY	Equipment Description		Price
2	Dispatch Sites		
8	MCC7500E Consoles		
2	AIS		
6	CCGW		
		Total	\$65,412.99

SERVICE LEVEL AGREEMENT

MCA Office:	Charlotte, NC		
		ement") is entered into by and between Mobile Communications America, Inc. a Delaware corp , "Customer") as of the effective date listed below.	oration ("MCA") and the entity listed
	Effective Date: Customer: Customer Address:	7/1/2025 Watauga County	- -
services to be prov	ided by MCA as it appl	the "Parties" and each, individually, a "Party") desire to enter into this Agreement to set forth the ies to maintenance service, parts and labor for the equipment and/or systems as described in Agrees to provide maintenance service to keep covered equipment in good working order.	
Summary of Servi End Date:	6/30/2026	("Initial Term")	
Monthly Price: Annual Price: Billing Frequency:	\$3,188.39 \$38,260.68 Annual	(State/Local taxes NOT included)	
the Agreement. Cu not assure uninterr	stomer also agrees to upted operation of the	ees to accept maintenance service for the listed equipment, per Attachment A, according to the provide full, free and safe access to the equipment and/or systems covered by this Agreement. Equipment or service and MCA is not responsible for failure to render covered service due to cathorized representative or officer of MCA and Customer.	Services provided hereunder do
understanding between the transfer of the tran	veen the Parties and so atements, or induceme	together with the SOWs and any Attachments attached thereto, from time to time, sets forth the upersedes all prior negotiations, agreements and understandings with respect to the subject mand the contained herein shall bind either Party. This Agreement may only be as mer acknowledges that the Customer has read this entire Agreement, understands it, and agreement acknowledges that the Customer has read this entire Agreement, understands it, and agreement acknowledges that the Customer has read this entire Agreement.	atter of this Agreement. No mended by a written document duly
Signature		Signature:	
Name(print) & Title		stomer MCA Name(print) & Title:	A
Date:		Date:	

TERMS AND CONDITIONS

NORMAL WORKING HOURS: Normal working hours shall be from 8:00 AM to 5:00 PM, Monday through Friday, except holidays, in the time zone of the Customer location receiving the SERVICE: MCA will perform such repairs as may be required to restore Equipment to their normal operating level, provided that such repairs are necessitated by the failure of the Equipment due to normal usage. Non-fixed Equipment shall be serviced at an MCA shop during normal working hours. Travel charges and expenses incurred by MCA at the request of the Customer to resolve a malfunction of the Equipment that is not covered under this Agreement shall be billable to the Customer at current MCA rates. For emergency service or other service performed at Customer's request outside of normal working hours, for equipment not covered under this Agreement or for Equipment whose failure was due to causes not considered to be "normal usage," Customer will be billed for the service at the then current MCA rates for each occurrence.

PREMIER SERVICE OPTION: If Customer has elected to purchase the Premier Service Option, emergency service is included at no additional charge per occurrence, provided that all other terms of this Agreement are satisfied. Emergency service is provided 24 hours per day, seven days per week. Customers not electing the Premier Service Option shall pay an additional charge for emergency service rendered at current MCA rates for each occurrence.

UNSUPPORTED EQUIPMENT. From time to time manufacturers discontinue or cease to support equipment, which MCA cannot control. In the event that equipment covered by this by this contract is discontinued or no longer supported by the manufacturer ("Obsolete Equipment"), MCA's recommendation is that the Obsolete Equipment be replaced. In the event that Customer elects not to replace the Obsolete Equipment, MCA will provide its best efforts to repair and maintain the Obsolete Equipment but makes no guarantees or warranties that the Obsolete Equipment will continue to function as intended, or that firmware updates will be available to ensure that the Obsolete Equipment can communicate properly with other equipment in Customer's system. In the event MCA is unable to repair the Obsolete Equipment or the cost of repair in MCA's opinion makes repairing the equipment impractical, MCA will notify the Customer the equipment is non-repairable and remove it from the service agreement.

REPLACEMENT PARTS: MCA will replace parts and components of the Equipment on an exchange basis when failure is due to the normal and proper use of the Equipment. Parts or equipment exchanged back to MCA during maintenance service become the property of MCA.

PREVENTIVE MAINTENANCE: MCA will inspect the Equipment and make such repairs, adjustments, and replacements of parts and components as may be necessary to maintain the Equipment in normal operating condition provided that such services and maintenance are necessitated by normal usage of the Equipment. Inspections and preventive maintenance service will be provided by MCA during normal working hours at the locations specified. All preventive maintenance inspections will be scheduled for mutual convenience and may be performed during remedial service.

LIMITATIONS: MCA reserves the right to inspect any equipment or service prior to its inclusion under the terms of this Agreement. MCA may at its sole discretion require that said equipment or system be restored to proper operating specifications at Customer's expense prior to its being covered under this Agreement. Should Equipment not meet specifications to provide service or MCA, at its sole discretion, declares Equipment to be unserviceable, MCA will provide an Exhibit outlining audit and test results. In such case, MCA's sole responsibility is to remove such Equipment from the billing under this Agreement.

EXCLUDED SERVICES: The following services are not included under the terms of this Agreement. The repair of Equipment, replacement of parts, or any additional service labor due to accident, abuse, disaster, neglect, misuse, physical damage, liquid damage, damage by lightning or other Acts of God, service by personnel other than those authorized by MCA, alterations, modifications, attachments, accessories (other than those specifically designed for use with the particular piece of Equipment), use of Equipment with unauthorized batteries and/or power supplies or reprogramming by other than MCA personnel. Travel charges and expenses incurred by MCA at the request of the Customer to resolve a malfunction of equipment or systems not covered under this Agreement shall be billable to the Customer at current MCA rates. If MCA finds that any Equipment has been altered or repaired by others, such Equipment shall not be covered by this Agreement and any services shall be billable to the Customer at current MCA rates.

RENEWALS: After the Initial Term, this Agreement shall automatically renew for additional one-year periods, with an annual price increase of 5%, unless Customer provides a notice of termination at least thirty (30) days prior to expiration of the then-current Term.

WARRANTY: MCA warrants that it will perform the services using personnel of required skill, experience and qualifications and in a professional and workmanlike manner in accordance with generally recognized industry standards for similar services and shall devote adequate resources to meet its obligations under this Agreement. EXCEPT FOR THE WARRANTY SET FORTH IN THIS PARAGRAPH, MCA MAKES NO WARRANTY WHATSOEVER WITH RESPECT TO THE SERVICES, INCLUDING ANY (A) WARRANTY OF MERCHANTABILITY; OR (B) WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE; OR (C) WARRANTY OF TITLE; OR (D) WARRANTY AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF A THIRD PARTY; WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE.

PAYMENT: Payment shall be due and payable thirty (30) days from the date of invoice. Payment shall not be withheld on account of any claim by Customer against MCA. If Customer disputes any portion of a MCA invoice, Customer shall pay the undisputed portion when due and the Parties shall work to resolve the dispute within thirty (30) days. Nonpayment or delay in payment by Customer shall be considered a breach of the Agreement. If the financial condition of the Customer at any time does not, in MCA's sole discretion, justify continuance of performance, MCA may require full or partial payment from the Customer in advance. In the event of bankruptcy or insolvency of the Customer, or in the event any proceedings are brought by or against the Customer under any bankruptcy or insolvency laws, MCA shall be entitled to cancel any Services then outstanding and shall receive reimbursement for any expenses incurred by it in connection with such cancellation and any applicable cancellation charges.

TAXES: Applicable taxes will be billed to the Customer and the Customer hereby agrees to pay said taxes, unless the Customer has provided a current tax exemption certificate.

CUSTOMER DEFAULT: Upon any default by Customer under this Agreement, including the refusal to accept conforming Services, MCA may exercise all remedies to which MCA may be entitled at law or in equity, including specific performance. Additionally, MCA may declare all sums due or to become due hereunder immediately due and payable, and MCA shall be entitled to recover all reasonable collection costs incurred, including legal interest. In addition, for non-disputed payments not received within thirty (30) days of the invoice date, a late fee not exceeding the lower of one and a half percent (1.5%) per month or the maximum rate allowed by law shall be assessed on any past due invoice balance. In the event of Customer's default, MCA shall not be obligated to continue performing Services hereunder. Upon Customer default, MCA may at its sole discretion suspend or cancel any outstanding, unfulfilled Services of Customer under this Agreement.

TERMINATION: Customer may, upon thirty (30) days' written notice to MCA, terminate this Agreement for convenience, provided the Customer shall be liable for any third-party costs incurred and outstanding payments to MCA for maintenance services provided. With the exception of the Customer's liability for any and all payments outstanding under this Agreement, neither the Customer nor MCA shall retain any liability for any performance under this Agreement on any date following the expiration of this Agreement.

COVENANT NOT TO SOLICIT: MCA experies considerable resources including money, time, training, etc. to properly train and educate its employees. MCA experiences considerable financial and other harm when its employees are recruited and hired by customers. Therefore, Customer agrees to not recruit or solicit any MCA employee during the term of this Agreement and for a period of two (2) years thereafter. In consideration of MCA performing its services under this Agreement, Customer acknowledges MCA's damages in such event and agrees to pay as liquidated damages for breach of this Section a one-time payment equal to five hundred (500) times the then standard technician hourly billable rate, which is currently \$200/hour. Customer expends considerable resources including money, time, training, etc. to properly train and educate its employees. Customer experiences considerable financial and other harm when its employees are recruited and hired by vendors. Therefore, MCA agrees to not recruit or solicit any Customer employee during the term of this Agreement and for a period of two (2) years thereafter. MCA acknowledges Customer's damages in such event and agrees to pay as liquidated damages for breach of this Section a one-time payment equal to five hundred (500) times the then MCA's standard technician hourly billable rate, which is currently \$200/hour.

MCA INSURANCE: MCA agrees to carry \$1,000,000 per occurrence general liability insurance and applicable worker's compensation insurance.

CUSTOMER INSURANCE: Customer shall maintain all necessary and appropriate policies of insurance in respect of its obligations under this Agreement. Comprehensive General Liability and Property Insurance for liability, casualty, fire, theft, and property damage under which Customer is named as insured and which shall on a primary and non-contributing basis cover any loss or damage MCA's services are intended to detect to one hundred percent of the insurable value or potential risk. The parties intend that the Customer assume all potential risk and damage that may arise by reason of failure of the equipment, or MCA's services and that Customer will look to its own insurance carrier for any loss or assume the risk of loss. MCA shall not be responsible for any portion of any loss or damage which is recovered or recoverable by Customer from insurance covering such loss or damage or for such loss or damage against which Customer is indemnified or insured. Customer and all those claiming rights under Customer waive all rights against MCA and its subcontractors for loss or damages caused by perils intended to be detected by MCA's services or covered by insurance to be obtained by Customer, except such rights as Customer or others may have to the proceeds of insurance. Customer on its behalf and any insurance carrier waives any right of subrogation Customer's insurance carrier may otherwise have against MCA or MCA's subcontractors arising out of this Agreement or the relation of the parties hereto.

NO CHANGES: Except as previously described, no changes, alteration or modification of this Agreement may be made without the express written consent of both parties.

ASSIGNMENT: Customer shall not assign in whole or in part this Agreement or any interest therein or any rights hereunder without the written consent of MCA, which shall not be unreasonably withheld or delayed. Any such assignment without consent shall be void. Notwithstanding the foregoing, MCA may assign this Agreement or any other agreement between the Parties, without consent in whole or in part, for the purposes of corporate reconstruction, reorganization, or analogous proceeding, or to (a) any affiliate; or (b) a third party in the event of a merger, recapitalization, conversion, consolidation, other business combination or sale of all or substantially all of the assets of MCA to such third party.

GOVERNING LAW AND VENUE: This Agreement is governed by and construed in accordance with the laws of the State of South Carolina without regard to its rules governing conflicts of law. This Agreement shall be binding upon and inure to the benefit of each Party and its respective heirs, successors and assigns. Should any part of this Agreement, for any reason, be declared invalid by a court of competent jurisdiction, such determination shall not affect the validity of any remaining portion, and such remaining portion shall remain in full force and effect. The Parties shall attempt to resolve all disputes arising out of this Agreement in a spirit of cooperation without formal proceedings. Any dispute which cannot be so resolved (other than the collection of money due on unpaid invoices) shall be subject to arbitration upon written demand of either party. Arbitration shall take place in Spartanburg, South Carolina, and shall be the exclusive forum for resolving the dispute, controversy, or claim. The arbitration shall take place before an arbitration panel chosen as follows: The parties shall each choose an arbitrator, and the two (2) arbitrators shall choose a third (3rd) arbitrator and determine the third (3rd) arbitrator's compensation. Each party shall have one (1) veto over the choice of the third (3rd) arbitrator. The three (3) arbitrators shall schedule an informal proceeding, hear the arguments, and decide the matter by secret majority vote. Unless the arbitrators decide otherwise, each party shall pay the costs of its own arbitrator and shall pay half of the other costs of the arbitration proceeding. The award or decision of the arbitrator shall state the reasons upon which the award or decision is based and shall be final and binding upon the Parties. The prevailing Party shall be entitled to compensation for the expense of the arbitration, including, but not limited to, the award of attorneys' fees, at the discretion of the arbitrator. The award shall be enforceable before any court of competent jurisdic

EXCULPATORY CLAUSE: Both Parties agree that MCA is not an insurer, and no insurance coverage is offered herein. The equipment and MCA's services are designed to detect and reduce certain risks of loss, though MCA does not guarantee that no loss or damage will occur. No equipment provided by MCA is represented to be medical grade, FDA approved, or intended for use by a healthcare professional or healthcare facility or to diagnose, treat, cure or prevent disease or medical condition unless explicitly stated in the SOW and no equipment or services are intended to diagnose, treat, cure, prevent, mitigate or minimize the likelihood of communicable disease, infectious agent, bacteria, virus or illness. MCA is not assuming liability, and, therefore, Customer agrees MCA shall not be liable to Customer or any other third party, and Customer covenants not to sue MCA, for any loss, economic or non-economic, business loss or interruption, consequential damages, in contract or tort, data corruption or inability to retrieve data, personal injury, health condition or property damage sustained by Customer or others as a result of equipment failure, human error, burglary, theft, hold-up, fire, smoke, water, any communicable disease, infectious agent, bacteria, virus, illness or any other cause whatsoever, regardless of whether or not such loss or damage was caused by or contributed to by MCA's breach of contract, negligent performance to any degree in furtherance of this Agreement, any extra contractual or legal duty, strict products liability, or negligent failure to perform any obligation pursuant to this Agreement or any other legal duty, except for gross negligence and willful misconduct.

LIMITATION OF LIABILITY: MCA SHALL NOT BE LIABLE TO CUSTOMER OR TO ANY THIRD PARTY FOR ANY LOSS OF USE, REVENUE OR PROFIT, DAMAGE OR LOSS OF OTHER PROPERTY OR EQUIPMENT OR SYSTEMS OR FOR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY, SPECIAL OR PUNITIVE DAMAGES WHETHER ARISING OUT OF BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, REGARDLESS OF WHETHER SUCH DAMAGES WERE FORESEEABLE AND WHETHER OR NOT MCA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND NOTWITHSTANDING THE FAILURE OF ANY AGREED OR OTHER REMEDY OF ITS ESSENTIAL PURPOSE. THE LIABILITY OF MCA WITH RESPECT TO ANY OF ITS OBLIGATIONS HEREUNDER, INCLUDING SERVICE, SALE, DELIVERY, RESALE, INSTALLATION OR THE TECHNICAL DIRECTION OF INSTALLATION, REPAIR OR USE OF ANY ITEM COVERED BY OR FURNISHED HEREUNDER, WHETHER SUCH LIABILITIES ARE FOUNDED IN CONTRACT, IN TORT, UNDER ANY WARRANTY, OR OTHERWISE, SHALL NOT EXCEED THE PRICE PAID TO MCA WITH RESPECT TO THE SERVICE GIVING RISE TO THE CLAIM. NO ACTION SHALL BE BROUGHT FOR ANY BREACH OF THIS AGREEMENT MORE THAN ONE (1) YEAR AFTER THE ACCRUAL OF SUCH CAUSE OF ACTION EXCEPT FOR MONEY DUE UPON OPEN ACCOUNT.

INDEMNIFICATION: Customer agrees to indemnify, defend, and hold harmless MCA, its officers, directors, employees, and agents (collectively, the "Indemnified Party") from and against any and all liabilities, losses, damages, expenses, liens, claims, demands, actions, judgments, settlements, interest, awards, penalties, fines costs, and expenses, including, without limitation, reasonable attorneys' fees, costs of collection, costs of recovering insurance, and costs of enforcing this indemnification provision (collectively "Claims") arising out of or related to any negligent act or omission of the Customer in connection with the performance of the Services under each SOW. For avoidance of doubt, Customer agrees to indemnify, defend and hold harmless MCA from any failure to mitigate or respond or detect any communicable disease, infectious agent, bacteria or virus.

ATTORNEYS' FEES: Should any dispute arise between the parties regarding the interpretation, application, effect or enforcement of the Agreement, the prevailing party in any legal or arbitration proceedings commenced to resolve the dispute shall be entitled to costs and reasonable attorney's fees incurred in said legal proceeding.

NOTICES: All notices given by one party to the other under this Agreement must be delivered by: (a) hand delivery, (b) certified mail, return receipt requested, (c) nationally recognized overnight courier service, or (d) facsimile, to the other party's respective address given in the preamble to the Agreement.

SEVERABILITY: If any provision or part-provision of this Agreement is or becomes invalid, illegal, or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to or deletion of a provision or part-provision **COUNTERPARTS:** The Agreement may be executed in counterparts, which together constitute one and the same agreement. A facsimile copy or computer image, such as a PDF or tiff image, of a signature shall be treated as and shall have the same effect as an original signature. In addition, a true and correct facsimile copy or computer image of the Agreement shall be treated as and shall have the same effect as an original signed copy of this document.

Equipment and Coverage Details - Attachment A

Repeater	12
Channel 5 Base	1
Battery Chargers for Repeater	2
Control Station	17
Consolettes	15
Tone Remote	1
XTL Mobile (Viper Rescue)	1
Tone Remote Adapter	2

Best Effort Provided on Unsupported Equipment

4-Hour Onsite Response Time for Emergency Failures 24/7

Annual Preventative Maintenance Inspection

Special Instructions

Statements of Work - Attachment B

MCA 8 x 5 Coverage	MCA 24 x 7 Coverage
Subscriber support includes repair. It is the customer's responsibility to get the subscriber to their local MCA facility and ensure MCA has the current programming files on hand. It is MCA's responsibility to: • Triage the device • Ship to the depot if repair cannot be addressed locally • Track repair status • Receive the device back from the depot • Confirm that the radio has been repaired and is programmed to the customer's specifications • Communicate to the customer their device is fixed. Infrastructure support includes M-F 8X5 response to all issues arising from infrastructure, infrastructure cabling and antenna systems. Issues that result from power failure, force majeure, or tampering are excluded from this service. Removal of infrastructure equipment for warranty repair is the responsibility of MCA. Repair of cabling and antenna systems is not a part of this service. After hours support is available upon request but is not covered under this service. Additional charges would apply at after hour rates. One annual Preventative Maintenance check of the covered equipment. Subscriber Preventative Maintenance includes but not limited to visual inspection of radio, realignment back to factory specifications (transmit power out, transmit frequency error, transmit deviation, and receive sensitivity), and check of battery date code. One annual firmware update of the covered equipment will be completed at the time of the preventative maintenance check.	Subscriber support includes repair. It is the customer's responsibility to get the subscriber to their local MCA facility and ensure MCA has the current programming files on hand. It is MCA's responsibility to: • Triage the device • Ship to the depot if repair cannot be addressed locally • Track repair status • Receive the device back from the depot • Confirm that the radio has been repaired and is programmed to the customer's specifications • Communicate to the customer their device is fixed. Infrastructure support includes 24 x 7 response to all issues arising from infrastructure, infrastructure cabling and antenna systems. Issues that result from power failure force.

SERVICE LEVEL AGREEMENT

MCA Office:	Charlotte, NC				
			y and between Mobile Communications Amer ffective date listed below.	rica, Inc. a Delaware corporation ("MCA") and the entity lis	ted
	Effective Date: Customer: Customer Address:	7/1/2025 Watauga County	-		
services to be pro-	vided by MCA as it app	lies to maintenance servi		Agreement to set forth the terms and conditions for the systems as described in Attachment A. Beginning on the od working order.	
Summary of Serv	rices:				
End Date:	6/30/2026	("Initial Term")			
Monthly Price:	\$653.22				
Annual Price:	\$7,838.64	(State/Local taxes NO	T included)		
Billing Frequency:	Annual	<u></u>			
the Agreement. Connot assure uninter	ustomer also agrees to rupted operation of the	provide full, free and saf Equipment or service an	e access to the equipment and/or systems co	hment A, according to the specified terms and conditions overed by this Agreement. Services provided hereunder do covered service due to causes beyond its control. This	
understanding bet representations, s	ween the Parties and s tatements, or induceme	upersedes all prior negot ents, oral or written, not c	iations, agreements and understandings with ontained herein shall bind either Party. This A	time to time, sets forth the entire agreement and respect to the subject matter of this Agreement. No agreement may only be amended by a written document dunderstands it, and agrees to be bound by its terms and	uly
Signature	۵٠		Signature	۵۰	
Olgilatul		stomer	- Signature	MCA	
Name(print) & Title			Name(print) & Title		
Date	:		Date	e:	

TERMS AND CONDITIONS

NORMAL WORKING HOURS: Normal working hours shall be from 8:00 AM to 5:00 PM, Monday through Friday, except holidays, in the time zone of the Customer location receiving the SERVICE: MCA will perform such repairs as may be required to restore Equipment to their normal operating level, provided that such repairs are necessitated by the failure of the Equipment due to normal usage. Non-fixed Equipment shall be serviced at an MCA shop during normal working hours. Travel charges and expenses incurred by MCA at the request of the Customer to resolve a malfunction of the Equipment that is not covered under this Agreement shall be billable to the Customer at current MCA rates. For emergency service or other service performed at Customer's request outside of normal working hours, for equipment not covered under this Agreement or for Equipment whose failure was due to causes not considered to be "normal usage," Customer will be billed for the service at the then current MCA rates for each occurrence.

PREMIER SERVICE OPTION: If Customer has elected to purchase the Premier Service Option, emergency service is included at no additional charge per occurrence, provided that all other terms of this Agreement are satisfied. Emergency service is provided 24 hours per day, seven days per week. Customers not electing the Premier Service Option shall pay an additional charge for emergency service rendered at current MCA rates for each occurrence.

UNSUPPORTED EQUIPMENT. From time to time manufacturers discontinue or cease to support equipment, which MCA cannot control. In the event that equipment covered by this by this contract is discontinued or no longer supported by the manufacturer ("Obsolete Equipment"), MCA's recommendation is that the Obsolete Equipment be replaced. In the event that Customer elects not to replace the Obsolete Equipment, MCA will provide its best efforts to repair and maintain the Obsolete Equipment but makes no guarantees or warranties that the Obsolete Equipment will continue to function as intended, or that firmware updates will be available to ensure that the Obsolete Equipment can communicate properly with other equipment in Customer's system. In the event MCA is unable to repair the Obsolete Equipment or the cost of repair in MCA's opinion makes repairing the equipment impractical, MCA will notify the Customer the equipment is non-repairable and remove it from the service agreement.

REPLACEMENT PARTS: MCA will replace parts and components of the Equipment on an exchange basis when failure is due to the normal and proper use of the Equipment. Parts or equipment exchanged back to MCA during maintenance service become the property of MCA.

PREVENTIVE MAINTENANCE: MCA will inspect the Equipment and make such repairs, adjustments, and replacements of parts and components as may be necessary to maintain the Equipment in normal operating condition provided that such services and maintenance are necessitated by normal usage of the Equipment. Inspections and preventive maintenance service will be provided by MCA during normal working hours at the locations specified. All preventive maintenance inspections will be scheduled for mutual convenience and may be performed during remedial service.

LIMITATIONS: MCA reserves the right to inspect any equipment or service prior to its inclusion under the terms of this Agreement. MCA may at its sole discretion require that said equipment or system be restored to proper operating specifications at Customer's expense prior to its being covered under this Agreement. Should Equipment not meet specifications to provide service or MCA, at its sole discretion, declares Equipment to be unserviceable, MCA will provide an Exhibit outlining audit and test results. In such case, MCA's sole responsibility is to remove such Equipment from the billing under this Agreement.

EXCLUDED SERVICES: The following services are not included under the terms of this Agreement. The repair of Equipment, replacement of parts, or any additional service labor due to accident, abuse, disaster, neglect, misuse, physical damage, liquid damage, damage by lightning or other Acts of God, service by personnel other than those authorized by MCA, alterations, modifications, attachments, accessories (other than those specifically designed for use with the particular piece of Equipment), use of Equipment with unauthorized batteries and/or power supplies or reprogramming by other than MCA personnel. Travel charges and expenses incurred by MCA at the request of the Customer to resolve a malfunction of equipment or systems not covered under this Agreement shall be billable to the Customer at current MCA rates. If MCA finds that any Equipment has been altered or repaired by others, such Equipment shall not be covered by this Agreement and any services shall be billable to the Customer at current MCA rates.

RENEWALS: After the Initial Term, this Agreement shall automatically renew for additional one-year periods, with an annual price increase of 5%, unless Customer provides a notice of termination at least thirty (30) days prior to expiration of the then-current Term.

WARRANTY: MCA warrants that it will perform the services using personnel of required skill, experience and qualifications and in a professional and workmanlike manner in accordance with generally recognized industry standards for similar services and shall devote adequate resources to meet its obligations under this Agreement. EXCEPT FOR THE WARRANTY SET FORTH IN THIS PARAGRAPH, MCA MAKES NO WARRANTY WHATSOEVER WITH RESPECT TO THE SERVICES, INCLUDING ANY (A) WARRANTY OF MERCHANTABILITY; OR (B) WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE; OR (C) WARRANTY OF TITLE; OR (D) WARRANTY AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF A THIRD PARTY; WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE.

PAYMENT: Payment shall be due and payable thirty (30) days from the date of invoice. Payment shall not be withheld on account of any claim by Customer against MCA. If Customer disputes any portion of a MCA invoice, Customer shall pay the undisputed portion when due and the Parties shall work to resolve the dispute within thirty (30) days. Nonpayment or delay in payment by Customer shall be considered a breach of the Agreement. If the financial condition of the Customer at any time does not, in MCA's sole discretion, justify continuance of performance, MCA may require full or partial payment from the Customer in advance. In the event of bankruptcy or insolvency of the Customer, or in the event any proceedings are brought by or against the Customer under any bankruptcy or insolvency laws, MCA shall be entitled to cancel any Services then outstanding and shall receive reimbursement for any expenses incurred by it in connection with such cancellation and any applicable cancellation charges.

TAXES: Applicable taxes will be billed to the Customer and the Customer hereby agrees to pay said taxes, unless the Customer has provided a current tax exemption certificate.

CUSTOMER DEFAULT: Upon any default by Customer under this Agreement, including the refusal to accept conforming Services, MCA may exercise all remedies to which MCA may be entitled at law or in equity, including specific performance. Additionally, MCA may declare all sums due or to become due hereunder immediately due and payable, and MCA shall be entitled to recover all reasonable collection costs incurred, including legal interest. In addition, for non-disputed payments not received within thirty (30) days of the invoice date, a late fee not exceeding the lower of one and a half percent (1.5%) per month or the maximum rate allowed by law shall be assessed on any past due invoice balance. In the event of Customer's default, MCA shall not be obligated to continue performing Services hereunder. Upon Customer default, MCA may at its sole discretion suspend or cancel any outstanding, unfulfilled Services of Customer under this Agreement.

TERMINATION: Customer may, upon thirty (30) days' written notice to MCA, terminate this Agreement for convenience, provided the Customer shall be liable for any third-party costs incurred and outstanding payments to MCA for maintenance services provided. With the exception of the Customer's liability for any and all payments outstanding under this Agreement, neither the Customer nor MCA shall retain any liability for any performance under this Agreement on any date following the expiration of this Agreement.

COVENANT NOT TO SOLICIT: MCA experies considerable resources including money, time, training, etc. to properly train and educate its employees. MCA experiences considerable financial and other harm when its employees are recruited and hired by customers. Therefore, Customer agrees to not recruit or solicit any MCA employee during the term of this Agreement and for a period of two (2) years thereafter. In consideration of MCA performing its services under this Agreement, Customer acknowledges MCA's damages in such event and agrees to pay as liquidated damages for breach of this Section a one-time payment equal to five hundred (500) times the then standard technician hourly billable rate, which is currently \$200/hour. Customer expends considerable resources including money, time, training, etc. to properly train and educate its employees. Customer experiences considerable financial and other harm when its employees are recruited and hired by vendors. Therefore, MCA agrees to not recruit or solicit any Customer employee during the term of this Agreement and for a period of two (2) years thereafter. MCA acknowledges Customer's damages in such event and agrees to pay as liquidated damages for breach of this Section a one-time payment equal to five hundred (500) times the then MCA's standard technician hourly billable rate, which is currently \$200/hour.

MCA INSURANCE: MCA agrees to carry \$1,000,000 per occurrence general liability insurance and applicable worker's compensation insurance.

CUSTOMER INSURANCE: Customer shall maintain all necessary and appropriate policies of insurance in respect of its obligations under this Agreement. Comprehensive General Liability and Property Insurance for liability, casualty, fire, theft, and property damage under which Customer is named as insured and which shall on a primary and non-contributing basis cover any loss or damage MCA's services are intended to detect to one hundred percent of the insurable value or potential risk. The parties intend that the Customer assume all potential risk and damage that may arise by reason of failure of the equipment, or MCA's services and that Customer will look to its own insurance carrier for any loss or assume the risk of loss. MCA shall not be responsible for any portion of any loss or damage which is recovered or recoverable by Customer from insurance covering such loss or damage or for such loss or damage against which Customer is indemnified or insured. Customer and all those claiming rights under Customer waive all rights against MCA and its subcontractors for loss or damages caused by perils intended to be detected by MCA's services or covered by insurance to be obtained by Customer, except such rights as Customer or others may have to the proceeds of insurance. Customer on its behalf and any insurance carrier waives any right of subrogation Customer's insurance carrier may otherwise have against MCA or MCA's subcontractors arising out of this Agreement or the relation of the parties hereto.

NO CHANGES: Except as previously described, no changes, alteration or modification of this Agreement may be made without the express written consent of both parties.

ASSIGNMENT: Customer shall not assign in whole or in part this Agreement or any interest therein or any rights hereunder without the written consent of MCA, which shall not be unreasonably withheld or delayed. Any such assignment without consent shall be void. Notwithstanding the foregoing, MCA may assign this Agreement or any other agreement between the Parties, without consent in whole or in part, for the purposes of corporate reconstruction, reorganization, or analogous proceeding, or to (a) any affiliate; or (b) a third party in the event of a merger, recapitalization, conversion, consolidation, other business combination or sale of all or substantially all of the assets of MCA to such third party.

GOVERNING LAW AND VENUE: This Agreement is governed by and construed in accordance with the laws of the State of South Carolina without regard to its rules governing conflicts of law. This Agreement shall be binding upon and inure to the benefit of each Party and its respective heirs, successors and assigns. Should any part of this Agreement, for any reason, be declared invalid by a court of competent jurisdiction, such determination shall not affect the validity of any remaining portion, and such remaining portion shall remain in full force and effect. The Parties shall attempt to resolve all disputes arising out of this Agreement in a spirit of cooperation without formal proceedings. Any dispute which cannot be so resolved (other than the collection of money due on unpaid invoices) shall be subject to arbitration upon written demand of either party. Arbitration shall take place in Spartanburg, South Carolina, and shall be the exclusive forum for resolving the dispute, controversy, or claim. The arbitration shall take place before an arbitration panel chosen as follows: The parties shall each choose an arbitrator, and the two (2) arbitrators shall choose a third (3rd) arbitrator and determine the third (3rd) arbitrator's compensation. Each party shall have one (1) veto over the choice of the third (3rd) arbitrator. The three (3) arbitrators shall schedule an informal proceeding, hear the arguments, and decide the matter by secret majority vote. Unless the arbitrators decide otherwise, each party shall pay the costs of its own arbitrator and shall pay half of the other costs of the arbitration proceeding. The award or decision of the arbitrator shall state the reasons upon which the award or decision is based and shall be final and binding upon the Parties. The prevailing Party shall be entitled to compensation for the expense of the arbitration, including, but not limited to, the award of attorneys' fees, at the discretion of the arbitrator. The award shall be enforceable before any court of competent jurisdic

EXCULPATORY CLAUSE: Both Parties agree that MCA is not an insurer, and no insurance coverage is offered herein. The equipment and MCA's services are designed to detect and reduce certain risks of loss, though MCA does not guarantee that no loss or damage will occur. No equipment provided by MCA is represented to be medical grade, FDA approved, or intended for use by a healthcare professional or healthcare facility or to diagnose, treat, cure or prevent disease or medical condition unless explicitly stated in the SOW and no equipment or services are intended to diagnose, treat, cure, prevent, mitigate or minimize the likelihood of communicable disease, infectious agent, bacteria, virus or illness. MCA is not assuming liability, and, therefore, Customer agrees MCA shall not be liable to Customer or any other third party, and Customer covenants not to sue MCA, for any loss, economic or non-economic, business loss or interruption, consequential damages, in contract or tort, data corruption or inability to retrieve data, personal injury, health condition or property damage sustained by Customer or others as a result of equipment failure, human error, burglary, theft, hold-up, fire, smoke, water, any communicable disease, infectious agent, bacteria, virus, illness or any other cause whatsoever, regardless of whether or not such loss or damage was caused by or contributed to by MCA's breach of contract, negligent performance to any degree in furtherance of this Agreement, any extra contractual or legal duty, strict products liability, or negligent failure to perform any obligation pursuant to this Agreement or any other legal duty, except for gross negligence and willful misconduct.

LIMITATION OF LIABILITY: MCA SHALL NOT BE LIABLE TO CUSTOMER OR TO ANY THIRD PARTY FOR ANY LOSS OF USE, REVENUE OR PROFIT, DAMAGE OR LOSS OF OTHER PROPERTY OR EQUIPMENT OR SYSTEMS OR FOR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY, SPECIAL OR PUNITIVE DAMAGES WHETHER ARISING OUT OF BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, REGARDLESS OF WHETHER SUCH DAMAGES WERE FORESEEABLE AND WHETHER OR NOT MCA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND NOTWITHSTANDING THE FAILURE OF ANY AGREED OR OTHER REMEDY OF ITS ESSENTIAL PURPOSE. THE LIABILITY OF MCA WITH RESPECT TO ANY OF ITS OBLIGATIONS HEREUNDER, INCLUDING SERVICE, SALE, DELIVERY, RESALE, INSTALLATION OR THE TECHNICAL DIRECTION OF INSTALLATION, REPAIR OR USE OF ANY ITEM COVERED BY OR FURNISHED HEREUNDER, WHETHER SUCH LIABILITIES ARE FOUNDED IN CONTRACT, IN TORT, UNDER ANY WARRANTY, OR OTHERWISE, SHALL NOT EXCEED THE PRICE PAID TO MCA WITH RESPECT TO THE SERVICE GIVING RISE TO THE CLAIM. NO ACTION SHALL BE BROUGHT FOR ANY BREACH OF THIS AGREEMENT MORE THAN ONE (1) YEAR AFTER THE ACCRUAL OF SUCH CAUSE OF ACTION EXCEPT FOR MONEY DUE UPON OPEN ACCOUNT.

INDEMNIFICATION: Customer agrees to indemnify, defend, and hold harmless MCA, its officers, directors, employees, and agents (collectively, the "Indemnified Party") from and against any and all liabilities, losses, damages, expenses, liens, claims, demands, actions, judgments, settlements, interest, awards, penalties, fines costs, and expenses, including, without limitation, reasonable attorneys' fees, costs of collection, costs of recovering insurance, and costs of enforcing this indemnification provision (collectively "Claims") arising out of or related to any negligent act or omission of the Customer in connection with the performance of the Services under each SOW. For avoidance of doubt, Customer agrees to indemnify, defend and hold harmless MCA from any failure to mitigate or respond or detect any communicable disease, infectious agent, bacteria or virus.

ATTORNEYS' FEES: Should any dispute arise between the parties regarding the interpretation, application, effect or enforcement of the Agreement, the prevailing party in any legal or arbitration proceedings commenced to resolve the dispute shall be entitled to costs and reasonable attorney's fees incurred in said legal proceeding.

NOTICES: All notices given by one party to the other under this Agreement must be delivered by: (a) hand delivery, (b) certified mail, return receipt requested, (c) nationally recognized overnight courier service, or (d) facsimile, to the other party's respective address given in the preamble to the Agreement.

SEVERABILITY: If any provision or part-provision of this Agreement is or becomes invalid, illegal, or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to or deletion of a provision or part-provision **COUNTERPARTS:** The Agreement may be executed in counterparts, which together constitute one and the same agreement. A facsimile copy or computer image, such as a PDF or tiff image, of a signature shall be treated as and shall have the same effect as an original signature. In addition, a true and correct facsimile copy or computer image of the Agreement shall be treated as and shall have the same effect as an original signed copy of this document.

Equipment and Coverage Details - Attachment A

APX7000	15
APX8000	37
XTS2500	16
APX Mobile	10
Motorola Mobile	42

Annual Preventative Maintenance Inspection				

Special Instructions

Statements of Work - Attachment B

MCA 8 x 5 Coverage	MCA 24 x 7 Coverage
Subscriber support includes repair. It is the customer's responsibility to get the subscriber to their local MCA facility and ensure MCA has the current programming files on hand. It is MCA's responsibility to: • Triage the device • Ship to the depot if repair cannot be addressed locally • Track repair status • Receive the device back from the depot • Confirm that the radio has been repaired and is programmed to the customer's specifications • Communicate to the customer their device is fixed. Infrastructure support includes M-F 8X5 response to all issues arising from infrastructure, infrastructure cabling and antenna systems. Issues that result from power failure, force majeure, or tampering are excluded from this service. Removal of infrastructure equipment for warranty repair is the responsibility of MCA. Repair of cabling and antenna systems is not a part of this service. After hours support is available upon request but is not covered under this service. Additional charges would apply at after hour rates. One annual Preventative Maintenance check of the covered equipment. Subscriber Preventative Maintenance includes but not limited to visual inspection of radio, realignment back to factory specifications (transmit power out, transmit frequency error, transmit deviation, and receive sensitivity), and check of battery date code. One annual firmware update of the covered equipment will be completed at the time of the preventative maintenance check.	Subscriber support includes repair. It is the customer's responsibility to get the subscriber to their local MCA facility and ensure MCA has the current programming files on hand. It is MCA's responsibility to: • Triage the device • Ship to the depot if repair cannot be addressed locally • Track repair status • Receive the device back from the depot • Confirm that the radio has been repaired and is programmed to the customer's specifications • Communicate to the customer their device is fixed. Infrastructure support includes 24 x 7 response to all issues arising from infrastructure, infrastructure cabling and antenna systems. Issues that result from power failure force.

AGENDA ITEM 11:

APPOINTMENT OF MEMBERS TO FIRE APPENDICES COMMITTEE

MANAGER'S COMMENTS:

At the Board's request during the previous meeting, Planning and Inspections Director Jason Walker followed up with the individuals nominated by the Planning Board to serve on the Fire Appendices Committee. All nominees representing the surveyor, engineer, developer, and at-large categories have confirmed their willingness to serve. A final list of recommended individuals is attached. One representative from each category will need to be selected. Once appointments are made, staff will notify the selected individuals accordingly.

Staff seeks direction from the Board regarding appointments.

WATAUGA COUNTY

Department of Planning & Inspections

126 Poplar Grove Connector Suite 201 • Boone, North Carolina 28607

07 (828) 265-8043 TTY 1-800-735-2962

Voice 1-800-735-8262

or 711

FAX (828) 265-8080

Memorandum

Date: July 30, 2025

To: Watauga County Board of Commissioners

Deron Geouque, County Manager

From: Jason Walker, Director of Planning & Inspections

Re: Fire Appendices Committee

I have contacted the individuals nominated by the Planning Board regarding their willingness to serve on the Fire Appendices Committee. All have confirmed their interest in participating.

Attached is the final list of recommended individuals. One member from each group (surveyor, engineer, developer, and at-large) will need to be selected to serve on the committee.

Once the selections are made, I will notify the chosen individuals accordingly.

FIRE APPENDICES COMMITTEE

Two Commissioners

Braxton Eggers Ronnie Marsh

Two Fire Chiefs

Chief Matt Aldridge, Foscoe Fire Dept Chief Steve Marks, Cove Creek Fire Dept (Chair of Fire Commission) (Both recommended by the Watauga County Fire Commission)

County Manager

Deron Geouque

Fire Marshall

Shane Garland

Planning Director

Jason Walker

The individuals below have been nominated and indicated their willingness to serve on the committee. At this time, we need to select one member from each category.

One Surveyor

- 1. Donald McNeil
- 2. Rick Snyder

One Engineer

- 1. Patrick Warren
- 2. Derek Goddard
- 3. Mike Trew

One Developer

- 1. Todd Rice
- 2. Bill Aceto
- 3. Jay Harrill

One At-Large Member

- 1. Mike Wilson
- 2. Joseph Greer
- 3. Chuck Campbell
- 4. Jeff Fisher
- 5. George Bartholomew

Blank Page

AGENDA ITEM 12:

SANITATION DEPARTMENT TRAILER PURCHASE REQUEST

MANAGER'S COMMENTS:

Operations Services Director Chris Marriott has submitted a request to purchase a 2026 Clement Monstar trailer for use by the Sanitation Department in hauling scrap metal for recycling. This trailer will replace an older, homemade unit that has become structurally unsound and unsafe for road use.

Staff solicited and evaluated eight quotes from six vendors for both new and used trailers. Based on age, payload capacity, and overall value, staff recommends the purchase of the 2026 Clement Monstar from Trailer Specialist, Inc. of Concord, NC, at a cost of \$88,953. The vendor has agreed to hold the trailer until August 6, 2025, pending Board approval. Upon purchase, the old trailer will be sold to a scrapyard for recycling.

Sufficient funds are available in the FY 2026 Sanitation Department budget under.

Board action is requested to approve the purchase of the 2026 Clement Monstar trailer in the amount of \$88,953 from Trailer Specialist, Inc.

WATAUGA COUNTY

SANITATION DEPARTMENT

336 Landfill Road – Boone, NC 28607 – (828) 264-5305 TDD 1-800-735-2962 – Voice 1-800-735-8262 – FAX (828) 264-3230

July 23, 2025

To: Deron Geouque, County Manager

From: Chris Marriott, Operations Services Director

Subject: Sanitation Equipment Purchase Request

Please see attached quote, for procurement of a 2026 Clement Monstar Trailer for the Watauga County Sanitation Department. The Monstar Trailer will be primarily utilized for hauling of scrap metal for recycling. This trailer will replace an old 'homemade' hauling trailer that has been bowed-out and is becoming unsafe for roadway transport.

Staff reached out for quotes for both new and used trailers that could be utilized for hauling scrap metal. Six different companies were provided a total of eight (8) quotes for the purchase of a trailer suitable for hauling scrap metal. The Sanitation Department evaluated the following quotes for the best value to the department; they were ranked as follows:

Company	Product	Price
Trailer Specialist, Inc. (Concord, NC)	2026 Clement Monstar (89 yd)	\$88,953
Pinnacle Trailers (Spartanburg, SC)	2023 Manac (65 yd)	\$65,900
Trailer Specialist, Inc.	2016 Clement Scrapstar MK3 (64 yd)	\$47,000
Trailer Specialist, Inc.	2026 Clement Scrapstar MK2 (62 yd)	\$86,240
Southeast Utility Trailer (Garner, NC)	2025 MAC Hardox AR450 (109 yd)	\$114,303.20
MTM (Kewanee, IL)	2022 MTM TN768 (56 yd)	\$55,000.00
Benlee (Romulus, MI)	2026 Gondola (non-dump)	\$83,415.36
Construction Trailer Specialists	2025 ScrapMaster (65 yd)	\$71,571
(Sikeston, Mo)		

Considering the age, payload, and price of each of the available trailers, staff recommends the 2026 Clement Monstar. The vendor, Trailer Specialist, has agreed to hold the trailer until August 6th for board approval. The trailer is location in Concord, NC. Sanitation staff would be able to pick up after approval and the issuance of a purchase order.

The current metal hauling trailer would be sold to the scrapyard for recycling once the new trailer is ready for pick up.

Staff requests Board of Commissioner's approval to purchase a 2026 Clement Monstar scrap trailer from Trailer Specialist, Inc. based in Concord, NC.

Sufficient funds are available in the FY2026 Landfill Operations budget in the line item of Capital Outlay-other[667420-455002] within the Sanitation Department.

Please let me know if you have any questions or concerns. Thank you in advance for your consideration.

TRAILER SPECIALISTS, INC.

3219 Cornelius Street, Charlotte, North Carolina 28206 Phone (704) 377-4108, Fax (704) 377-9044 Email: Harmonrlg@Trailerspecialists.com

DATE	TERMS	EST. SHIP	SALESMAN
07/15/25	Balance due at delivery	In Stock	Harmon Gibson

QUOTE FOR: Chris Marriott

336 707 4777

Chris.marriott@watgov.org

QUANTITY	DESCRIPTION	PRICE
1	2026 CLEMENT MONSTAR	
	FRAMELESS STEEL END DUMP FOR THE HEAVY SCRAP INDUSTRY	
	FLOOR, SIDES & TAIL GATE 3/16" AR500 STEEL CONSTRUCTION	
	FRONT HEADER 3/16" AR450 STEEL CONSTRUCTION	
	40FT LONG - 102" WIDE - 101" SIDE HEIGHT	
	89 CUBIC YARD CAPACITY	
	50,000 LB SINGLE POINT SUSPENSION	
	22.5 RADIAL TIRES ON HUB PILOTED STEEL DISC RIMS	
	2S1M ABS / SEALED LIGHTS & HARNESS	
	INVERTED HOIST - NO DOG HOUSE	
	REAR ALUMINUM FENDERS / TWO SPEED LEGS	
	SIDE SWING TAILGATE / Clement BLACK URETHANE TOP COAT	
	Mountain Electric flip tarp	
	Estimated weight: 18,600lbs +/- 3%	
	FOB: Charlotte	
	PER UNIT	\$ 79,592.0
	FET	include

Customer's Signature

FREIGHT included Total \$ 88,953.00

AGENDA ITEM 13:

MISCELLANEOUS ADMINISTRATIVE MATTERS

A. Resolution to Approve Amendment No. 2

MANAGER'S COMMENTS:

Finance Director Deron Geouque will present a request for the Board to approve Amendment No. 2 to the North Carolina Cash Flow Loan Agreement and the accompanying resolution. Under the terms of the original agreement, any FEMA reimbursements received by the County were required to be remitted to the State within five business days.

The proposed amendment modifies the repayment structure, allowing the County to repay the loan over a five-year period according to the original repayment schedule, rather than remitting funds immediately upon receipt.

Board action is requested to approve Cash Flow Loan Amendment No. 2 and the associated resolution.

WATAUGA COUNTY FINANCE OFFICE

814 West King St., Room 216 - Boone, NC 28607 - Phone (828) 265-8007 Fax (828) 265-8006

MEMORANDUM

TO: Deron Geouque, County Manager FROM: Deidre Guy, Assistant Finance Director SUBJECT: Cash Flow Loan Amendment no. 2

DATE: July 18, 2025

Attached please find the North Carolina Cash Flow Loan Amendment no. 2 and resolution. Under the original Cash Flow Loan Agreement, any funds received from FEMA would have to be remitted to the state within 5 business days. This amendment will modify the terms and would allow the County to repay the loans over 5 years with the original repayment schedule.

Board approval is requested to approve the Cash Flow Loan Amendment no.2 and the resolution.

Finance Officer	

AMENDMENT NO. 2

to

Loan Agreement between the State of North Carolina (by and through the North Carolina Department of State Treasurer) and the County of Watauga, North Carolina

This amendment ("Amendment") to the above-identified agreement is hereby made and entered into by the State of North Carolina, by and through the North Carolina Department of State Treasurer ("NCDST"), and the County of Watauga, North Carolina ("Recipient"), as of the effective date established hereinbelow.

RECITALS

- **A.** Pursuant to the Hurricane Helene Cash Flow Loan Program created by the North Carolina General Assembly under the Disaster Recovery Act of 2024 Part II, NCDST and Recipient entered the above-identified agreement to establish terms and conditions governing NCDST's disbursement of loan proceeds to Recipient (the "Loan Agreement").
- **B.** The terms of the Loan Agreement require Recipient to seek alternative sources of funding—namely, federal funding support, insurance proceeds, and private donations (generally, "Alternative Funding")—to pay for the disaster response activities on which Recipient's loan origination was based.
- C. On May 28, 2025, NCDST and Recipient entered an amendment to the Loan Agreement ("Amendment No. 1"), which permitted Recipient to receive FEMA Public Assistance Expedited Project Funding without triggering an obligation to repay the equivalent amount of loan proceeds to NCDST immediately thereafter. Amendment No. 1 to the Loan Agreement also eliminated the requirement that Recipient "promptly" repay other forms of Alternative Funding upon Recipient's receipt of such funding.
- **D.** While Amendment No. 1 to the Loan Agreement permitted Recipient to receive FEMA Public Assistance Expedited Project Funding without triggering an obligation to repay the equivalent amount of loan proceeds to NCDST immediately thereafter, it did not have the effect of modifying Recipient's repayment obligations relative to other sources of federal funding obtained by Recipient.
- **E.** At the time the parties entered Amendment No. 1, NCDST was unaware of certain facts and circumstances concerning the nature and timing of the federal funding support available to Recipient, aside from FEMA Public Assistance Expedited Project Funding. In light of those facts and circumstances, NCDST has determined that the provisions of the Loan Agreement requiring Recipient to repay loan proceeds within five business days each time Recipient receives federal funding support are likely to have the unintended consequence of restricting, rather than securing, the cashflow liquidity available to Recipient in the months and years ahead, defeating the very purpose of the Cashflow Loan Program.
- **F.** In light of the above, and as provided in Section 10. of the Loan Agreement (concerning amendments), NCDST and Recipient now wish to modify those provisions of the Loan Agreement pertaining to the repayment obligations of Recipient in connection with its receipt of federal funding generally.

NOW, THEREFORE, in consideration of the mutual promises set forth herein, the Parties do hereby agree as follows:

1. Modifications to Loan Agreement.

- (a) Subsection e. to Section 3. of the Loan Agreement, as amended by Amendment No. 1 to the Loan Agreement, is hereby deleted in its entirety and replaced with the underlined text appearing below:
 - e. RECIPIENT agrees to deliver repayment installments of the loan proceeds in the amounts and by the dates set forth in the Repayment Terms recited on Page 1 above, which are hereby incorporated by reference. Further, RECIPIENT understands and agrees that all loan proceeds provided to RECIPIENT under this Agreement must be repaid no later than the earlier of the following two dates: the five-year anniversary of the Loan Date; or (b) June 30, 2030.
- (b) Subsection g. to Section 3. of the Loan Agreement, as amended by Amendment No. 1 to the Loan Agreement, is hereby amended by deleting the stricken text and inserting the underlined text appearing below:
 - g. As provided in the Authorizing Act:
 - (i) RECIPIENT agrees to deliver repayment installments of the loan proceeds in the amounts and by the dates set forth in the Repayment Terms recited on Page 1 above, which are hereby incorporated by reference. Further, RECIPIENT understands and agrees that all loan proceeds provided to RECIPIENT under this Agreement must be repaid no later than the earlier of the following two dates: (a) the five-year anniversary of the Loan Date; or (b) June 30, 3030.RESERVED.
 - (ii) RECIPIENT shall use best efforts and take all reasonable steps to obtain alternative funds that cover the losses or needs for which the loan proceeds are being provided, including funds from insurance policies in effect, available federal aid, and private donations. RECIPIENT understands and agrees that the loan proceeds paid to RECIPIENT pursuant to this Agreement are in excess of any funds received by RECIPIENT from any of the following: (a) settlement of a claim for loss or damage covered under RECIPIENT's applicable insurance policy in effect; (b) federal aid; or (c) private donations.
 - (iii) If RECIPIENT obtains alternative funds pursuant to subdivision (ii) of this subsection g., then RECIPIENT shall remit such funds to NCDST in accordance with the provisions of 3.e. above. as soon as reasonably practicable thereafter, but no later than the earlier of the two dates established in subsection e. to this Section 3. Notwithstanding the preceding sentence, RECIPIENT shall not be required to repay to NCDST any amount in excess over the amount of loan proceeds provided under this Agreement.

2. Effect of Amendment.

- (a) Except as expressly provided herein, all terms, conditions and provisions of the Loan Agreement shall remain in full force and effect and are hereby ratified and confirmed by Recipient.
- (b) This Amendment No. 2 is not intended to modify any term, condition or provision contained in any of the loan documents associated with RECIPIENT's Loan Agreement (the "Associated Loan Documents"). All terms, conditions and provisions of the Associated Loan Documents shall remain in full force and effect, modified only to the extent necessary to accomplish the purposes of this Amendment.

- (c) On and after the effective date hereof, unless the context clearly requires otherwise, any reference to the Loan Agreement contained in the Associated Loan Documents or in the Loan Agreement itself shall be interpreted as a reference to the Loan Agreement as amended by Amendment No. 1 to Loan Agreement and this Amendment No. 2 to Loan Agreement.
- 3. <u>Effective Date</u>. The provisions of this Amendment shall become effective upon the date on which NCDST has received the following:
 - (a) This Amendment, duly executed and delivered by Recipient and NCDST; and
 - (b) A certified copy of a resolution authorizing execution of this Amendment substantially in the form of Exhibit A, duly executed and delivered by RECIPIENT.
- **4.** Counterparts. This Amendment may be executed in counterparts, each of which shall be deemed an original but all of which shall constitute one and the same instrument. One or more counterparts of this Amendment may be delivered by facsimile or in Portable Document Format (PDF) sent by electronic mail, with such delivery having the same effect as delivery of an original counterpart. Signatures provided by facsimile transmission, in PDF sent by electronic mail, or by electronic signature such as DocuSign, shall be deemed to be original signatures.

IN WITNESS WHEREOF, each of the Parties hereto has caused its duly authorized representative, as applicable, to execute this Amendment Number One as of the dates written below.

North Carolina Department of State Treasurer	County of Watauga, North Carolina		
Name:	Name:		
Title:	Title:		
Signature:	Signature:		
Date:	Date:		

EXHIBIT A

RESOLUTION TO APPROVE AMENDMENT NO. 2 TO LOAN AGREEMENT BETWEEN THE STATE OF NORTH CAROLINA (BY AND THROUGH THE NORTH CAROLINA DEPARTMENT OF STATE TREASURER) AND THE COUNTY OF WATAUGA, NORTH CAROLINA

WITNESSETH:

WHEREAS, the County of Watauga (the "County) previously approved and entered into a loan agreement ("Loan Agreement") and promissory note with the State of North Carolina, by and through the North Carolina Department of State Treasurer ("NCDST"), in connection with the Hurricane Helene Cash Flow Loan Program created by the North Carolina General Assembly under the Disaster Recovery Act of 2024 – Part II (Session Law 2024-53, as amended by Session Law 2024-57); and

WHEREAS, on May 28, 2025, NCDST and the County entered an amendment to the Loan Agreement, which permitted the County to receive FEMA Public Assistance Expedited Project Funding without triggering an obligation to repay the equivalent amount of loan proceeds to NCDST immediately thereafter; and

WHEREAS, NCDST has since agreed to further modify the repayment terms of the Loan Agreement to account for the County's receipt of "Alternative Funding" in general (as that term is defined in the Amendment), towards the end of maximizing the cashflow liquidity available to the County for disaster response activities in the months and years ahead ("Amendment No. 2 to Loan Agreement").

NOW, THEREFORE, BE IT RESOLVED BY County of Watauga, North Carolina:

- 1. That the Amendment No. 2 to Loan Agreement presented by the North Carolina Department of State Treasurer is hereby approved.
- 2. That the Watauga Board of County Commissioner's Chairman is authorized to execute the attached Amendment to Loan Agreement (or one substantially equivalent thereto) and to take such other actions as necessary to secure disaster recovery loan funding from the State of North Carolina.

Adopted, this the day of,
Watauga Board of County Commissioners' Chairma
Ву:
Braxton Eggers
Chairman
A POTE OF
ATTEST:
Katie Hancock
Clerk

AGENDA ITEM 13:

MISCELLANEOUS ADMINISTRATIVE MATTERS

B. Proposed Human Services Parking Lot and Parking Deck Agreement with Appalachian State University

MANAGER'S COMMENTS:

Appalachian State University is requesting renewal of the use agreement for the parking lot at 132 Poplar Grove Road Connector and the parking deck at 140 N. Water Street to support pre- and postgame football operations.

Two versions of the agreement have been drafted:

- **Two-Year Agreement**: Term from September 6, 2025, through December 20, 2026.
- Three-Year Agreement: Term from September 6, 2025, through December 20, 2027.

Under both agreements, the University would pay the County a lump sum of \$10,000 per year for the Human Services Lot and 50% of net revenue generated from game day parking at the parking deck. The University would be responsible for event security, towing unauthorized vehicles, providing portable restrooms, and ensuring the lots are returned to their original or better condition following each event.

The primary difference between the two options is the term of the agreement. The University has expressed interest in a longer-term arrangement for planning purposes.

Staff seeks Board direction.

WATAUGA COUNTY, NORTH CAROLINA

and

APPALACHIAN STATE UNIVERSITY USE AGREEMENT

THIS USE AGREEMENT ("Agreement"), made and entered into as of the second signature below ("Execution Date") by and between Watauga County ("County"), and Appalachian State University, a constituent institution of the University of North Carolina ("University"). Watauga County and Appalachian State University may each be referred to herein individually as a "Party" or collectively as the "Parties."

WITNESSETH:

WHEREAS, Appalachian State University desires to utilize the parking lot at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street as set forth below;

WHEREAS, the Board of County Commissioners has resolved to allow Appalachian State University use of the parking lot at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street for the term set forth below; and

NOW, THEREFORE, subject to the terms and conditions hereinafter set forth, said County does hereby agree to allow University to use parking spaces marked by lines in paved lots in the parking lot located at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street, Boone, lying and being in Watauga County, North Carolina.

The terms and conditions of this Agreement are as follows:

- 1. TERM: The parking lot located at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street shall be available to University for the pre- and postgame events during the 2025 football season. Such dates and times shall be determined in accordance with University's football schedule. Notice of game dates and times shall be provided to the County prior to the event. The term of this Agreement shall extend from September 6, 2025 through December 20, 2026.
- 2. PAYMENTS: University shall pay to the County for the use of said lot the sum of Ten Thousand Dollars (\$10,000) in one lump sum payment, annually, for the use of the premises. Such payment shall be made every year before the start of the first event. Additionally, the University shall pay a License Fee of 50% of net sales to the County from game day parking revenue generated from the parking deck at 140 N. Water Street. License Fee from sales related to the parking deck shall be paid within 30 days of the conclusion of each season The University shall be responsible for providing security on the dates of use during the term of this Agreement and for removing all unauthorized vehicles. University is responsible for ensuring that no individuals shall enter any structures or buildings located on the premises. County shall provide a parking pass to each individual who pays for the use of the parking facilities, which shall include indemnification language. University shall also provide portajohns for use at the lot on event dates.

- 3. <u>USE OF PREMISES:</u> The premises shall not be used for any illegal purposes, nor in any manner to create any nuisance or trespass, nor in any manner to vitiate the insurance or increase the rate of insurance on the premises. University agrees there shall be no tailgating, no consumption of alcohol, no open flame, and no picnicking at the parking lot located at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street. The University shall only use the agreed-upon space for the parking of vehicles for the football game festivities and for the purposes as set forth above, and shall be responsible for providing employees of the University who will secure the premises, the occupants, and the property during the time period of this Agreement and until the property is vacated by any and all persons, vehicles, or remnants of use by University, its sub-University, assigns and authorized or unauthorized users. Upon the end of this Agreement, University shall return the premises to an equal to or better-than condition than it was as of the start date of the Agreement. Specifically, the University shall be responsible for towing unauthorized users of the space. University shall bear the sole cost of removal and towing for any vehicle left on the premises at the termination of the Agreement.
- **4. ALTERATIONS:** The University shall not paint or decorate the premises or make any alterations, additions or improvements in or to the premises without the County's prior written consent, and then only in a workmanlike manner using materials and contractors approved by the County. All such work shall be done at the University's expense and at such times and in such manner as the County may approve. All alterations, additions, and improvements upon the premises, made by either the County or the University, shall become the property of the County and shall remain upon and become a part of the premises at the end of the use.
- **5. INDEMNIFICATION:** To the extent permitted by law, University agrees to indemnify and hold harmless County from any liability arising from any breach of contract or any other action related to, or incidental to, the performance of this contract. The parties to this Agreement agree that nothing in this Agreement constitutes a waiver of University's sovereign immunity, and that University's obligations in this paragraph shall be limited to the extent and manner of recovery provided in North Carolina's State Tort Claims Act, N.C. Gen. Stat. § 143-291, et. seq.
- **6. INSURANCE:** University represents and warrants that it is self-insured with respect to tort claims and shall remain self-insured therefor to the extent permitted by North Carolina law for the entire term of this Agreement. A certificate of insurance shall be provided to the County upon request.
- 7. **DESTRUCTION OF OR DAMAGES TO PREMISES:** If the premises are destroyed by storm, fire, lightening, earthquake or other casualty, or if the spaces become unavailable or unusable for any reason whatsoever, this Agreement shall terminate as of the date of such destruction or unavailability and Agreement shall be accounted for as between the County and the University as of that date. If the premises are damaged, but not wholly destroyed by any such casualties, payment shall abate in such proportion as effective use of the premises has been affected.
- **8.** GOVERNMENT ORDERS: University agrees to comply promptly with all requirements of any legally constituted public authority made necessary by reason of University's use of the premises or any other person/entity's use of the premises on University's behalf. In the event a governmental authority, private action, or any other event occurs, which imposes a requirement upon the County, which would result in a hardship to County to remedy, the County may declare this Agreement void and the term of this

Agreement shall cease.

- **9. EVENTS OF DEFAULT:** The happening of any one or more of the following events (hereinafter any one of which may be refelred to as "Event of Default") during the term of this Agreement, shall constitute a breach of this Agreement on the part of the University;
 - (a) University fails to make payments as provided for herein;
 - (b) University fails to comply with or abide by and perform any other obligation imposed upon University under this Agreement; or any unlawful or unauthorized use of the premises occurs, as set forth in paragraph above, entitled "Use of Premises."
 - (c) A permanent receiver is appointed for University's property and such receiver is not removed within sixty (60) days after written notice from County to University to obtain such removal;
 - (d) University, either voluntarily or involuntarily, takes advantage of any debt or relief proceedings under any present or future law, whereby the payment or any part thereof is, or is proposed to be reduced or payment thereof deferred;
 - (e) University makes an assignment for benefit of creditors;
 - (f) Any other violation of the terms and conditions of the Agreement.
- **10. TERMINATION**: Either Party to this Agreement may terminate this Agreement at any time, and for any reason, by providing thirty (30) days notice to the other party.
- 11. <u>COUNTY'S ENTRY OF PREMISES:</u> At any time during University's use, County or any representative of County may enter the premises to inspect the premises, exhibit it to prospective University/Purchasers, and to make repairs.
- **12.** <u>NOTICES:</u> All notices required or permitted under this Agreement shall be in writing and shall be personally delivered to or sent by U.S. certified mail, return receipt requested, postage prepaid. Notices to University shall be delivered or sent to the address shown at the beginning of this Agreement with a copy sent to Appalachian State University, Office of General Counsel, Attn: General Counsel, ASU Box 32126, Boone, North Carolina 28608-2126.
- 13. NO BAILMENT CREATED: No bailment is created by this agreement, and County assumes no liability, whatsoever, for any vehicle, any person located therein, any personal property on the premises, or any item in a vehicle, or any person being in or parked on the premises except to the extent that any such damage or injury occurs due to the negligence or intentional acts of County or its officers, employees or agents. Nothing in this Agreement shall constitute a waiver of the County's governmental immunity.
- 14. ENTIRE AGREEMENT: This Agreement contains the entire agreement of the parties hereto, and no representations, inducements, promises or agreements, oral or otherwise, between the parties, not embodied herein shall be of any force or effect. This Agreement may not be modified except by a writing signed by all of the parties hereto. This Agreement shall supersede any prior agreement

made between the parties, relating to the subject matter of this agreement, whether oral or in writing.

- 15. **NONWAIVER:** Failure of the County to insist upon strict compliance with the Agreement at any point shall not be construed as a waiver of any terms contained in his Agreement or prohibit full enforcement of the rights contained in the Agreement herein.
- **16. ASSIGNMENT:** The University shall not assign this Agreement or sublet the premises in whole or in part.

17. GENERAL RULES AND REGULATIONS:

- (a) No boats, trailers, or campers shall be parked in the parking area;
- (b) No trash or personal property shall be left on the property.
 University Agreements the spaces as designated herein only. Any trash, vehicles or personal property left on the premises will be removed at the University's expense.
- (c) Portable toilet facilities shall be provided by the University at its sole expense in both parking lot locations in amounts sufficient for the comfort of those utilizing the premises.

IN TESTIMONY WHEREOF, the said parties of the first and second part herein, have hereunto set their hands and affixed their seals, the day and year first above written.

WATAUGA COUNTY	APPALACHIAN STATE UNIVERSITY		
By: Deron Geouque County Manager	By: Doug Gillin Director of Athletics		
Date Signed	Date Signed		

WATAUGA COUNTY, NORTH CAROLINA

and

APPALACHIAN STATE UNIVERSITY USE AGREEMENT

THIS USE AGREEMENT ("Agreement"), made and entered into as of the second signature below ("Execution Date") by and between Watauga County ("County"), and Appalachian State University, a constituent institution of the University of North Carolina ("University"). Watauga County and Appalachian State University may each be referred to herein individually as a "Party" or collectively as the "Parties."

WITNESSETH:

WHEREAS, Appalachian State University desires to utilize the parking lot at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street as set forth below;

WHEREAS, the Board of County Commissioners has resolved to allow Appalachian State University use of the parking lot at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street for the term set forth below; and

NOW, THEREFORE, subject to the terms and conditions hereinafter set forth, said County does hereby agree to allow University to use parking spaces marked by lines in paved lots in the parking lot located at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street, Boone, lying and being in Watauga County, North Carolina.

The terms and conditions of this Agreement are as follows:

- 1. <u>TERM</u>: The parking lot located at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street shall be available to University for the pre- and postgame events during the 2025 football season. Such dates and times shall be determined in accordance with University's football schedule. Notice of game dates and times shall be provided to the County prior to the event. The term of this Agreement shall extend from September 6, 2025 through December 20, 2027.
- 2. PAYMENTS: University shall pay to the County for the use of said lot the sum of Ten Thousand Dollars (\$10,000) in one lump sum payment, annually, for the use of the premises. Such payment shall be made every year before the start of the first event. Additionally, the University shall pay a License Fee of 50% of net sales to the County from game day parking revenue generated from the parking deck at 140 N. Water Street. License Fee from sales related to the parking deck shall be paid within 30 days of the conclusion of each season The University shall be responsible for providing security on the dates of use during the term of this Agreement and for removing all unauthorized vehicles. University is responsible for ensuring that no individuals shall enter any structures or buildings located on the premises. County shall provide a parking pass to each individual who pays for the use of the parking facilities, which shall include indemnification language. University shall also provide portajohns for use at the lot on event dates.

- 3. <u>USE OF PREMISES:</u> The premises shall not be used for any illegal purposes, nor in any manner to create any nuisance or trespass, nor in any manner to vitiate the insurance or increase the rate of insurance on the premises. University agrees there shall be no tailgating, no consumption of alcohol, no open flame, and no picnicking at the parking lot located at 132 Poplar Grove Road Connector and parking deck at 140 N. Water Street. The University shall only use the agreed-upon space for the parking of vehicles for the football game festivities and for the purposes as set forth above, and shall be responsible for providing employees of the University who will secure the premises, the occupants, and the property during the time period of this Agreement and until the property is vacated by any and all persons, vehicles, or remnants of use by University, its sub-University, assigns and authorized or unauthorized users. Upon the end of this Agreement, University shall return the premises to an equal to or better-than condition than it was as of the start date of the Agreement. Specifically, the University shall be responsible for towing unauthorized users of the space. University shall bear the sole cost of removal and towing for any vehicle left on the premises at the termination of the Agreement.
- 4. ALTERATIONS: The University shall not paint or decorate the premises or make any alterations, additions or improvements in or to the premises without the County's prior written consent, and then only in a workmanlike manner using materials and contractors approved by the County. All such work shall be done at the University's expense and at such times and in such manner as the County may approve. All alterations, additions, and improvements upon the premises, made by either the County or the University, shall become the property of the County and shall remain upon and become a part of the premises at the end of the use.
- **5. INDEMNIFICATION:** To the extent permitted by law, University agrees to indemnify and hold harmless County from any liability arising from any breach of contract or any other action related to, or incidental to, the performance of this contract. The parties to this Agreement agree that nothing in this Agreement constitutes a waiver of University's sovereign immunity, and that University's obligations in this paragraph shall be limited to the extent and manner of recovery provided in North Carolina's State Tort Claims Act, N.C. Gen. Stat. § 143-291, *et. seq.*
- **6. INSURANCE:** University represents and warrants that it is self-insured with respect to tort claims and shall remain self-insured therefor to the extent permitted by North Carolina law for the entire term of this Agreement. A certificate of insurance shall be provided to the County upon request.
- 7. **DESTRUCTION OF OR DAMAGES TO PREMISES:** If the premises are destroyed by storm, fire, lightening, earthquake or other casualty, or if the spaces become unavailable or unusable for any reason whatsoever, this Agreement shall terminate as of the date of such destruction or unavailability and Agreement shall be accounted for as between the County and the University as of that date. If the premises are damaged, but not wholly destroyed by any such casualties, payment shall abate in such proportion as effective use of the premises has been affected.
- **8.** GOVERNMENT ORDERS: University agrees to comply promptly with all requirements of any legally constituted public authority made necessary by reason of University's use of the premises or any other person/entity's use of the premises on University's behalf. In the event a governmental authority, private action, or any other event occurs, which imposes a requirement upon the County, which would result in a hardship to County to remedy, the County may declare this Agreement void and the term of this

Agreement shall cease.

- **9. EVENTS OF DEFAULT:** The happening of any one or more of the following events (hereinafter any one of which may be refe1red to as "Event of Default") during the term of this Agreement, shall constitute a breach of this Agreement on the part of the University;
 - (a) University fails to make payments as provided for herein;
 - (b) University fails to comply with or abide by and perform any other obligation imposed upon University under this Agreement; or any unlawful or unauthorized use of the premises occurs, as set forth in paragraph above, entitled "Use of Premises."
 - (c) A permanent receiver is appointed for University's property and such receiver is not removed within sixty (60) days after written notice from County to University to obtain such removal;
 - (d) University, either voluntarily or involuntarily, takes advantage of any debt or relief proceedings under any present or future law, whereby the payment or any part thereof is, or is proposed to be reduced or payment thereof deferred;
 - (e) University makes an assignment for benefit of creditors;
 - (f) Any other violation of the terms and conditions of the Agreement.
- **10. TERMINATION**: Either Party to this Agreement may terminate this Agreement at any time, and for any reason, by providing thirty (30) days notice to the other party.
- 11. <u>COUNTY'S ENTRY OF PREMISES:</u> At any time during University's use, County or any representative of County may enter the premises to inspect the premises, exhibit it to prospective University/Purchasers, and to make repairs.
- **12.** <u>NOTICES:</u> All notices required or permitted under this Agreement shall be in writing and shall be personally delivered to or sent by U.S. certified mail, return receipt requested, postage prepaid. Notices to University shall be delivered or sent to the address shown at the beginning of this Agreement with a copy sent to Appalachian State University, Office of General Counsel, Attn: General Counsel, ASU Box 32126, Boone, North Carolina 28608-2126.
- 13. NO BAILMENT CREATED: No bailment is created by this agreement, and County assumes no liability, whatsoever, for any vehicle, any person located therein, any personal property on the premises, or any item in a vehicle, or any person being in or parked on the premises except to the extent that any such damage or injury occurs due to the negligence or intentional acts of County or its officers, employees or agents. Nothing in this Agreement shall constitute a waiver of the County's governmental immunity.
- 14. ENTIRE AGREEMENT: This Agreement contains the entire agreement of the parties hereto, and no representations, inducements, promises or agreements, oral or otherwise, between the parties, not embodied herein shall be of any force or effect. This Agreement may not be modified except by a writing signed by all of the parties hereto. This Agreement shall supersede any prior agreement

made between the parties, relating to the subject matter of this agreement, whether oral or in writing.

- 15. **NONWAIVER:** Failure of the County to insist upon strict compliance with the Agreement at any point shall not be construed as a waiver of any terms contained in his Agreement or prohibit full enforcement of the rights contained in the Agreement herein.
- **16. ASSIGNMENT:** The University shall not assign this Agreement or sublet the premises in whole or in part.

17. GENERAL RULES AND REGULATIONS:

- (a) No boats, trailers, or campers shall be parked in the parking area;
- (b) No trash or personal property shall be left on the property.
 University Agreements the spaces as designated herein only. Any trash, vehicles or personal property left on the premises will be removed at the University's expense.
- (c) Portable toilet facilities shall be provided by the University at its sole expense in both parking lot locations in amounts sufficient for the comfort of those utilizing the premises.

IN TESTIMONY WHEREOF, the said parties of the first and second part herein, have hereunto set their hands and affixed their seals, the day and year first above written.

WATAUGA COUNTY	APPALACHIAN STATE UNIVERSITY
By: Deron Geouque County Manager	By: Doug Gillin Director of Athletics
 Date Signed	Date Signed

Blank Page

AGENDA ITEM 14:

BREAK

AGENDA ITEM 15:

CLOSED SESSION

Attorney-Client Matters – G.S. § 143-318.11(a)(3) Land Acquisition – G.S. § 143-318.11(a)(5) Personnel Matters – G.S. § 143-318.11(a)(1)

Blank Page

AGENDA ITEM 16:

POSSIBLE ACTION AFTER CLOSED SESSION

Additional Information Presented During the Board Meeting

PUBLIC COMMENT

Watauga Board of County Commissioners

AUGUST 5, 2025

WATAUGA COUNTY BOARD OF COMMISSIONERS PUBLIC COMMENT RULES

At the April 18, 2023, Watauga County Board of Commissioners meeting the Board amended the policy for public comment before the Board as follows:

In accordance with North Carolina General Statutes 160A-81.1, the Watauga County Board of Commissioners establishes the following policy and rules regarding Public Comment.

- The Board does hereby establish a time period of up to sixty (60) minutes, for an open forum, at the beginning of each regular meeting to hear citizen comments.
- Persons who wish to speak must register on the sign-up sheet located on the information desk outside the meeting room. Sign-up sheets will be available one hour prior to the start of each meeting.
- Speakers shall provide their name and address at the start of their comments.
- Each speaker is allocated up to three (3) minutes to speak. No public comment period shall extend beyond one (1) hour. The Chair reserves the right to reduce the time limitation for individual speakers in order to meet the one (1) hour time limit and as necessary for efficient conduct of business.
- A speaker may not share or relinquish any remaining time they have not used to another speaker and shall only be allowed to speak once during the public comment period.
- Speaker substitutions at the meeting are not allowed.
- Comments are to be directed to the Board as a whole. The forum is intended to provide the Board of Commissioners an opportunity to hear citizens. It is not intended to subject the Board to answering impromptu questions. Citizens will be expected to be civil in their language and presentation and not to engage in slander or name-calling.
- Speakers shall refrain from personal attacks and/or threats directed towards County staff, elected Board members, or members of the public. Insults, profanity, use of vulgar language or gestures, or other inappropriate behavior are not allowed.
- Speakers shall limit their comments to matters that are germane to, or within the jurisdiction of the Watauga County Board of Commissioners.
- Speakers shall address the Board with any, and all public comments. Comments, questions, jeering, or other interruptions from the audience are not allowed. Speakers shall likewise not address or respond to members of the audience.
- The Chair, or presiding officer, has the authority to enforce the Rules of Decorum. Failure to obey these Rules may result in the forfeiture of the remaining speaking time and possible criminal charges. Individuals who engage in egregious or repeated violations may be asked to leave the meeting.
- During the open forum, speakers should not discuss any of the following:
 - a. Matters which concern the candidacy of any person seeking public office, including of the person addressing the Board.
 - b. Matters in current or anticipated litigation.
 - c. Advertising or promoting the sale of products, services, or private enterprise.
 - d. Promoting any contest or lottery.

SPEAKER LIST

PLEASE PRINT YOUR NAME CLEARLY <u>AND</u> CHECK THE BOX TO CONFIRM THAT YOU HAVE READ AND UNDERSTOOD THE RULES OUTLINED ABOVE.

PLEASE STATE YOUR NAME BEFORE SPEAKING.

	Λ I LEASE STATE TOO	11 117	AIVIL .	DEFORE SI EARING.	
1.		þ	6.		
2.	Jill Williams	D	7.		
3.	Mark Laughlin	4	8.		
4.	<u> </u>		9.		
5.			10.		

AMENDED AGENDA ITEM 13:

MISCELLANEOUS ADMINISTRATIVE MATTERS

C. Howard Knob Park Proposal for Construction Materials Testing Services

MANAGER'S COMMENTS:

At the July 15, 2025 meeting, the Board tabled the request to allow the County Attorney to address concerns with the vendor regarding Paragraph 7 – "Limitation of Liability" and Paragraph 18 – "Disputes", particularly the litigation clause requiring all disputes to be adjudicated in the state of New York. The County Attorney is now satisfied with the changes made by WSP. The project requires no County funding and is to be paid by the Watauga TDA and grant funds.

Staff requests a motion to approve the contract with WSP in the amount of \$37,500 for construction materials testing services for the Howard Knob project.

AGREEMENT FOR CONSULTING SERVICES (EARTH AND ENVIRONMENT)

("CLIENT")				and
n sgerryl i v				("CONSULTANT")
agree this	day of		that the follow	ing terms and conditions will apply to any
services, includ	ing subsequent services an	d changes, (collectively "S	ervices") to be provid	ded by CONSULTANT relating to Proposal No.
			3 X 10 1 10 10 10 10 10 10 10 10 10 10 10 1	dated
	(co	llectively the "Agreement"	"):	

1. STANDARD OF CARE

Services performed by CONSULTANT will be conducted in a manner consistent with that level of care and skill ordinarily exercised by other reputable professionals practicing contemporaneously, under similar conditions, in the same locality, subject to the time limits and financial, physical, or other constraints applicable to the Services. No warranty, guaranty, or representation, express or implied is made or intended by this Agreement, or in any communication (oral or written), report, opinion, document or instrument of service, and the same are specifically disclaimed, including the implied warranties of merchantability and fitness for a particular purpose.

2. INVOICES AND PAYMENT TERMS

- A. Unless otherwise specified in any proposal, CONSULTANT will submit monthly invoices to CLIENT and a final bill upon completion of Services. CLIENT shall notify CONSULTANT within ten (10) days of receiving an invoice of any dispute with the invoice and the parties shall promptly resolve any disputed items. If notice is not received within (10) days of receiving the invoice, the invoice is deemed to be correct, and CLIENT shall pay CONSULTANT the full sum according to the invoice. Full payment is due prior to delivery of CONSULTANT'S final deliverable. All monies due to CONSULTANT shall be paid in US \$ (Dollars) unless specifically detailed otherwise. CLIENT shall pay all conveyance, transfer and recording fees and taxes, if any, imposed on any transfer of, or construction, on property contemplated by this Agreement. Payment on undisputed invoice amounts is due upon receipt of invoice by CLIENT and is past due thirty (30) days from the date of the invoice. CLIENT agrees to pay a finance charge of one and one-half percent (1-1/2%) per month (18% per annum) compounded daily, or the maximum rate allowed by law, on past due accounts. If payment remains past due sixty (60) days from the date of the invoice, then CONSULTANT shall have the right to suspend or terminate all Services under this Agreement, without prejudice or penalty. CLIENT will pay all reasonable demobilization and other suspension or termination costs. CLIENT agrees to pay attorneys' fees, legal costs and all other collection costs incurred by CONSULTANT in pursuit of past due payments.
- B. Where the cost estimate for the Services is "not to exceed" a specified sum, CONSULTANT shall notify CLIENT before each limit is exceeded, and shall not continue to provide Services beyond such limit unless CLIENT authorizes an increase in the amount of the limitation. If a "not to exceed" limitation is broken down into budgets for specific tasks, the task budget may be exceeded without CLIENT authorization as long as the total limitation is not exceeded.
- C. If CONSULTANT is required by the CLIENT to provide additional services outside the scope of the Services set out in the proposal, the CLIENT shall make payment according to the hourly rates and sums set out in the proposal.
- D. Support for depositions, response to Subpoenas, legal or regulatory proceedings, and expert testimony shall be charged at 150% of the labor rates set forth in the proposal.

3. CHANGES

CLIENT and CONSULTANT recognize that it may be necessary to modify the scope of Services, schedule, and/or cost estimate proposed in this Agreement. To the extent such modifications change the Services, schedule, and/or the cost, the parties shall mutually agree upon equitable adjustment as appropriate under the circumstances. CONSULTANT shall notify CLIENT in a timely manner when it has reason to believe a change to the Agreement is warranted. CONSULTANT shall prepare a change order request outlining the changes to the scope, schedule, and/or cost. CLIENT has a duty to promptly consider the change order request and advise CONSULTANT in a timely manner in writing on how to proceed. If, after a good faith effort by CONSULTANT to negotiate modifications to the scope of Services, schedule, and/or cost estimate, an agreement has not been reached with the CLIENT, then CONSULTANT shall have the right to terminate this Agreement, without prejudice or penalty, upon written notice to the CLIENT. CONSULTANT agrees to exercise diligence in the performance of its Services consistent with the agreed upon project schedule, subject to the exercise of the generally accepted standard of care for performance of such services, as stated in Article 1, Standard of Care.

4. DELAYS AND FORCE MAJEURE

- A. If site or other conditions prevent or inhibit performance of Services or if unrevealed hazardous materials or differing site conditions are encountered, Services under this Agreement may be delayed. The schedule and contract completion date shall be extended accordingly, and CLIENT shall pay CONSULTANT for Services performed to the delay commencement date plus reasonable delay charges. Delay charges shall include personnel and equipment rescheduling and/or reassignment adjustments and all other related costs incurred including but not limited to, labor and material escalation, and extended overhead costs, attributable to such delays. CLIENT shall not hold CONSULTANT responsible for damages or delays in performance caused by acts or omissions of CLIENT, its subcontractors, site conditions or conditions related to unrevealed hazardous materials which prevent or inhibit performance of Services.
- B. Neither party shall be deemed in default of this Agreement to the extent that any delay or failure in the performance of its obligations (other than the payment of money) results, without its fault or negligence, from any cause beyond its reasonable control, such as governmental authorities, regulatory agencies, civil or labor unrest, epidemics or pandemics, acts of God, nature, or terror, disruptions of the Internet, electronic telecommunications or hosting services or any other events that are beyond the reasonable control of the parties. In the event of any such delays, then the party whose performance is delayed or impaired by such condition shall give prompt written notice to the other party as to the nature and anticipated extent of the delay or impairment. CONSULTANT shall be granted a time extension, and the parties will negotiate an equitable adjustment to the price of any affected Services, where appropriate, based upon the effect of the Force Majeure on CONSULTANT's performance.
- C. Delays in excess of thirty (30) days within the scope of this Article shall, at the option of either party, make this Agreement subject to termination or to renegotiation.

5. INDEPENDENT JUDGMENTS OF CLIENT

If the Services include the collection of samples and data, then CONSULTANT'S obligation to perform those Services is subject to CLIENT's assumption of all Subsurface Risks (such risks being more fully described in Article 12, Subsurface Risks). CONSULTANT will not be responsible for the independent conclusions, interpretations, interpolations or decisions of CLIENT, or others, relating to the Services. Under no circumstances do CONSULTANT'S Services include making any recommendation or giving any advice as to whether CLIENT should or should not proceed with any transaction regarding any site related to the Services. CLIENT assumes all responsibility and risk associated with decisions it makes based on the Services.

6. INDEMNIFICATION

A. To the maximum extent allowed by law, CONSULTANT agrees to indemnify, but not defend, CLIENT and its officers, directors, and employees from and against all claims, damages, losses, or expenses arising from personal injury, death, or damage to third-party property, and for reimbursement of defense costs, to the extent that all such claims, damages, losses, expenses,

or costs are finally determined to be proximately caused by CONSULTANT'S negligence. Such indemnification, as limited by Article 7, Limitation of Liability, shall be CLIENT's sole and exclusive remedy against CONSULTANT.

B. To the maximum extent allowed by law, CLIENT shall, at all times, defend, indemnify and save harmless CONSULTANT and its subcontractors, consultants, agents, officers, directors and employees from and against all claims, damages, losses and expenses (including but not limited to reasonable attorneys' fees, and court and arbitration costs), arising out of or resulting from the Services of CONSULTANT, including but not limited to claims made by third parties, or any claims against CONSULTANT arising from the acts, errors or omissions of CLIENT, its employees, agents, contractors and subcontractors or others. To the fullest extent permitted by law, such indemnification shall apply regardless of breach of contract or strict liability of CONSULTANT. Such indemnification shall not apply to the extent that such claims, damages, losses, or expenses are finally determined to be proximately caused by CONSULTANT'S negligence.

7. LIMITATION OF LIABILITY

- A. CLIENT shall immediately notify CONSULTANT in writing of any deficiencies or suspected deficiencies arising directly or indirectly from CONSULTANT'S negligent acts, errors, or omissions. Failure by CLIENT to notify CONSULTANT shall relieve CONSULTANT of any further responsibility and liability for such deficiencies.
- B. NEITHER PARTY SHALL BE RESPONSIBLE TO THE OTHER FOR LOST REVENUES, LOST PROFITS, COST OF CAPITAL, CLAIMS OF CUSTOMERS, LOSS OF DATA OR ANY OTHER SPECIAL, INDIRECT, CONSEQUENTIAL, OR PUNITIVE DAMAGES.

8. INSURANCE

A. CONSULTANT maintains insurance coverage with the following limits:

(i) Workers' Compensation in compliance with statutory limits (ii) Automobile Liability

Combined Single Limit \$5,000,000

(iii) Commercial General Liability:

Each Occurrence \$3,500,000 General Aggregate \$7,000,000

(iv) Professional Liability Insurance

Any One Claim \$1,000,000
Policy Aggregate \$3,000,000

B. CLIENT shall not require CONSULTANT to sign any document or perform any Service which in the judgment of CONSULTANT would risk the availability or increase the cost of its Professional or Commercial General Liability insurance.

9. PROFESSIONAL WORK PRODUCT

- A. The Services provided by CONSULTANT are intended for the exclusive use by CLIENT to the extent intended by the Services. All documents, including but not limited to, reports, plans, designs, boring logs, field data, field notes, laboratory test data, calculations, and estimates and all electronic media prepared by CONSULTANT are considered its professional work product (the "Documents"). CONSULTANT retains all rights to the Documents.
- B. CLIENT understands and acknowledges that the Documents are not intended or represented by CONSULTANT to be suitable for reuse by any party, including, but not limited to, the CLIENT, its employees, agents, subcontractors, or subsequent owners on any extension of a specific project not covered by this Agreement or on any other project, whether CLIENT's or otherwise, without CONSULTANT'S prior written permission. CLIENT agrees that any reuse unauthorized by CONSULTANT will be at CLIENT's sole risk and that CLIENT will defend, indemnify, and hold CONSULTANT harmless from any loss or liability resulting from the reuse, misuse, or negligent use of the Documents.

C. If included as part of the scope of Services, CONSULTANT will provide cost estimates based upon CONSULTANT's experience on similar projects, which are not intended for use by CLIENT or any other party in developing firm budgets or financial models, or in making investment decisions. Such cost estimates represent only CONSULTANT's judgment as a professional and, if furnished, are only for CLIENT's general guidance and are not guaranteed as to accuracy.

10. DATA AND INFORMATION

- A. Project Information. Before the commencement of Services by CONSULTANT or its subcontractors, and continuing thereafter, CLIENT shall immediately notify CONSULTANT of any known or potential health or safety hazards, hazardous substances or conditions existing on or near the project site. Furthermore, CLIENT shall promptly provide CONSULTANT with all relevant, reports data, studies, plans, specifications, documents, and information in its possession relating to the site history, to the project, and to the environmental, geologic, and geotechnical surface and subsurface conditions of the site and surrounding areas ("Project Information") or any other information related to the project that CONSULTANT may reasonably request. CONSULTANT shall be entitled to rely upon the Project Information provided by CLIENT or others and CONSULTANT assumes no responsibility or liability for the accuracy or completeness of such. CLIENT waives any claim against CONSULTANT, and agrees to defend, indemnify, and hold CONSULTANT harmless from any claim or liability for injury or loss allegedly arising from incomplete Project Information, errors, omissions, or inaccuracies in the Project Information. CONSULTANT will not be responsible for any interpretations or recommendations generated or made by others, which are based, whole or in part, on CONSULTANT'S data, interpretations, or recommendations.
- B. **Personal Information**. Each Party shall at all times comply with the requirements of applicable personal privacy legislation with respect to the collection, use and disclosure of personal information in connection with this Agreement. Client warrants that any such personal information (including personally identifiable information) was processed in compliance with all applicable laws.

11. RIGHT OF ENTRY

CLIENT will provide for the right of entry for CONSULTANT, its subcontractors, and all necessary equipment in order to complete the Services under this Agreement. If CLIENT does not own the site, CLIENT shall obtain permission and execute any required documents for CONSULTANT to enter the site and perform Services. CLIENT shall at its cost and at such times as may be required by CONSULTANT for the successful and timely completion, to the extent applicable, of the Services; (i) provide an adequate area for CONSULTANT's site office facilities, equipment storage, and employee parking; (ii) furnish all construction utilities and utilities releases necessary for the Services; (iii) provide the locations of all subsurface structures, including piping, tanks, cables, and utilities; (iv) approve all locations for digging and drilling operations; and (v) obtain all permits and licenses necessary and required to be taken out in CLIENT's name for the Services. It is understood by CLIENT that in the normal course of work some surface damage may occur, the restoration of which is not part of this Agreement.

12. SUBSURFACE RISKS

- A. Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions. Even a comprehensive sampling and testing program implemented in accordance with a professional Standard of Care may fail to detect certain conditions. The environmental, geological, geotechnical, geochemical, hydrogeological, and other conditions that CONSULTANT interprets to exist between sampling points may differ from those that actually exist. Furthermore, CLIENT recognizes that, passage of time, natural occurrences, direct or indirect human intervention at or near the site may substantially alter discovered conditions.
- B. Subsurface sampling may result in damage or injury to underground structures or utilities and unavoidable contamination of certain subsurface areas not known to be previously contaminated such as, but not limited to, a geologic formation, the groundwater, or other hydrous body. CONSULTANT will adhere to the standard of care during the conduct of any subsurface investigation. When the Services include subsurface sampling, CLIENT waives any claim against CONSULTANT, and agrees to defend, indemnify, and hold CONSULTANT harmless from any claim or liability for injury, loss, or expense (including but not

limited to legal fees) which may arise as a result of alleged or actual cross-contamination caused by any subsurface investigation or any damage or injury to underground structure, formation, body, or utilities.

13. DISPOSAL OF SAMPLES, MATERIALS AND CONTAMINATED EQUIPMENT

- A. All samples obtained pursuant to this Agreement remain the property and responsibility of CLIENT. Uncontaminated soil and rock samples or other specimens maybe disposed of thirty (30) days after submission of the work product due pursuant to the Proposal. Upon written request, CONSULTANT will store uncontaminated samples for longer periods of time or transmit the samples to CLIENT for a mutually acceptable charge.
- B. All contaminated samples and materials (containing or potentially containing hazardous constituents), including, but not limited to soil cuttings, contaminated purge water, and/or other environmental wastes obtained pursuant to this Agreement remain the property and responsibility of CLIENT and shall be returned to CLIENT for proper disposal. All laboratory and field equipment that cannot readily and adequately be cleansed of its hazardous contaminants shall become the property and responsibility of CLIENT. All such equipment shall be charged and turned over to CLIENT for proper disposal. Alternate arrangements to assist CLIENT with proper disposal of such equipment, materials and samples may be made at CLIENT's direction and expense unless otherwise specified in a separate Agreement or addendum to this Agreement. In such event, CLIENT agrees to have a representative available to sign all certifications, manifests, and other documents reasonably required by CONSULTANT and associated with the transportation, treatment and disposal, or handling of hazardous substances, waste, or materials from the project property site, and derived from CONSULTANT'S performance of the Services, including investigation derived wastes. If such CLIENT representative is unavailable and CONSULTANT is required to execute any such documents on CLIENT's behalf, CLIENT acknowledges that CONSULTANT shall be acting only as offeror on behalf of CLIENT. It is understood and agreed that CONSULTANT is not, and has no responsibility as, a handler, generator, operator, treater, storer, arranger, transporter, or disposer of hazardous substances, waste or materials found or identified at or around the project site property. CLIENT agrees to waive any claim against CONSULTANT and to defend, indemnify and hold CONSULTANT harmless from and against any claims, losses, damages, expenses (including, but not limited to, legal fees), and liabilities of any type arising out of the discovery and disposal of any alleged or actual hazardous substances, wastes or materials found or identified at or around the project site property.

14. CONTROL OF WORK AND JOB-SITE SAFETY

- A. CONSULTANT shall be responsible only for its activities and that of its employees and subcontractors. CONSULTANT'S Services under this Agreement are performed for the sole benefit of the CLIENT and no other entity shall have any claim against CONSULTANT because of this Agreement or the performance or nonperformance of Services hereunder. CONSULTANT will not direct, supervise or control the work of other consultants and contractors or their subcontractors. CONSULTANT does not guarantee the performance of, and shall have no responsibility for, the acts or omissions of any other contractor, subcontractor, supplier, or other entities furnishing materials or performing any work on the project.
- B. Insofar as job site safety is concerned, CONSULTANT is responsible only for the health and safety of its employees and subcontractors. Nothing herein shall be construed to relieve CLIENT or any other consultants or contractors from their responsibilities for maintaining a safe job site. CONSULTANT shall not advise on, issue directions regarding, or assume control over safety conditions and programs for others at the job site. Neither the professional activities of CONSULTANT, nor the presence of CONSULTANT or its employees and subcontractors, shall be construed to imply that CONSULTANT controls the operations of others or has any responsibility for job site safety.

15. PUBLIC RESPONSIBILITY

CLIENT has a duty to comply with applicable codes, standards, regulations, and ordinances, with regard to public health and safety. While CONSULTANT performs the Services, it will endeavor to alert CLIENT to any matter of which CONSULTANT becomes aware and believes requires CLIENT's immediate attention to help protect public health and safety, or which

CONSULTANT believes requires CLIENT to issue a notice or report to certain public officials, or to otherwise comply with applicable codes, standards, regulations, or ordinances. If CLIENT decides to disregard CONSULTANT'S recommendations in these respects, (i) CONSULTANT shall determine in its sole judgment if it has a duty to notify public officials, and (ii) CONSULTANT has the right immediately to terminate this Agreement upon written notice to the CLIENT and without penalty. In states where there is a legal obligation for a licensed professional (employed by CONSULTANT or CONSULTANT as a company) to report an observed release of a hazardous material or petroleum product to the environment, an imminent threat to human health or the environment, or other incident (as defined by applicable law) to a regulatory agency, CONSULTANT shall make reasonable efforts to first notify the CLIENT and its Counsel regarding the nature and timing of the required notification, but in any case will comply with the applicable legal requirements with regard to reporting.

16. NOTIFICATION AND DISCOVERY OF HAZARDOUS MATERIALS

- A. Prior to commencing the Services and as required by Article 10, Data and Information, CLIENT shall furnish to CONSULTANT all documents and information known to CLIENT that relate to past or existing conditions of the site and surrounding area, including the identity, location, quantity, nature, or characteristics of any hazardous materials or suspected hazardous materials or subterranean utilities. CONSULTANT may rely on such information and documents. CLIENT hereby warrants that, if it knows or has any reason to assume or suspect that hazardous materials may exist at the project site, it has so informed CONSULTANT.
- B. CLIENT acknowledges that if unanticipated hazardous materials or suspected hazardous materials are discovered on the project site property or on properties surrounding or adjacent to such site, it is CLIENT's responsibility, and not CONSULTANT'S, to inform the owner of any affected property not owned by CLIENT of such discovery. CLIENT also recognizes that any such discovery may result in a significant reduction of the property's value. CLIENT waives any claim against CONSULTANT and agrees to defend, indemnify, and hold harmless CONSULTANT from any claim or liability for injury or loss of any type arising from the discovery of hazardous materials or suspected hazardous materials on the project property site or on surrounding property, whether or not owned by CLIENT. CLIENT agrees that discovery of unanticipated hazardous materials shall constitute a changed condition for which CONSULTANT shall be fairly compensated.

17. TERMINATION

Either party may terminate this Agreement as a result of a material breach of the other party if the other party does not commence and continue to cure the breach within thirty (30) days of receipt of written notice of the breach from the nonbreaching party. In the event of termination, CONSULTANT shall be paid for Services performed to the termination notice date, reasonable termination expenses, and a portion of its anticipated profits not less than the percentage of the contract services performed as of the termination notice date. CONSULTANT may complete such analyses and records as are necessary to complete its files and may also complete a report on the Services performed to the date of notice of termination or suspension. The expenses of termination or suspension shall include all direct costs of CONSULTANT in completing such analyses, records, and reports.

18. DISPUTES

- A. **Dispute Resolution by Senior Management**. Any controversy, claim, or disagreement arising out of or relating to this Agreement shall be referred to senior management of each Party for a resolution. If the senior management is able to resolve the dispute, such resolution shall be binding on the Parties. In the event the senior management is unable to resolve the dispute within thirty (30) business days (or such other period as the Parties may agree upon) of referral, each Party shall have the right to pursue any other rights or remedies that may be available at law or equity, subject to this Article.
- B. Litigation. This Agreement shall be deemed to be a contract made under the laws of the state of North Carolina, and for all purposes shall be construed in accordance with the laws thereof. Client agrees that any and all disputes between the parties under or relating to the terms and conditions of this Agreement shall be fully and completely adjudicated in any federal or state court located in the state of North Carolina and Client completely and entirely waives any and all jurisdictional defenses

it may have now or in the future to the jurisdictional reach of such courts. CLIENT hereby waives the right to trial by jury for any disputes arising out of this Agreement.

C. Attorneys' Fees and Costs. In the event that one party makes a claim against the other, at law or otherwise, and then fails to prove such claim, then the prevailing party shall be entitled to all costs, including attorneys' fees incurred in defending against the claim. The term "prevailing party" shall be defined as the party that recovers at least fifty percent (50%) of the amount of its claim as identified on the first day of any trial. Conversely, any party defending a claim shall be determined the "prevailing party" if the party asserting a claim fails to recover at least fifty percent (50%) of the amount of its claim as identified on the first day of any trial.

19. INTELLECTUAL PROPERTY

- A. If the Services require CONSULTANT to provide CLIENT with the right to use or access proprietary CONSULTANT software, programs, information management solutions, hosting services, technology, designs, information, or data ("CONSULTANT Products"), CONSULTANT grants CLIENT during the term of the project a non-exclusive, non-transferable, non-assignable license to use the CONSULTANT Products for CLIENT's internal purposes, solely in connection with the Services. Except for this limited license, CONSULTANT expressly reserves all other rights in and to the CONSULTANT Products.
- B. CONSULTANT'S Right to Use CLIENT Materials If the Services require CLIENT to provide CONSULTANT with the right to use or access proprietary CLIENT software, programs, technology, information, or data ("CLIENT Products"), CLIENT grants CONSULTANT a perpetual, non-exclusive, non-transferable, non-assignable, royalty free world-wide license to use and access the CLIENT Product as necessary to provide CLIENT with Services.
- C. Intellectual Property General CONSULTANT shall own all Intellectual Property (as hereinafter defined) associated with the Services and the CONSULTANT Products, together with any modifications, updates, or enhancements to said Intellectual Property. CONSULTANT grants no right or license to such Intellectual Property to CLIENT except as expressly provided in this Agreement. CLIENT conveys to CONSULTANT any interest in any such Intellectual Property rights that, notwithstanding the foregoing, would otherwise be deemed by law to vest in CLIENT. "Intellectual Property" includes patents, patent applications, trademarks, trademark applications, copyrights, moral rights or other rights of authorship and applications to protect or register the same, trade secrets, industrial rights, know-how, privacy rights and any other similar proprietary rights under the laws of any jurisdiction in the world. CONSULTANT may use and publish the CLIENT's name and give a general description of the Services rendered by CONSULTANT for the purpose of informing other clients and potential clients of CONSULTANT'S experience and qualifications.
- D. CONSULTANT shall use reasonable efforts to provide the Services without infringing on any valid patent or copyright and without the use of any confidential information that is the property of others; provided, however, reasonable efforts of CONSULTANT shall not include a duty to conduct or prepare a patent or copyright search and/or opinion. If CONSULTANT performs its Services in a manner consistent with the above, then to the fullest extent permitted by law, CLIENT shall indemnify, defend, and hold harmless CONSULTANT and its officers, directors, agents and employees against all liability, cost, expense, attorneys' fees, claims, loss, or damage arising from any alleged or actual patent or copyright infringement resulting from the Services under this Agreement.

20. INFORMATION MANAGEMENT

Some CONSULTANT Products may be offered to CLIENT via the Internet and some CONSULTANT Products may utilize wireless radio communications. Atmospheric, meteorological, topographical, and other conditions can affect the performance of any wireless device, software, or technology (including, but not limited to information management solutions, hosting services, ftp, and extranet services), just as application size, traffic, bottlenecks, and other conditions can affect Internet access and upload and download speeds. CLIENT acknowledges that these types of conditions and other similar conditions are beyond the reasonable control of CONSULTANT and that CONSULTANT makes no representations or guarantees that CLIENT will be able to access any particular CONSULTANT Product at any given time without any error or interruption.

21. MISCELLANEOUS

- A. This Agreement supersedes all other agreements, oral or written, and contains the entire agreement of the parties. No cancellation, modification, amendment, deletion, addition, waiver, or other change in this Agreement shall have effect unless specifically set forth in writing signed by the party to be bound thereby. Titles in this Agreement are for convenience only.
- B. This Agreement shall be binding upon and inure to the benefit of the parties hereto and their respective successors and assigns provided that it may not be assigned by either party without consent of the other. It is expressly intended and agreed that no third-party beneficiaries are created by this Agreement, and that the rights and remedies provided herein shall inure only to the benefit of the parties to this Agreement.
- C. Nothing contained in this Agreement shall be construed as constituting a joint venture or partnership between the CLIENT and CONSULTANT. The relationship between the CLIENT and CONSULTANT is that of an independent contractor and client, respectively, and under no circumstances shall either party be deemed agents or representatives of the other. Neither party shall have the right to enter into any contracts or commitments in the name of or on behalf of the other party in any respect whatsoever, unless otherwise agreed by the terms of this Agreement.
- D. Unless otherwise agreed to in writing by CONSULTANT and CLIENT, neither party shall directly or indirectly solicit, hire or retain, or knowingly cause a third party to solicit, hire or retain, during the term of this Agreement and for a period of one (1) year after the date on which this Agreement terminates, any employee of the other party who works on the preparation of the Proposal or otherwise performs Services under or in connection with this Agreement. Nothing herein shall prevent either party from hiring any individual who responds to a general advertisement for services.
- E. The words in this Agreement shall bear their natural or defined meaning. The parties have each had full opportunity of obtaining legal advice and accordingly any rule of construction to the effect that any ambiguity is to be resolved against the drafting party shall not be applicable in the interpretation of this Agreement.
- F. CLIENT acknowledges and agrees that CONSULTANT can retain subconsultants, who may be affiliated with CONSULTANT, to provide Services for the benefit of CONSULTANT. CONSULTANT will be responsible to CLIENT for the Services and work done by all of its subconsultants and subcontractors. CLIENT agrees that it will only assert claims against and seek to recover losses, damages, or other liabilities from CONSULTANT and not CONSULTANT'S affiliated companies.
- G. No waiver of any right or remedy in respect of any occurrence on one occasion shall be deemed a waiver of such right or remedy in respect of such occurrence on any other occasion.
- H. All representations and obligations (including without limitation the obligation of CLIENT to indemnify CONSULTANT in Article 6 and the Limitation of Liability in Article 7) shall survive indefinitely the termination of the Agreement. CLIENT acknowledges that it may not use CONSULTANT'S name or any reference to the Services in any press release or public document without the express, written consent of CONSULTANT.
- I. Any provision, to the extent found to be unlawful or unenforceable, shall be stricken without affecting any other provision of the Agreement, so that the Agreement will be deemed to be a valid and binding agreement enforceable in accordance with its terms.
- J. All questions concerning the validity and operation of this Agreement and the performance of the obligations imposed upon the parties hereunder shall be governed by the laws of North Carolina unless the law of another jurisdiction must apply for this Agreement to be enforceable.
- K. The duties and obligations imposed by this Agreement and the rights and remedies available hereunder shall be in addition to and not a substitution to any duties, obligations, rights and remedies otherwise available by applicable law.

- L. All notices required or permitted to be given hereunder, shall be deemed to be properly given if delivered in writing via email, regular mail, hand delivery or express courier addressed to CLIENT or CONSULTANT, as the case may be, at the addressee set forth in the Proposal Acceptance Form in regard to the CLIENT, and as listed on the Proposal in regard to CONSULTANT, with postage thereon fully prepaid if sent by mail or express courier.
- M. Any signature (including any electronic symbol or process attached to, or associated with, a contract or other record and adopted by a Person with the intent to sign, authenticate or accept such contract or record) hereto or to any resulting Work Order, and any contract formation or record-keeping through electronic means shall have the same legal validity and enforceability as a manually executed signature or use of a paper-based recordkeeping system, to the fullest extent permitted by applicable law, including the Federal <u>Electronic Signatures</u> in Global and National Commerce Act, or any similar state law based on the Uniform Electronic Transactions Act. The parties hereby waive any objection to the contrary.
- N. CLIENT represents and warrants that the individual signing this Agreement is an authorized representative of CLIENT and has authority to bind the CLIENT.

22. AUTHORIZATION TO PROCEED

By signing below, CLIENT hereby authorizes CONSULTANT to proceed with the Services outlined in the Proposal and in accordance with this Agreement, which includes terms relating to payment, limitation of liability, insurance, and indemnity, among many other important provisions. CLIENT also represents that any "purchase order" type document which CLIENT may issue after executing this Agreement, shall be for administrative or accounting purposes only, and that this Agreement shall supersede any such terms or conditions attached thereto in governing the performance of the Services, and any such terms or conditions shall be void and without binding effect.

(CONSULTANT)	(CLIENT) Watauga County
Signaturo	Signature
Signature	Brown ton Eggers Name
Name	V
Title	Title
 Date	<u>8-5-2025</u>
Date	Dute
Please address invoices to:	Please address deliverables & notices* to:

ATTN:	ATTN:
Phone:	Phone:
Email:	Email:

REV: 09/2024

This instrument has been preaudited in the manner required by the local Government Budget and Fiscal Control Act.

Date

Finance Director

^{*}All notices required or permitted to be given hereunder shall be in writing and shall be delivered in person, sent by facsimile machine, mailed, or emailed and properly addressed and stamped with the required postage to the intended recipient.

AMENDED AGENDA ITEM 13:

MISCELLANEOUS ADMINISTRATIVE MATTERS

D. Announcements

MANAGER'S COMMENTS:

Ribbon Cutting Invitation – Middle Fork Greenway

The Watauga Arts Council would like to extend an invitation to the Board and community to attend a ribbon-cutting ceremony for the new section of the Middle Fork Greenway, hosted in partnership with the Blue Ridge Conservancy. The event will take place on Thursday, August 14th at 4:00 PM near Tweetsie Railroad, at the underpass on the right side of the parking lot by the new split-rail fence.

The celebration will highlight the completion of the newest trail segment and recently finished murals in the tunnel (with one more still in progress). Attendees will also receive updates on progress along the Middle Fork Greenway corridor.

This project represents continued collaboration and strong community support for outdoor recreation and connectivity in the High Country.

AppHealthCare Grand Opening and 10th Anniversary Celebration

AppHealthCare has extended an invitation to attend the grand opening of their mobile health services and to celebrate the 10th anniversary of their designation as a Community Health Center. The event will be held on Friday, August 8, 2025, from 11:00 AM to 12:00 PM at the AppHealthCare Watauga Health Center, located at 126 Poplar Grove Connector in Boone.

The celebration will include a ribbon-cutting ceremony, light refreshments, a tour of the new mobile health unit, and remarks from AppHealthCare staff.

Katie.Hancock

From:

Deron.Geouque

Sent:

Tuesday, August 5, 2025 4:17 PM

To:

Katie.Hancock

Subject:

FW: 321 Corridor Group

FYI

Deron Geouque
Watauga County Manager
814 West King Street
Boone, NC 28607
(P) 828-265-8000
(F) 828-264-3230
Deron.Geouque@watgov.org

From: director@watauga-arts.org <director@watauga-arts.org>

Sent: Tuesday, August 5, 2025 4:11 PM **To:** Robin Miller <robin@blowingrock.com>

 $\textbf{Cc:} \ Jonathan \ Lubkemann < jonathan.lubkemann@truist.com>; \ Deron. Geouque < Deron. Geouque@watgov.org>; \\ Jonathan \ Lubkemann < jonathan.lubkemann@truist.com>; \\ Deron. Geouque < Deron. Geouque@watgov.org>; \\ Jonathan \ Lubkemann < jonathan.lubkemann@truist.com>; \\ Deron. Geouque < Deron. Geouque@watgov.org>; \\ Jonathan \ Lubkemann < Jonathan.lubkemann@truist.com>; \\ Deron. Geouque < Deron. Geouque@watgov.org>; \\ Jonathan \ Lubkemann < Jonathan.lubkemann@truist.com>; \\ Deron. Geouque < Deron. Geouque@watgov.org>; \\ Jonathan \ Lubkemann < Jonathan.lubkemann@truist.com>; \\ Deron. Geouque < Deron. Geouque@watgov.org>; \\ D$

Jason.Walker <Jason.Walker@watgov.org>; Amy Davis <amy.davis@townofboone.net>; Joe Furman

<joe@boonechamber.com>; wendy@blueridgeconservancy.org

Subject: Re: 321 Corridor Group

Hi Robin,

Thank you for following up with this! I am interested in continuing with this group.

Also, I wanted to extend an invitation to everyone involved. We are partnering with the Blue Ridge Conservancy to host a ribbon-cutting on the Middle Fork Greenway on August 14th at 4 p.m. This event will celebrate the opening of the new section of the trail as well as the completion of the murals in the tunnel near Tweetsie Railroad.(another one is pending!)

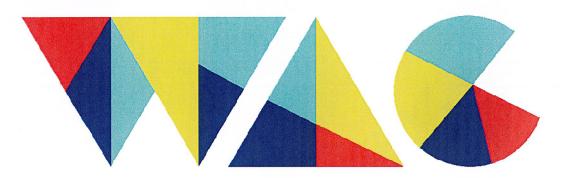
Here is the message that is the official invite:

Please join us to CELEBRATE the new Middle Fork Greenway Underpass at Tweetsie Railroad with a ribbon-cutting ceremony on

Thursday, August 14th at 4 p.m.

We'll also provide Middle Fork Greenway updates, as a lot is happening throughout the corridor, and celebrate the completion of this segment that connects two contiguous miles of path.

Directions: As you pull into Tweetsie Railroad, the ribbon-cutting will be held on the right side of their parking lot near the new split-rail fence and the underpass.


Thank you for supporting the Middle Fork Greenway over the years! The High Country Community has been stepping up, and you are the reason we are making great progress!

Amber Bateman Executive Director

o. 828-264-1789

c. 828-964-7233

watauga-arts.org highcountryarts.org

watauga arts council

Explore the Arts of the High Country!

Events. Artists. Art Services. Classes.

